Скачать .docx | Скачать .pdf |
Дипломная работа: Состояние глутатионового звена антиоксидантной системы крови практически здоровых людей с лор-паталогиями, проживающих в различных районах города Красноярска
ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ
ФОУ ВПО «СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»
ИНСТИТУТ ФУНДАМЕНТАЛЬНОЙ БИОЛОГИИ И БИОТЕХНОЛОГИИ
Кафедра биохимии и физиологии человека и животных
А.В.Тимохина
Студентка V курса
СОСТОЯНИЕ ГЛУТАТИОНОВОГО ЗВЕНА АНТИОКСИДАНТНОЙ СИСТЕМЫ КРОВИ ПРАКТИЧЕСКИ ЗДОРОВЫХ ЛЮДЕЙ И ЛЮДЕЙ С ЛОР-ПАТОЛОГИЯМИ, ПРОЖИВАЮЩИХ В РАЗЛИЧНЫХ РАЙОНАХ ГОРОДА КРАСНОЯРСКА
(дипломная работа)
Допустить к защите: Зав.кафедрой, д.м.н., проф. А.А.Савченко ____________ |
Научный руководитель: к.б.н., доцент Т.Н. Субботина ___________ |
Красноярск 2008
СОДЕРЖАНИЕ
Список сокращений. 3
Введение. 4
Глава 1. Обзор литературы.. 6
1.1. Уровень антропогенной нагрузки на здоровье населения в условиях промышленного города. 6
1.2. Активные формы кислорода: свойства и механизмы образования. 9
1.3. Характеристика антиоксидантной системы.. 15
Глава 2. Материалы и методы.. 24
2.1. Объект исследования. 24
2.2. Приготовление эритроцитов. 25
2.3. Определение содержание гемоглобина. 25
2.4. Определение количества восстановленного глутатиона…………………26
2.5. Определение активности глутатионпероксидазы.. 28
2.6. Определение активности глутатион-S-трансферазы.. 29
2.7. Определение активности глутатионпероксидазы.. 30
2.8. Статистическая обработка результатов. 32
Глава 3. Результаты исследований и их обсуждение. 33
3.1. Анализ содержания GSH и активности глутатионзависимых ферментов в эритроцитах крови практически здоровых людей и людей с ЛОР-заболеваниями 33
3.2. Анализ содержание GSH и активность глутатионзависимых ферментов в эритроцитах крови практически здоровых людей, проживающих в различных по уровню загрязнения районах г.Красноярска. 37
3.3. Анализ содержание GSH и активность глутатионзависимых ферментов в эритроцитах крови здоровых мужчин и женщин. 40
3.4. Содержание GSH и активность глутатионзависимых ферментов в эритроцитах крови практически здоровых людей различного возраста. 41
Выводы.. 44
Список литературы.. 45
Summary. 52
СПИСОК СОКРАЩЕНИЙ
АФК – активные формы кислорода
АОС – антиоксидантная система
ДНК – дезоксинуклеиновая кислота
КрАЗ – Красноярский Алюминиевый Завод
ПОЛ – перекисное окисление липидов
ПДК – предельно допустимая концентрация
РНК – рибонуклеиновая кислота
ТЭЦ – топливо-энергитический центр
цАМФ – цикло-аденозинмонофосфат
GSH – восстановленный глутатион
GPO – глутатионпероксидаза
GR – глутатионредуктаза
GST – глутатион-S-трансфераза
NADP – никотинамидадениндинуклеотидфосфат окисленный
NADFH– никотинамидадениндинуклеотидфосфат восстановленный
СРО – свободнорадикальное окисление
NRF – ядерный респираторный фактор
ВЕДЕНИЕ
В последние десятилетия в связи с огромным развитием промышленности экология индустриальных городов значительно ухудшилась, это результат больших техногенных выбросов предприятий стоящих на территории городов или вблизи них [Иванова с соавт., 2001].
По степени загрязнения атмосферы город Красноярск входит в число наиболее загрязненных городов Российской Федерации. На территории города располагаются крупные предприятия, которые являются основными поставщиками загрязняющих веществ в атмосферу города, к таким предприятиям относятся две ТЭЦ, алюминиевый, цементный, целлюлозно-бумажный, фармацевтический заводы [Симонова, 2002]. Только ОАО «Красноярский Алюминиевый завод» имеет объемы выбросов в атмосферу в размере 58,6 тыс. в год. Основными компонентами химического загрязнения окружающей среды от КрАЗа являются: фтористый водород, плохорастворимые неорганические фториды, оксиды алюминия, оксид углерода бенз(а)пирен, сернистый ангидрид [Игамбердиев, 2004]. Превышение ПДК наблюдается по фторидам газообразным - до 2,79 раз; по бенз(а)пирену – до 4,42 раз; по плохо растворимым фторидам – до 3,16 раз. При этом уровень загрязнения атмосферы жилой зоны города по фторидам газообразным составил 1,19-1,57 ПДК на 2003 год [Реброва, 2003]
По данным ряда авторов фтор и его производные в умеренных дозах является необходимым элементом живых организмов, наибольшее его содержание отмечено в зубах и костях, низкие концентрации – повышают устойчивость зубов к кариесу, стимулируют кроветворение, репаративные процессы при переломах костей и реакции иммунитета, участвуют в росте скелета, избыточное поступление фтора в организм вызывает флюороз. При ингаляционном поступлении в организм газообразных соединений фтора и содержащих фтор аэрозолей возникают атрофические изменения слизистой оболочки верхних дыхательных путей и бронхов, возможно развитие ринита, фарингита, ларингита [Богданов, Гембицкий, 1975].
Дыхательная система является входными воротами для попадания в организм поллютантов техногенного происхождения. Действия пылевых частиц на респираторные органы вызывает образование большого числа активных форм кислорода (АФК), и приводят к развитию окислительного стресса. Антиоксидантная система осуществляет защиту организма от пагубного действия прооксидантов и ограничивает развитие окислительного стресса [Ковальчук, 2004].
ЦЕЛЬ: оценить состояние глутатионового звена антиоксидантной системы в эритроцитах крови практически здоровых людей и людей с ЛОР-заболеваниями, проживающих в различных по уровню загрязнённости районах города Красноярска.
ЗАДАЧИ РАБОТЫ:
1. Изучить содержание GSH и активность GPO, GST и GR в эритроцитах крови практически здоровых людей и людей с хроническим ЛОР-заболеваниями.
2. Определить содержание GSH и активность GPO, GST и GR в эритроцитах крови практически здоровых людей проживающих в различных по уровню загрязнения районах г. Красноярска.
3. Провести сравнительный анализ содержания GSH и активности GPO, GST и GR в эритроцитах крови практически здоровых мужчин и женщин.
4. Выяснить содержание GSH и активность глутатионзависимых ферментов в эритроцитах крови практически здоровых людей различного возраста, проживающих в районах с разной техногенной нагрузкой г. Красноярска.
Работа выполнена на базе кафедры биохимии и физиологии человека и животных Института фундаментальной биологии и биотехнологии Сибирского федерального университета.
ГЛАВА 1. ОБЗОР ЛИТЕРАТУРЫ
1.1. Уровень антропогенной нагрузки на здоровье населения в условиях промышленного города
Анализ исследований за последнее десятилетие показал, что атмосферный воздух загрязняется вследствие образования загрязняющих веществ в концентрациях, превышающих нормативы качества или уровня естественного содержания. Мощность антропогенного воздействия на атмосферу увеличивается с каждым годом. За последние 25 лет ее техногенная запыленность возросла на 70%. Ежегодно, в результате деятельности человека, в атмосферу выбрасываются миллионы тонн загрязняющих веществ: диоксиды серы, оксидов азота, углерода, хлорфторуглероды (фреоны), которые отрицательно действуют на физико-химические свойства атмосферы и на здоровье людей [Пинигин, 1991; Новиков,1999].
Наиболее активными поставщиками поллютантов – веществ, загрязняющих атмосферу, являются автомобили, коксохимические, цементные, нефтеперерабатывающие, сталеплавительные, целлюлозобумажные, металлургические заводы, ТЭЦ, то есть отрасли, без процветания которых современный человек не мыслит своего существования [Онищенко, 2003].
Практически каждый поллютант является высокотоксичным веществом, постепенно разрушающим здоровье человека. Так, например, при сгорании угля и мазута выделяется двуокись серы, она вызывает легочные и аллергические заболевания, окись углерода, образующаяся при сгорании всех видов топлива, поражает сердечно-сосудистую систему, углеводороды, содержащиеся в выхлопных газах автомобилей, канцерогены, пылевидные отходы (цементный завод выбрасывает около 15 тонн пыли в сутки) провоцирует развитие бронхиальной астмы, заболеваний легких [Савин, 2001].
Как известно, человек подвержен экологическому влиянию не только в широком смысле понимания этого термина как окружающей человека среды, но и непосредственно во время его производственно - профессиональной деятельности. Трудовая деятельность человека не только ухудшает качество среды, но и обеспечивает условия труда, которые, являясь существенным фактором части окружающей среды (производственной среды), зачастую оказывают негативное влияние на работающего человека [Haglof, 2003]. Абсолютные величины предельно допустимых концентраций (ПДК) одних и тех же веществ в воздухе рабочей зоны от нескольких десятков до нескольких тысяч раз выше среднесуточных ПДК для атмосферы [Кучма, 2002]. Поэтому суммарная нагрузка вредными веществами на рабочего во столько же выше по сравнению с нагрузкой на население в целом. Наиболее распространенным профессиональным заболеванием рабочих алюминиевого производства является хроническая фтористая интоксикация – профессиональный флюороз, который составляет 70 % всех профессиональных заболеваний в данной области [Коцнельсон с соавт., 2000]. Обязательным проявлением профессионального флюороза является не только остеосклероз, но и дегенеративно-дистрофические изменения опорно-двигательного аппарата по существу возрастного характера, что развиваются они намного раньше и носят не только двухсторонний, но и симметричный характер. Явно опережающей хронологические сроки наступление кардинального признака старения (вероятности смерти по мере взросления) является и демографическая ситуация. Так продолжительность жизни рабочих алюминиевого завода составляет около 44 лет. Сроки развития профессионально флюороза зависят в большей степени от возраста начала работы в контакте с фтористыми соединениями и мышечных нагрузок [Гичев, 2002].
Изучение закономерностей формирования здоровья населения, проживающего в зоне влияния выбросов алюминиевых производств, остается актуальной гигиенической задачей. Как известно, основными вредными факторами алюминиевого производства является фтор, его соли и фтористый водород. По данным ряда авторов уровень загрязнения атмосферного воздуха фтористыми соединениями в зоне влияния выбросов алюминиевого завода превышает ПДК в 1,6-2,1 раза. Фтористые соединения так же обнаруживаются в воде и почве и превышают контрольные в 5 раз [Иванова с соавт., 2001]. Токсичные соединения фтора в значительном количестве поступают через дыхательные пути, с продуктами питания, питьевой водой. Имеется ряд исследований о влиянии фтористых соединений на состояние перекисного окисления липидов мембран клеток и антиоксидантной защиты [Cavalca, etal., 2001]. Длительное воздействие на организм токсичных соединений фтора, фтористоводородной кислоты приводит к формированию выраженных функционально-структурных нарушений, к угнетению биоэнергетического обмена в эритроцитах, белково-образовательной функции печени, усилению пролиферативно-клеточной реакции. Высокая реакционность фтора делает возможным его проникновение через защитные барьеры организма, нарушая целостность мембран, усиливая процессы липопероксидации. Результаты ряда исследований свидетельствую о том, что фтор и его соединения вызывают системное поражение организма, которое проявляется рядом специфических заболеваний [Кацнельсон с соавт., 2000].
В литературе приводятся данные, что для интоксикации фтором характерно разнообразное воздействие на обменные процессы. Этот элемент обладает высоким сродством к некоторым элементам, например, кальцию и магнию, с которыми он комплексуется в клетке [Мамырев, Богатова, 2002]. Фтор способен выступать в качестве регулятора ферментативной активности в клетке. Он обладает ингибирующим действием на металлопротеины. Это, по-видимому, обусловлено тем, что он представляет собой один из наиболее “жестких” лигандов, то есть, способен образовывать прочные комплексы с ионами “жестких” металлов, к которым относятся почти все металлы в биологических системах [Генкин, Глотов, Ждахина, 1983]. В силу этого обстоятельства при увеличении концентрации фтор способен “вклиниваться” в структуру биокоординационных соединений и замешать некоторые ионы-лиганды (например, гидроксил-ионы), в результате чего изменяется конформация соединения, что и приводит к “ухудшению” взаимодействия фермента с субстратом, то есть к ингибированию ферментативной активности [Ройт,1991]. Наибольшей прочностью отличается соединение фтора с ионами магния, в силу чего большинство Мg2+ -зависимых ферментных систем по своей чувствительности к ингибирующему воздействию фтора в несколько раз превосходят ферменты, активируемые другими ионами, например Мn2+ .Существуют данные о влиянии фтора на активность некоторых энзимов, например липаз, через их лабильный компонент – кофермент [Разумов, 1997]. Из литературных источников известно, что фтор способен оказывать ингибирующее влияние на ферменты цикла трикарбоновых кислот и цепи переноса электронов: НАДН- зависимые дегидрогеназы, цитохромоксидазу, сукцинатдегидрогеназу, a-кетоглутаратдеги-дрогеназу. Наибольшей чувствительностью из них к фтору обладает сукцинатдегидрогеназа [Abiaka, 2000].
1.2. Активные формы кислорода: свойства и механизмы образования
Обязательным атрибутом нормальной аэробной жизни является генерация АФК – прооксидантов. Функционирование и развитие клеток не могло быть возможным без существования защитных систем, к которым относиться специализированные ферментативные и неферментативные актиоксиданты [Меньщикова c соавт, 2006]. Постоянное образование прооксидантов уравновешенно их дезактивацией антиоксидантами, поэтому для поддержания гомеостаза необходимо непрерывная генерация антиоксидантной способности. Отсутствие или сбой этой непрерывности приводят к развитию окислительного стресса, к возникновению и накоплении окислительных повреждений, что сопровождает ряд физиологических процессов – таких как воспаление, реперфузионное поражение тканей, бронхо-легочное заболевание, старение и др.
В живых организмах существует два разных источника АФК: радикальные окислительные реакции и металопротеиновые ферментативные системы. В обоих случаях молекулярный кислород выступает акцептором электронов. Наличие у молекулярного кислорода двух неспаренных электронов существенно ограничивает его реакционную способность. В процессе эволюции у живых организмов выработались специальные ферментативные системы, которые восстанавливают молекулярный кислород, перенося на него один, два или четыре электрона. Главные ферменты, которые осуществляют метаболизм кислорода в организме млекопитающих – оксидазы и оксигеназы. В активных центрах этих ферментов кислород превращается в этих продуктах и не выходит в окружающую среду, но при этом они не подвергают опасности органические молекулы, а опасными являются активные формы кислорода, которые образуются как побочные вещества в ходе этих превращений [Меньщикова c соавт, 2006].
Главные АФК: супероксидный радикал , перекись водорода , гидроксильный радикал , синглетный кислород , гипогалоиды алкоксильный радикал и перекисный радикал .
Характеристика основных форм АФК
Супероксидный радикал. Присоединение одного электрона к молекуле кислорода в основном состоянии приводит к образованию супероксидного анион радикала (), который при взаимодействии с протоном переходит в гидроперекисный радикал () [Бурлакова с соавт., 1992]. В живых системах супероксидный анион является промежуточным продуктом многих биохимических реакций – окисление тиолов, флавинов, хинонов, катехоламинов, птеринов, ксонобиотиков. Но основные источники его образование – ферментативные системы: NADFH-оксидаза фагоцитирующих клеток, ксантиноксидаза, митохондриальная цитохром-с-оксидаза и микросомальные монооксигеназы. При активации фагоцитов в очаге воспаления генерация служит пусковым звеном целого каскада реакций, приводящих к образованию других форм АФК. Для регуляции уровня в клетках служит высокоспецифичный фермент – антиоксидант супероксиддисмутаза, которая существенно ускоряет реакции дисмутации до перекиси водорода [Зенков, Меньщикова, 2004].
Перекись водорода. Присоединение двух электронов к молекуле кислорода или одного электрона к аниону сопровождается образованием двухзарядного аниона , который в свободном состоянии не существует, присоединяя протоны он переходит в гидроперекисный анион [Brune, Messmer, 1995]. Перекись водорода – слабый окислитель, в отсутствии каталазы и ионов металлов переменной валетности она относительно стабильна и может мигрировать в клетке и ткани. В живых организмах источниками служат ферментативные реакции с оксидазами, реакция дисмутации, катализируемая SOD[Зенков, Меньщикова, 2004].
Клетки млекопитащих достаточно устойчивы к воздействию , благодаря наличию глутатионпероксидазной и каталазной ферментативных систем, первая из которых эффективно работает при малых концентрациях перекиси, вторая – при высоких.
Гипогалоиды. Образуются главным образом в результате ферментативной реакции перекиси водорода с галидами, катализируемой миелопероксидазой, пероксидазой эозинофилов, которые различаются по структуре и субстратной специфичности. Основным продуктом миелопероксидазы является , пероксидаза эозинофилов катализирует образование и. Гипогалоиды инактивируют -антитрипсин, переводят коллагеназу в активную форму Б, окисляют лейкотриены, иммуноглобулины, альбумин, церулоплазмин, трансферрин. Вызывают структурную модификацию и инактивацию ,-SOD могут как индуцировать, так и ингибировать процессы ПОЛ.
Гидроксильный радикал является наиболее реакционноспособным АФК, образующимся в биологических системах, он может разрывать любую углеродную связь [Андреев, 1999]. Образование ОН-радикала показано в реакциях окисления арахидоновой кислоты, в реакции Габера-Вейса, при микросамальном окислении, в реакциях с флавиновыми ферментами и убихиноном, но основным источником OH-радикалов в биологических системах служит реакция Фентона с участием металлов переменной валентности, главным образом :
Обратное восстановление возможно в реакции с :
а также при взаимодействии с аскорбиновой кислотой, глутатионом, цистеином и другими окисляющимися соединениями [Зенков, Меньщикова, 2004].
Синглетный кислород. В кислороде внутримолекулярно происходит перестройка электронов и возникает более высокий энергетический уровень [Владимиров, 1998]. Источником синглетного кислорода являются реакции фотосенсибилизированного окисления биологических субстратов, при не фотохимических реакциях не ферментативная дисмутация супероксидных радикалов, протекающие с образованием перекиси водорода. обладает высокой химической активностью, особенно по отношению к молекулам, содержащим участки повышенной электронной плотности.
Алкоксильные и перекисные радикалы. При развитии радикальных окислительных процессов взаимодействие органических радикалов молекулярным кислородом приводят к образованию перекисных радикалов, которые с алкоксильными радикалами могут образовываться в реакциях разложения перекиси в присутствии ионов металлов переменной валентности. По физико-химическим свойствам алкоксильные и перекисные радикалы это очень гетерогенный класс соединений, включающий высокореакционный OH-радикал и мало активные радикалы фенольных антиоксидантов. Взаимодействие и с углеводородами, приводящие к образованию и - это наиболее медленная стадия развития радикальных окислительных процессов [Владимиров, 1998].
Биологический эффект и реализуется через повреждающее действие на белки, ферменты, нуклеиновые кислоты, через продукты ПОЛ – органические перекиси, альдегиды, кетоны, эпоксиды, которые высокотоксичны для клеток. Ингибиторы – аскорбиновая кислота, мочевая кислота, убихинон, селен, -токоферол [Андреев, 1999].
Все формы АФК обладают высокой цитотоксичностью для клеток и клеточных образований. Можно выделить четыре мишени окислительной цитотоксической атаки АФК: индукция процессов ПОЛ в биологических мембранах, повреждение мембрансвязанных белков, инактивация ферментов и повреждение ДНК клеток.
Аминокислоты, из которых состоят белки, подвержены окислительному действию АФК, что приводит к трем вариантам изменения физико-химических свойств белков: фрагментации, агрегации и повышению чувствительности к протеолизу. В первую очередь воздействию кислородных радикалов подвергаются остатки пролина гистидина и аргинина. Окислительное повреждение приводит к денатурации и агрегации белков (хрусталика глаза). Агрегация белков связана со способностью АФК образовывать межмолекулярные сшивки. В результате денатурации белков нарушается их конформация, иони становятся более уязвимыми к действию протеолитических ферментов [Зенков, Меньщикова, 2004].
Окислению АФК в первую очередь подвергаются SН-содержащие группы белков; их окисление приводит к снижению содержания восстановленных и повышению уровня окисленных SН-групп, поэтому соотношение окисленных и восстановленных SН-групп белков может быть использовано в качестве показателя развития окислительного стресса. Наиболее подвержена окислительному стрессу Са2+ -АТФаза, ее повреждение приводит к нарушению транспорта кальция через мембрану [Владимиров, 1999].
Карбонильные группы и гидроперекиси, образующиеся при окислении белков, также является показателем свободнорадикального окисления.
Окисление липидных молекул приводит к необратимому изменению мембранных структур, нарушению их проницаемостью для ионов. Наиболее подвержены перекисному окислению входящие в состав мембран ненасыщенные жирные кислоты: линолевая, арахидоновая, докозагексаеновая [Козлов, 2006]. Одним из важнейших следствий избыточного образования АФК является избыточная и неконтролируемая в этих условиях активация процессов ПОЛ. Процессы ПОЛ можно условно подразделить на три последовательных этапа, или фазы развития: процессы зарождения цепей, процессы развития цепных реакций и обрыв цепей . На стадии зарождения цепей под действием свободных радикалов кислорода, ионизирующей радиации, ультрафиолетового облучения и ряда химических веществ, относящихся к прооксидантам, происходит образование органических радикалов (R ).
На следующей стадии радикал быстро взаимодействует с кислородом, который выступает в качестве акцептора электронов. В результате происходит образование пероксирадикала (R О2 ), который атакует ненасыщенные липиды. Возникновение в результате этой реакции органических перекисей и нового радикала (R ) способствует продолжению окислительных реакций, приобретающих цепной характер:
R + О2 RО2
Органические перекиси (R ООН ) включаются в процесс генерации радикалов, в присутствии металлов переменной валентности (меди, кобальта, марганца, железа) происходит образование реакционного алкоксильного радикала:
Часть образующихся органических радикалов взаимодействует друг с другом, при этом происходит образование неактивных молекул, что обрывает ход реакций свободнорадикального окисления. Гидроперекиси липидов способны подвергаться нерадикальным окислительным превращениям, что приводит к образованию первичных (диеновые коньюгаты, диальдегиды), промежуточных (основания Шиффа) и конечных продуктов ПОЛ, а также спиртов, кетонов и альдегидов. Обрыв цепных реакций перекисного окисления возможен при взаимодействии радикалов со специализированными ферментными системами, а также с рядом низкомолекулярных веществ, совокупно формирующих биохимический компонент антиоксидантной системы организма [Меньщикова с соавт., 2006].
Одним из конечных продуктов ПОЛ является насыщенные низкомолекулярные углеводороды (этан, гексан, пентан), которые в нормальных условиях переходят в газообразное состояние.
Идентифицировано более 20 типов окислительных повреждений молекул нуклеиновых кислот: различные повреждение оснований, возникновение одно- и двух цепочечных разрывов, сшивок и хромосомных аберраций. Прямое действие и на ДНК не вызывает повреждения оснований или образования сшивок между основаниями. Основным повреждающим агентом выступает OH-радикал, который эффективно взаимодействует с дезоксирибозой, пуриновыми и пиримидиновыми основаниями. Синглетный кислород более специфично, чем , взаимодействует с гуанином. Перексинитрит вызывает нитрозилирование и дезаминирование аминогрупп в основаниях ДНК, при этом 8-нитрогуанин является индикатором повреждающего действия пероксинитрита. В условиях окислительного стресса в наибольшей степени повреждается ДНК митохондрий, что связано с низкой активностью систем репарации и низким содержание гистоновых белков, оказывающие защитное действие [Зенков, Менщикова, Шергин, 1993].
1.3. Характеристика антиоксидантной системы
В процессе эволюции в клетках для защиты от АФК выработались специализированные системы: ферментативная антиоксидантная система (АОС) и неферментативная АОС. В качестве неферментативной АОС могут выступать: жирорастворимые антиоксиданты (витамин Е, β-каротин, убихиноны) [Абрамова, 2004], водорастворимые (аскорбат, рутин, глутатион). Гидрофобные антиоксиданты локализованы в биомембраннах, гидрофильные - в цитозоле клетки.
Ферментативная АОС включает: супероксиддисмутазу (SОD), катализирующую реакцию дисмутации О2 ˉ в Н2 О2 , каталазу (CАТ), разлагающей Н2 О2 , глутатионпероксидазу (GPO), глутатион-S- трансферазу (GSТ), глюкозо-6-фосфатдегидрогеназу (G6FD), глутатионредуктазу (GR), глутатионзависимые ферменты удаляют органические перекиси [Брискин, Рыбаков 2000].
Супероксиддисмутаза имеет несколько изоферментных форм, различающихся строением активного центра. Медь-цинковая форма чувствительна к цианиду и содержится в цитозоле и межмембранном пространстве митохондрий клеток эукариот, марганецсодержащая форма локализована в митохондриях клеток эукариот, а так же бактерий, экстрацеллюлярная высокомолекулярная форма SOD (Э-SOD) [Биленко,1999]. Э-SOD обладает высоким сродством к гепарину и хорошо связывается с гепаринсульфатом гликокаликса эндотелиоцитов. Нативная форма SOD выдерживает нагревание при 100º С в течение одной минуты, устойчив к колебаниям значений pН в широком диапазоне. SOD существенно ускоряет реакцию дисмутации О2 ˉ , обрывая тем самым опасную цепь свободнорадикальных превращений кислорода:
О2 ˉ + О2 ˉ → H 2 O 2 + O 2
HO + HO . → H 2 O 2 + O 2
HO . 2 + Н+ → H 2 O 2 + O 2
В определенных условиях медьсодержащая форма SOD может взаимодействовать с перекисью водорода и выступать в качестве прооксиданта, инициируя образование радикалов – супероксида и гидроксила:
Cu 2+ -СОД + H 2 O 2 ←→ Cu + -СОД + 2Н+ + О2 ˉ
Cu + -СОД + H 2 O 2 ←→ Cu 2+ -СОД + ОН. + ОН+
СОД играет важную роль в защите клеток от действия супероксид-анион радикала, стабилизирует клеточные мембраны, предотвращая процессы ПОЛ, снижая уровень О2 ˉ , она защищает от его дезактивирующего действия CAT и GPO [Александров,2007].
Регулирующее влияние на активность SOD оказывают глутатион, цистеин, другие SH-содержащие соединения, а также опосредованно ферменты глутатионового обмена [Зенков, Меньщикова, 2004].
Каталаза – фермент, участвующий в детоксикации нерадикальной активной формы кислорода – Н2 О2 . Эта гемсодержащий фермент, локализованный преимущественно в пероксисомах клеток. Большая молекулярная масса фермента препятствует его проникновению через клеточную мембрану [Биленко, 1999]. Разложение Н2 О2 каталазой осуществляется в два этапа.
CAT + Н2 О2 → CAT - Н2 О2
CAT - Н2 О2 + Н2 О2 → CAT + 2Н2 О + О2
При этом в окисленном состоянии каталаза работает и как пероксидаза, катализируя окисление спиртов или альдегидов:
CАТ - Н2 О2 + > CHOH → CАТ + 2Н2 О + > C = O
Каталаза ингибируется азидом, цианидом, пероксидом водорода в высоких концентрациях и некоторыми органическими гидроперекисями. Каталаза может выступать источником образования АФК. 0,5% кислорода, образующегося в результате разложений перекиси водорода, возникает в возбужденном синглетном состоянии.
Глутатионпероксидаза – фермент, служащий для инактивации перекиси водорода в клетках высших животных. GPO– гликопротеин, имеющий в активном центре четыре атома селена. Он является гидрофильным соединением, что затрудняет его проникновение в липидный слой мембран, основная часть фермента локализована в цитозоле, а остальная – в митохондриях. GPO имеет селеновые изоферменты: внеклеточное GPO, обнаруженная в плазме и молоке, GPO– G1, выделенная из цитозоля клеток печени и кишечника, а также неселеновый изофермент, идентичный GSТ.
«Классическая» GPO представляет собой тетрамер, состоящий из четырех идентичных сферических субъединиц. Каждая субъединица содержит по одному атому селена, на тетрамер имеется два активных GSH-связывающих центра. При уменьшении уровня GPO снижается устойчивость организма к окислительному поражению, что может приводить к развитию свободнорадикальной патологии [Белоусов, Суслова, Трунова, 1998].
GPO катализирует реакцию восстановления глутатионом нестойких органических гидропероксидов, включая гидропероксиды полиненасыщенных жирных кислот, стабильные соединения – оксикислоты:
2 GSH + ROOH → GSSG + ROH + H 2 O
Все GPO, подобно каталазе, способны также утилизировать перекись водорода:
2 GSH + H 2 O 2 → GSSG + 2 H 2 O
Также селенсодержащая GPO участвует в обезвреживании пероксинитрита:
2 GSH + ONOO - → GSSG + NO + H 2 O
Сродство GPO к Н2 О2 выше, чем у каталазы, поэтому первая более эффективно работает при низких концентрациях перекиси водорода, в то же время в защите клеток окислительного стресса, вызванного высокими концентрациями Н2 О2 , ключевая роль принадлежит каталазе. В целом же, GPO значительно важнее, чем каталаза, так как каталаза сосредоточена в микросомах, а GPO – в цитозоле и митохондриях, сродство GPO к пероксиду водорода значительно выше, поэтому Н2 О2 элиминируется GPO, в некоторых тканях каталаза почти ответствует и GPO играет главную роль в валовом метаболизме Н2 О2 [Зубакова, Варакина, Николенко, 1999]. В клетках млекопитающих также обнаружен изофермент GPO, названный «GPO гидроперекисей фосфолипидов». Изофермент помимо Н2 О2 и липидных гидроперекисей способен восстанавливать гироперекиси фосфолипидов, он эффективно взаимодействует с гидроперекисями фосфотидилхолина, холестерина и эфира холестерина в мембранах и липопротеинах низкой плотности. Совместно с токоферолом GPO гидроперекисей фосфолипидов практически полностью подавляет ПОЛ в биомембранах.
Активность GPO в живых клетках увеличивается при действии ионизирующей радиации, интоксикации этанолом, акрилонитрилом, при Е-авитаминозе. Особо важна роль GPO в условиях окислительного стресса, так как он предупреждает возникновение и развитие пероксидации, устраняет ее источники и продукты, GPO – является одним из важнейших компонентов ферментативной АОС [Брискин, Рыбакова, 2000].
Глутатион- S -трансфераза входит в семейство ферментов, нейтрализующих токсическое влияние различных гидрофобных и электрофильных соединений путем их коньюгации с восстановленным глутатионом, GST локализованы преимущественно в цитозоле клеток. Основная функция GST-защита клеток от ксенобиотиков и продуктов ПОЛ посредством их восстановления, присоединения к субстрату молекулы глутатиона или нуклеофильного замещения гидрофобных групп:
ROOH + 2 GSH → ROH + GSSG + H 2 O
R + GSH → HRSG
RX + GSH → RSG + HX
GST способны восстанавливать гидроперокси-группы окисленных фосфолипидов непосредственно в мембранах без их предварительного фосфолипидного гидролиза свободными жирными кислотами. Этот фермент конъюгирует с GSН токсичные продукты ПОЛ (ноненали, децинали, холестерин-α-оксид) и тем способствуют их выведению из организма. Таким образом, GST является важным компонентом антиоксидантной защиты, особенно от эндогенных метаболитов, образующих при окислительном стрессе [Владимиров, 1998].
Глутатионредуктаза . Во многих реакциях, катализируемых GPO и GST, две молекулы GST соединяются дисульфидной связью и образуют окисленный глутатион. Для восстановления GSSG в клетках существует специальный фермент – глутатионредуктаза [Зенков, Меньщикова, 2004].
ГР широко распространенный флавиновый фермент, поддерживающий высокую внутриклеточную концентрацию GSH, катализируя обратимое NFDFH– зависимое восстановление GSSG с образованием двух молекул GSH.
GSSG + NADFH + H + → 2 GSH + NADF +
ГР содержится в основном в растворимой части клетки.
Глюкоза-6-фосфатдегидрогеназа. Для восстановления окисленного глутатиона ГР в качестве донара водорода используется NADFH, который образуется в пентозофосфатном пути в ходе глюкозо-6-фосфатдегидрогеназной реакции [Андреев, 1999]
G6FD – фермент, катализирующий начальную реакцию пентозофосфатного пути: восстановление глюкозо-6-фосфата в 6-фосфоглюконат. Она состоит из двух типов субъединиц, которые состоят из 479 аминокислотных остатков, имеют один и тот же СООН - концевой участок, но разные NH2 -концы, Эти субъединицы различаются по длине и последовательности аминокислот. Реакцию, катализируемую G6FD, с кинетической точки зрения можно рассматривать как двухсубстратную реакцию, протекающую с участием субстрата и кофермента, выполняющего роль второго субстрата. Фермент очень сильно ингибируется NADFH и ATF, по типу конкурентного ингиирования.
Глутатион – трипептид (L-γ-глутамил-L-цистеинилглицин), который при физиологических значениях рН имеет две отрицательно заряженные карбоксильные группы и положительно заряженную аминогруппу.
Наличие γ-глутамильной связи защищает трипептид от деградации внутриклеточными пептидазами, а сульфгидрильная группа цистеина может служить донором электронов, придавая глутатиону свойства восстановителя и способность удалять свободные радикалы. Одноэлектронная реакция GSH со свободными радикалами приводит к образованию тиильного радикала GS. , который при димеризации с другим GS. радикалом дает дисульфид глутатиона (GSSG). Второй тип окислительно-восстановительных реакций, в которых принимает участие глутатион - это реакции тиол-дисульфидного обмена [Brune,1995]. При окислительно-восстановительных реакциях третьего типа происходит двухэлектронное окисление с образованием интермедиата, который затем реагирует со второй молекулой, идентичной первой или отличной от нее. При этом в первом случае образуется GSSG, а во втором-смешанный дисульфид.
В клетках всех типов GSH синтезируется в ходе двух последовательных реакций, катализируемых γ-глутамилцистеинсинтетазой (γ-GCS) и GSН-синтетазой (GS). γ-GCS катализирует образование пептидной связи между γ-карбоксильной группой глутамата и α-аминогруппой цистеина. Глутатионсинтетаза образует пептидную связь между α-карбоксильной группой цистеина в составе γ-глутамилцистеина и α-аминогруппой глицина. Обе реакции являются ATF-зависимыми, имеют сходный каталитический механизм и протекают через образование ацилфосфатного интетрмедиата [Davies,1995].
Статус глутатиона определяется как общая концентрация глутатиона и количественное соотношение между различными формами, в которых он существует в клетке. Статус глутатиона обусловлен динамическим равновесием между реакциями синтеза, деградации, транспорта, окисления и восстановления и поэтому может изменяться в зависимости от преобладания тех или иных реакций, что определяется состоянием клетки и окружающей среды. Изменение статуса GSH может наблюдаться как при нормальных физиологических ситуациях, так и при стрессах. Для ингибирования синтеза GSH у эукариот широко используется ингибитор γ-глутамилцистиинсинтетазы [Gebhardt,1984].
Редокс-активность глутатиона при одновременной его устойчивости к окислению кислородом, высокая концентрация и возможность поддержания в восстановленном состоянии делают GSH важнейшим внутриклеточным редокс-буфером. Редокс система глутатиона включает в себя сам глутатион, GPO и ГSТ [Davies,1995].
GSH реагирует с очень большим числом электрофильных компонентов с образованием GSH-конъюгатов. Эта реакция может происходить спонтанно или катализироваться ферментами GSТ, затем коньюгаты деградируют до относительно безвредных меркаптуровых кислот. Глутатион также участвует в детоксикации некоторых реактивных альдегидов, которые могут образовываться при окислительных процессах в клетках. У эукариот глутатион играет ключевую роль в защите от окислительного стресса как кофактор селенозависимых и независимых GPO (Рис. 2). При окислительном стрессе идет интенсивное окисление GSH, и снижение соотношения GSH/GSSGявляется одним из основных признаков окислительного стресса в клетках [Brune,1995].
Защита живых организмов от окислительных повреждений не ограничивается рассмотренными выше антиоксидантными системами, а осуществляется так же большим количеством репарационных систем, специфическими протеолитическими ферментами; макрофагами и гепатоцитами, эффективно захватывающими окисленные липопротеины через специальные «скэвенджнр-рецепторы». Эта еще раз свидетельствует о важности и сложности окислительных процессов с участием АФК, протекающих в живом организме.
ГЛАВА 2. МАТЕРИАЛЫ И МЕТОДЫ
2.1. Объект исследования
Объектом исследования явились эритроциты крови практически здоровых людей, проживающих в Советском и Октябрьском районах г. Красноярска, а так же эритроциты крови людей с ЛОР-патологиями.
Всего обследовано 131 человек в возрасте от 18 до 54 лет, забор материала исследования проводился в клиническо-диагностической лаборатории ГУ НИИ медицинских проблем Севера СО РАМН. Группу контроля составили 102 практически здоровых человека, неболевших острыми респираторными заболеваниями в течение последнего месяца и не имеющих хронических ЛОР-заболеваний. Здоровые люди были отобраны в 2-х районах города Красноярска ЛОР-врачом по данным клинического осмотра. Группа людей с ЛОР-заболеваниями составила 29 человек, проживающих в различных районах г. Красноярска.
Таблица 1
Характеристика материала исследования и объёма проведенных работ
Методы исследования | Здоровые | ЛОР-больные | Всего |
Определение содержания GSH в эритроцитах крови Определение активности GPO в эритроцитах крови Определение активности GST в эритроцитах крови Определение активности GR в эритроцитах крови Определение содержания гемоглобина в эритроцитах крови |
91 89 90 67 91 |
29 20 28 6 29 |
120 109 118 73 120 |
Всего | 428 | 112 | 540 |
Определение активности глутатионзависимых ферментов – GPO, GST и GR, а так же содержание GSH проводили в упакованных эритроцитах крови (табл. 1).
2.2. Приготовление эритроцитов
Гепаринизированную кровь центрифугируют 20 минут при 3000 об/мин. (1700g). После центрифугирования убирают слой плазмы и тонкую белую лейкоцитарную пленку. Плазму отбирают отдельно и сохраняют. Оставшуюся после отбора плазмы эритроцитарную массу трижды отмывают физиологическим раствором (0,9%-ным NaCl) и центрифугируют по 15 минут при 3000 об/мин. (1700g). Супернатант отбрасывают. Последнее центрифугирование проводят в течение 20 минут для более плотной упаковки клеток [Авраамова, Титова, 1978].
2.3. Определение содержание гемоглобина
Содержание Hb определяют унифицированным гемиглобинцианидным методом с использованием набора реактивов фирмы “Агат-Мед”.
Принцип метода заключается в следующем: Hb крови при взаимодействии с железосинеродистым калием (красная кровяная соль) окисляется в Met-Hb, образующий с ацетонциангидрином гемиглобинцианид (цианметгемоглобин), оптическая плотность которого при 540 нм пропорциональна концентрации Hb в образце крови [Меньшиков, 1987]. Содержание Hb в опытных образцах выражали в граммах на литр упакованных эритроцитов.
Реактивы:
1. Трансформирующий реагент – сухая смесь натрий углекислый кислый, 1,0г, калий железосинеродистый, 200 мг.
2. Ацетонциангидрин.
3. Калибровочный раствор гемоглобин с концентрацией 120 г/л.
Ход определения
К 5 мл трансформирующего раствора добавляют 0,02 мл крови (разведение в 251 раз) или гемолизата, хорошо перемешивают. Определение проводят через 10 минут против холостой пробы (трансформирующего раствора), окраска устойчива в течение не менее 1 часа.
При использовании фотоколориметра определение проводят в диапазоне длин волн 500-560 нм (зелёный светофильтр). Калибровочный раствор гемоглобина обрабатывают также, как и пробу цельной крови. Расчёт содержания гемоглобина производят по формуле:
,
где:
Hb – содержание гемоглобина в опытной пробе, г/л;
Dо – оптическая плотность опытной пробы;
Dx – оптическая плотность калибровочной пробы;
120 – содержание гемоглобина в калибровочном растворе, г/л.
2.4. Определение количества восстановленного глутатиона
Принцип метода основан на взаимодействии GSH с ДТНБК (5,5’-дитио-бис-2-нитробензойной кислотой) с образованием окрашенного в желтый цвет аниона 2-нитро-5-тиобензоата. Увеличение концентрации желтого аниона в ходе данной реакции регистрировали спектрофотометрически при длине волны 412 нм [Beutler, 1990].
Ход определения
Готовим гемолизат добавлением 0,2 мл отмытых от плазмы и упакованных эритроцитов к 1,8 мл дист. Н2 О, охлаждённой до 0ºС. Для осаждения белков к гемолизату добавляли 3 мл осаждающего раствора. Пробы тщательно перемешивали и после 20 минутного стояния при комнатной температуре фильтровали через крупнопористый фильтр. Фильтрат должен быть прозрачным и бесцветным. 1 мл фильтрата помещали в спектрофотометрическую кювету объёмом 3 мл, добавляли 4 мл фосфатного буфера. Затем в пробу вносили 500 мкл раствора ДТНБК. Сразу же после перемешивания должна появиться жёлтая окраска из-за образования дисульфида глутатиона с ДТНБК. Пробу фотометрировали при длине волны 412 нм в кювете с толщиной слоя 1,0 см. Поскольку раствор ДТНБК имеет слабожелтую окраску, параллельно с опытной пробой готовили контрольную, содержащую вместо фильтрата осаждающий раствор, разведённый дист. Н2 О в отношении 2:5.
Реактивы:
1. Осаждающий раствор: 1,67 г ледяной ортофосфорной кислоты, 0,2 г ЭДТА и 30 г хлористого натрия растворяли в дист. Н2 О и доводили до метки 100 мл.
2. Фосфатный буфер: 0,3 М Na2 HPO4
3. ДТНБК: 0,02%-ный раствор, приготовленный на 1%-ном растворе цитрата натрия
Содержание восстановленного глутатиона рассчитывали с учетом коэффициента молярной экстинкции (13600 М-1 ´см-1 ) окрашенного аниона, образующегося при взаимодействии GSH с ДТНБК и выражали в мкмоль на грамм Hb.
Содержание глутатиона рассчитывают по формуле:
,
где:
С – концентрация восстановленного глутатиона, мкмоль/г Hb;
Е1 – оптическая плотность опытной пробы до добавления ДТНБК;
Е2 – оптическая плотность опытной пробы после добавления ДТНБК;
138 – разведение эритроцитов в реакционной пробе;
Hb – гемоглобин, г/л;
1000 – коэффициент для пересчета концентрации глутатиона от молярной к миллимолярной;
F – отношение оптической плотности контрольной пробы до добавления ДТНБК (Е1 ) и после добавления (Е2 );
13600 – коэффициент молярной экстинции окрашенного катиона, образующегося при взаимодействии GSH с ДТНБК;
2.5. Определение активности глутатионпероксидазы
Принцип метода: глутатионпероксидаза катализирует реакцию взаимодействия GSH с гидроперекисью трет-бутила (ГПТБ). Активность фермента при этом может быть оценена по изменению содержания GSH в пробах до, и после инкубации с модельным субстратом в ходе цветной реакции с ДТНБК [Paglia, Valentine, 1967].
Ход определения
Отмытые и упакованные эритроциты гемолизировали охлаждённой до 0ºС водой в соотношении 1:200. 0,2 мл гемолизата смешивали с 0,73 мл сложного буфера и термостатировали 10 мин при 37°С. Реакцию инициировали внесением в реакционную смесь 0,07 мл 0,14%-ного раствора ГПТБ (коммерческий препарат). Строго по секундомеру через 5 мин инкубации при 37°С реакцию останавливали добавлением 0,2 мл 20%-ного раствора ТХУ. В контрольные пробы 0,14%-ный раствор ГПТБ вносили после осаждения белка ТХУ. Полученные пробы центрифугировали при 1700g в течение 10 мин. Супернатант использовали для определения количества восстановленного глутатиона: к 0,1 мл супернатанта добавляли 2,65 мл 0,1 М трис-HCl буфера. После перемешивания пробы фотометрировали на СФ-26 при длине волны 412 нм в кювете с длиной оптического пути 1,0 см против дист. Н2 О. Активность фермента в эритроцитах выражали в мкмолях GSH, окисленного за 1 минуту на грамм Hb, используя коэффициент молярной экстинкции (13600 М-1 ´см-1 ) окрашенного аниона, образующегося при взаимодействии GSH с ДТНБК.
Реактивы:
1. Сложный буфер: 0,1М Трис-HCl-буфер, pH8,5, содержащий 6мМ ЭДТА и 12мМ азид натрия. Непосредственно на этом буфере готовят 4,8 мМ раствор GSH
2. 0,14%-ный раствор трет-бутил гидропероксида
3. 20%-ный раствор ТХУ
4. 0,1 М трис-HCl буфер, pH8,5
5. ДТНБК на абсолютном метаноле, 0,01М
Активность рассчитывают по формуле:
,
где:
А - активность фермента, мкмоль/мин×л;
∆С – разность концентраций GSH в опытной и контрольной пробах;
Vпр . – объем пробы, используемый для определения концентрации GPO
t – время инкубации;
Vр.с . .- объем реакционной смеси;
201 – степень разведения эритроцитов в гемолизате;
1000 – коэффициент для пересчета активности GPO от молярной к миллимолярной;
Hb – гемоглобин г/л;
Активность GPO можно также выразить в мкмоль\мин на 1 г Hb
2.6. Определение активности глутатион-S-трансферазы
Принцип метода : активность глутатион-S-трансферазы определяли по скорости образования глутатион-S-конъюгатов между GSH и 1-хлор-2,4-динитробензолом (ХДНБ).
Увеличение концентрации конъюгатов в ходе реакции регистрировали спектрофотометрически при длине волны 340 нм (максимум поглощения глутатион -S- ХДНБ) [Habig etal., 1974].
Ход определения
Источником фермента служил осмотический гемолизат, который готовили добавлением к одному объему упакованных эритроцитов двадцати объемов дист. Н2 О, охлажденной до 0°С. В кювету с длиной оптического пути 1,0 см, содержащую 2,5 мл 0,1 М калий-фосфатного буфера рН=6,5, добавляли 0,2 мл 0,015 М раствора восстановленного глутатиона и 0,1 мл гемолизата. Реакцию инициировали внесением в кювету 0,2 мл 0,015М ХДНБ (готовили на абсолютном метаноле). Параллельно опытной готовили контрольную пробу, в которую вместо гемолизата вносили дист. Н2 О. Регистрацию оптической плотности проводили при t=25°C и длине волны 340 нм против воды сразу после перемешивания в течение трех минут. Активность фермента рассчитывали, используя коэффициент экстинкции для ГS-ХДНБ при длине волны 340 нм, равный 9,6 мМ-1 *см-1 , и выражали в ммолях образующихся глутатион S-конъюгатов в минуту на грамм Hb.
Реактивы:
1. 0.1М калий – фосфатный буфер РН6,5;
2. 0.015М раствор GSН;
3. 0.015М раствор ХДНБ.
Активность GPO рассчитывают по следующей формуле:
где:
А – активность фермента, моль\мин×Hb
∆E – изменение оптической плотности в мин.
d – толщена кюветы (1см)
f – коэффициент разведения эритроцитов в пробе
ε – коэффициент молярной экстинкции при χ=340нм (9600М-1 ×см-1 )
Hb – гемоглобин г/л
1000 – коэффициент для пересчета активности GST от молярной к миллимолярной;
Vпр. – объем пробы, используемый для определения активности GST
Vр.с . .- объем реакционной смеси;
2.7. Определение активности глутатионпероксидазы
Принцип метода: определение активности глутатионредуктазы основано на измерении скорости окисления NADPH, которая регистрируется спектрофотометрически по уменьшению оптической плотности при длине волны 340 нм .
Для определения активности глутатионредуктазы использовали осмотический гемолизат, приготовленный следующим образом. К одному объему упакованных и отмытых от плазмы эритроцитов добавляли девяти кратный объем холодной дистиллированной воды.
Ход определения:
В спектрофотометрическую кювету с расстоянием между рабочими гранями 10 мм последовательно вносят 2,7 мл калий-фосфатного буфера, 0,1 мл раствора NADPH, 0,1 мл гемолизата и 0,1 мл раствора GSSG. Реакция запускается добавлением в пробу окисленного глутатиона. Смесь перемешивают. Изменеие оптической плотности регистрируют через 1 минуту в течение 3 минут против пробы, содержащей все компоненты, кроме GSSG.
Реактивы:
1. 50 мМ калий-фосфатный буфер , рН 7,0, содержащий 1мМ EDTA;
2. 0,1 мМ раствор NADPH;
3, 0,5 мМ раствор окисленного глутатиона (хранят в замороженном виде).
Активность фермента выражают в мкмолях ¤г Hb в минуту. Расчет производят по формуле:
,
где:
А – активность глутатионредуктазы;
DЕ – изменение оптической плотности;
К – коэффициент, учитывающий разведение эритроцитов в реакционной пробе, равный 300;
6,22 – коэффициент экстинкции для NADPH в см-1 /мМ-1 , при длине волны 340 нм;
t – время наблюдения, мин;
d – расстояние между рабочими гранями кюветы (10 мм);
Hb – гемоглобин в г/л.
2.8. Статистическая обработка результатов
В работе использованы стандартные статистические приемы подсчета, медианы, определения 25 и 75 перцентеля с помощью пакета прикладных программ Statistica 7.0. Достоверность полученных данных оценивали с помощью непараметрического критерия Манна-Уитни, с достоверностью Р<0,05, корреляционный анализ по Спирману.
ГЛАВА 3. РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ И ИХ ОБСУЖДЕНИЕ
3.1. Анализ содержания GSH и активности глутатионзависимых ферментов в эритроцитах крови практически здоровых людей и людей с ЛОР-заболеваниями
Воздушные загрязнения играют ключевую роль в развитии окислительного стресса, который является причинной развития патологии дыхательной системы [Менщикова, 2008]. Особое положение, которое занимает эпителий легкого в отношении организма с насыщенной кислородом внешней средой, делает его объектом токсичного действия радикалов экзогенного и эндогенного происхождения. Острые респираторные заболевания являются главной причиной детской смертности: от пневмонии ежегодно в мире умирает более 4 млн. детей. В последние десятилетия наблюдается рост числа хронических неспецифических заболеваний легких, в настоящее время они занимают 3-е место среди причин смертности, в северных регионах на них приходится на 2/3 всех дней нетрудоспособности [Менщикова, 2008].
Проведенные исследования показали, что содержание восстановленного глутатиона у ЛОР-больных людей в 1,29 раза ниже, чем у практически здоровых людей. Активность GPO и GST в эритроцитах у ЛОР-больных людей снижается в 2,77 и 1,46 раз соответственно, по сравнению с активностью исследуемых показателей в эритроцитах практически здоровых людей. По активности GR достоверных отличий между исследуемыми группами не обнаружено. Полученные данные приведены в табл. 2.
Изменения содержания GSH и активности глутатионзависимых ферментов может быть обусловлено увеличением образования АФК при ЛОР-патологиях, поскольку процесс развития острых респираторных заболеваний сопровождается генерацией большого количества АФК [Miller, 1995]. Ингаляция атмосферных прооксидантных поллютантов приводит к увеличению количества альвеолярных макрофагов [Martin, 1985]. При контакте с мембраной альвеолярного макрофага частицы воздуха интенсивно повышают уровень потребления клеткой кислорода. Практически весь дополнительно поглощенный кислород не используется ни на энергетические, ни на пластические потребности клетки. Особая ферментная система фагоцитов, встроенная во внешнюю клеточную мембрану – NADPH-оксидаза изменяет электронную структуру молекулы кислорода, превращая его в главное оружие бактерицидной защиты клетки – кислородные радикалы. Прооксиданты повышают проницаемость эпителия, повреждают фибробласты, снижают выработку суперксидного аниона полимофноядерными нейтрофилами. Повреждающее действие АФК заключается в увеличении эпителиальными клетками слизи с высоким молекулярным весом, ослаблении функции ресничек, стимуляции образования тромбоксана, снижении сурфактантной активности [Lee, 1997].
Таблица 2
Содержание GSH и активность глутатионзависимых ферментов в эритроцитах крови практически здоровых и ЛОР-больных людей
Показатели | Здоровая группа Median | ЛОР-группа Median |
Достоверность отличий |
GSH Мкмоль/гHb |
2,58 1,60 4,87 N=91 |
2,00 1,49 2,16 N=29 |
Р<0,05 |
GPO Мкмоль/мин*гHb |
28,16 17,9444,50 N=89 |
10,17 8,3630,50 N=20 |
Р<0,05 |
GST Моль/мин*гHb |
12,14 10,0314,14 N=90 |
8,33 5,1911,40 N=28 |
Р<0,05 |
GR Моль/мин*гHb |
10,59 7,0013,06 N=67 |
11,33 10,00 13,64 N=6 |
нет |
Найденное нами снижение активности ферментов глутатионового метаболизма также может быть связано с непосредственным модифицирующим действием АФК, на ферментативные белки. Так DeviesK.J. и сотрудники (1987) показали в опытах invitro, что НО· или НО· + О`2 вызывают изменение первичной, вторичной и третичной структур белковой молекулы. На примере большого количества белков авторы выявили высокую их чувствительность к действию АФК, что сопровождается в зависимости от типа АФК либо фрагментацией, либо агрегацией белковых молекул. Так, для большинства белков интенсивное воздействие радикалов НО· приводит к их агрегации, но в присутствии О`2 предпочтительным процессом становится фрагментация белковых макромолекул. Следствием таких структурных повреждений является, в частности, резкое повышение чуствительности белков к протеолитической деградации [Devies, 1995; Дубинина, 2001; Пасечник, 2001]. Окисление отдельных аминокислот (серосодержащих, ароматических и других) ферментов сопровождается изменением ферментативной активности и структуры белка [Devies, 1995]. При этом окисленные белки способны выступать в качестве источника свободных радикалов и истощать запасы клеточных антиоксидантов, таких как аскорбиновая кислота и глутатион [Simpson, 2002; Dean, 2007; Cakatay, 2000]. In vitro показано, что продукты CРО белков опосредуют окислительное повреждение ДНК [Halliwell, 2001; Morin, 1998]. Таким образом, окисленные протеины являются не только «свидетелями», но и активными участниками процесса свободнорадикального повреждения.
Модификации под действием АФК могут подвергаться все аминокислотные остатки, но наиболее чувствительными являются остатки триптофана, тирозина, гистидина и цистеина. Кроме того, отмечена роль окислительной модификации лизина, аргинина, пролина и серина [Devies, 1995; Арчаков, 1989; Пасечник, 2001]. К тому же при наличии в среде SH-содержащих соединений они подвергаются окислению в первую очередь, что предохраняет от окисления другие функциональные группы и молекулы [Зенков, Меньщикова, Шергин, 1993]. Исходя из этого можно отметить, что в структуре активных центров рассматриваемых нами ферментов имеются перечисленные аминокислотные остатки и свободные SH-группы. Так, в активном центре молекулы GSТ имеется гистидин, а также свободная SH-группа. Активный центр GR содержит тирозин и SH-группы, при надлежащие цистеину и участвующие в связывании с окисленным глутатионом. Ферменты GPO содержит в своем активном центре аргинин и лизин [Кулинский, 1993; Чернов, 1995; Yeh, 2001].
АФК могут оказывать модифицирующее действие на белки и по опосредованным механизмам, т.е. через продукты их первичного взаимодействия с другими биомолекулами. Так, продукты взаимодействия АФК с липидами способны оказывать инактивирующее действие на многие ферменты, путём окисления их SH-, NH2- и CH3-групп аминокислотных остатков, а также образования стабильных комплексов с белками и инициирования полимеризации белковых молекул, что способствует разрушению клеточных структур. Например, продукты взаимодействия АФК с липидами (МДА, 4-гидрокси-2-ноненаль и Е-2-октеналь) активно реагируют с e-NH2 -группами остатков лизина, образуя поперечные сшивки в молекулах белка [Абрамова, 1985].
Обнаруженное нами снижение уровня GSH в эритроцитах больных людей может быть связанно с интенсивном использовании восстановленного глутатиона на метаболические процессы (для утилизации прооксидантов). Общее снижение активности антиоксидантных ферментов может быть обусловлено компенсаторными реакциями, протекающими в организме в результате развития острых респираторных заболеваний, а так же с выявленным нами понижением содержания GSH. Фермент GPO при развитии ЛОР-заболеваний играет существенную роль, поскольку его ингибирования потенцирует повреждение эпителиальных клеток экзогенной перекисью и приводит к воспалению ткани [Engstrom, 2000].
В защите эпителия трахеи, бронхов и альвеол от окислительного повреждения важную роль играют ферментативные антиоксиданты (SOD, CAT, GPO, GST), жирорастворимые фенольные антиоксиданты и аскорбиновая кислота, а также SH-содержащие антиоксиданты. Основными антиоксидантами бронхоальвеолярной жидкости является глутатион, концентрация последнего в бронхах в 70 раз больше, чем в сыворотке крови. Глутатион – внутриклеточный антиоксидант, источником его появления в бронхоальвеолярной жидкости служат разгружающиеся клетки, прежде всего лейкоциты, которые мигрируют в альвеолы и бронхи, а так же эпителиальные клетки, секретирующие глутатион во внеклеточную среду [Менщикова, 2008].
3.2. Анализ содержание GSH и активность глутатионзависимых ферментов в эритроцитах крови практически здоровых людей, проживающих в различных по уровню загрязнения районах г.Красноярска
Город Красноярск административно разделен на 7 районов, различаемых по уровню техногенной нагрузки, которая определяется структурой промышленности и энергетики, исходного и получаемого продукта, особенностями природно-климатических условий. В Советском районе расположен один из крупнейших заводов России – Красноярский алюминиевый завод, поэтому его относят к экологически неблагоприятному для проживания району. Октябрьский район считают экологически чистым районом, так как на его территории нет заводов, большое количество зеленых насаждений, а так же он находится на определенном расстоянии от промышленных предприятий города. Районы находятся на одном берегу р. Енисей, но разделены ландшафтом.
Основными вредными факторами алюминиевого производства является фтор, его соли и фтористый водород. По данным ряда авторов уровень загрязнения атмосферного воздуха фтористыми соединениями в зоне влияния выбросов алюминиевого завода превышает ПДК в 1,6-2,1 раза [Ахмедов, 2001; Новиков, 1999]. Фтористые соединения так же обнаруживаются в воде и почве и превышают контрольные в 5 раз. Токсичные соединения фтора в значительном количестве поступают через дыхательные пути, с продуктами питания, питьевой водой. С удалением населенных пунктов от источника загрязнения общая заболеваемость снижается, что свидетельствует об определенной роли вредных выбросов алюминиевого производства на формирование здоровья населения. Наиболее частыми при данном источнике загрязнения являются заболевания органов дыхания, мочеполовой системы, опорно-двигательного аппарата, кожи, подкожной клетчатки, а так же встречается уровень болезни желудка и двенадцатиперстной кишки.
Чрезмерное поступления фтора в организм приводит к развитию сложного заболевания флюороз. Фтор, обладая высокой химической активностью, является участником многих биохимических процессов. «Излишки» фтора опосредованно, за счет взаимодействия с ионами марганца, кальция, железа, магния, способны влиять на ферменты: тормозить гликолиз и блокировать обмен липидов на этапе окисления жирных кислот; уменьшать активность аденозинтрифосфатазы, расщепляющей АТФ; подавлять дезоксирибонуклеазу, которая расщепляет ДНК на тетрануклеотиды и, предположительно, играет определенную роль в развитии злокачественных новообразований [Иванищев, 2002]. По некоторым данным, фтор может влиять на холинэстеразу – фермент, что приводит к повышению уровня ацетилхолина в синоптической щели холинергических нейронов и, как следствие, повышению чувствительности к ацетилхолину скелетных мышц, гладкой мускулатуры кишечника и желез внутренней секреции. И что немаловажно: по имеющимся сведениям, избыток фтора нарушает процессы кальцификации [Xi, 2003; McLeish, 2003].
В ходе работы показано, что содержание GSH в эритроцитах крови людей проживающих в экологически неблагоприятном районе в 1,83 раза ниже, чем в эритроцитах крови людей проживающих в экологически благоприятном районе. Активность GPO и GST у людей проживающих в Советском районе в 1,76 и 1,93 раз выше, чем у людей проживающих в Октябрьском районе (табл. 3).
На повышение активности исследуемых нами ферментов и содержания GSH может влиять вдыхаемый воздух, содержащий фтористые соединения. Фтор активирует аденилатциклазную мессенжировую систему, посредством прямого взаимодействия с каталитическим центром ключевого фермента аденилатциклазной системы передачи сигнала – аденилатциклазы. В свою очередь, аденилатциклаза увеличивает образования цАМФ из АТФ, молекулы цАМФ могут обратимо соединяться с регуляторными субъединицами протеинкиназы А, приводя ее в активное состояние. Активная протеинкиназа А приводит к повышению активности GPO и GST которое может протекать по двум механизмам. Во-первых, активируются транскрипционные факторы, которые влияют на экспрессию генов, ответственных за синтез этого фермента. Во-вторых, активация протеинкиназы А, а так же других киназ приводит к фосфорилированию исследуемых ферментов и таким образом способствует повышению его активности [Менщикова, 2008].
Таблица 3
Содержание GSH и активность глутатионзависимых ферментов в эритроцитах крови практически здоровых людей, проживающих в различных районах г. Красноярска
Показатели | Октябрьский район Median | Советский район Median | Достоверность отличий |
GSH Мкмоль/гHb |
4,07 2,05 6,37 N=36 |
2,23 1,58 3,31 N=43 |
Р<0,05 |
GPO Мкмоль/мин*гHb |
22,14 17,87 30,48 N=34 |
39,30 25,71 52,85 N=43 |
Р<0,05 |
GST Моль/мин*гHb |
5,37 4,09 9,30 N=37 |
10,39 6,34 11,350 N=41 |
Р<0,05 |
GR Моль/мин*гHb |
11,000 4,500 12,60 N=25 |
10,590 7,65 13,56 N=36 |
нет |
Снижение содержания GSН в группе людей проживающих в экологически неблагоприятном районе может быть обусловлено увеличением его расхода на метаболические процессы (защиту клетки от действия кислородных радикалов, липоперекисных процессов, окислительной модификакции белков, участия в восстановлении Met-Hb), а также для протекания реакций, катализируемых GPO и GST, которые участвуют в утилизизации перекиси водорода, липоперекисей и ксенобиотиков [Кулинский, 2003].
На основании корреляционного анализа в исследуемых группах можно отметить следующее 1) увеличение активности GPO влияет на содержание GSH и активность каталазы (обратная зависимость, Р=0,039 и Р=0,048 соответственно), это объясняется тем, что GSH интенсивно расходуется на работу GPO, а активность каталазы снижается при низких концентрациях Н2 О2 в клетке, но при этом активность GPO повышается [Кулинский, 2003]; 2) Активность GPO и GST имеют обратную зависимость от проницаемости эритроцитарных мембран; 3) активность GPO и GSТ изменяются прямо пропорционально изменению содержания МДА. Малоновый диальдегид, это конечный продукт перекисного окисления липидов, его накопление свидетельствует об усилении работы антиоксидантной защиты [Колисниченко, 1999].
3.3. Анализ содержание GSH и активность глутатионзависимых ферментов в эритроцитах крови здоровых мужчин и женщин
При определении содержания GSH и активности глутатионзависимых ферментов в группах практически здоровых мужчин и женщин достоверных отличий не найдено. Данные по изучению данных показателей приведены в табл. 4.
Таблица 4
Содержание GSH и активность глутатионзависимых ферментов в эритроцитах крови практически здоровых мужчин и женщин
Показатели | Женщины Median |
Мужчины Median |
Достоверность отличий |
GSH Мкмоль/гHb |
2,74 1,58 5,88 N=58 |
2,320 1,670 4,34 N=32 |
нет |
GPO Мкмоль/мин*гHb |
28,16 17,94 42,78 N=54 |
32,70 17,87 48,01 N=31 |
нет |
GST Моль/мин*гHb |
7,15 5,110 10,74 N=54 |
10,45 5,30 12,53 N=31 |
нет |
GR Моль/мин*гHb |
11,24 5,55 13,46 N=52 |
9,85 7,70 13,89 N=22 |
нет |
Несмотря на то, что достоверных отличий нами не найдено, можно отметить, что имеются литературные данные, согласно которым активность основных антиоксидантных ферментов у женщин выше, чем у мужчин, так же как и содержание восстановленного глутатиона. Одной из причин низкой продукции АФК у женщин может быть высокое содержание эстрогенов, при действии которых активируется ядерный респираторный фактор NRF-1, который регулирует синтез белков [Менщикова, 2008].
NRF связывает и активирует промоторы различных ядерных генов, кодирующих экспрессию структурных компонентов системы окислительного фосфорилирования, что приводит к синтезу митохондриального транскрипционного фактора А, который регулирует репликацию митохондриальной мРНК и процесс транскрипции [Scarpulla, 2002].
3.4. Содержание GSH и активность глутатионзависимых ферментов в эритроцитах крови практически здоровых людей различного возраста
В ходе проведения работы была сделана попытка выявления возможных различий по исследуемым показателям между различными возрастными группами практически здоровых людей. Исследуемые люди были распределены на 4 возрастные группы: 1 – до 20 лет, 2 – от 20 до 30 лет, 3 – от 30 до 40 лет и 4 – после 40. Полученные результаты приведены в таблице 4 и указывают на то, что достоверных отличий по содержанию GSH и активности GST и GR не найдено. Таким образом, уровень данных исследуемых показателей не зависит от возраста людей.
При исследовании активности GPO в различных возрастных группах показано, что активность фермента достоверно снижается при увеличении возраста обследуемых людей. Так показано, что в группе людей с возрастом от 20 до 30 лет активность GPO снижается в 1,54 раза по сравнению с активностью фермента в группе людей с возрастом до 20 лет. В третьей группе активность фермента в 1,39 раза ниже, чем во второй и в 2,16 раза ниже по сравнению с первой группой. В четвертой группе активность фермента в 1,13 раза ниже, чем в третьей группе и в 1,54 и 1,58 раза ниже по сравнению с первой и второй соответственно (табл.5).
Полученное нами снижение активности GPO сопоставимо с данными литературы согласно которым в с возрастом усиливается выработка и накопление АФК, которые повреждают хроматин и ДНК, жизненно важные белки, мембраны, коллаген, изменяют регуляцию внутриклеточного кальция и прочее, что в конечном счете приводит к повреждению и нестабильности генома в целом и как результат к снижению активности ферментов антиоксидантной системы, накапливаются продукты ПОЛ, окисленные белки и углеводы, которые приводят к старению организма [Менщикова, 2008].
Таблица 5
Содержание GSH и активность глутатионзависимых ферментов в эритроцитах крови практически здоровых людей различного возраста
Показатели | Возраст обследуемых людей | ||||
До 20 | 20-30 | 30-40 | После 40 | Достоверность отличий |
|
1 | 2 | 3 | 4 | ||
GSH Мкмоль/гHb |
2,32 1,44 3,30 N=21 |
2,79 1,90 6,15 N=39 |
3,55 1,99 5,88 N=21 |
1,79 1,21 3,10 N-14 |
нет |
GPO Мкмоль/ мин*гHb |
47,79 25,71 54,72 N=19 |
30,96 18,48 45,17 N=34 |
22,15 15,20 29,69 N=22 |
19,57 15,50 30,48 N=15 |
Р1и2 <0,05 Р1и3 <0,05 Р1и4 <0,05 Р2и3 <0,05 Р2и4 <0,05 Р3и4 <0,05 |
GST Моль/ мин*гHb |
10,42 9,16 11,27 N=20 |
7,8 5,23 12,31 N=32 |
6,45 3,9 10,51 N=22 |
7,00 5,04 11,40 N=17 |
нет |
GR Моль/ мин*гHb |
7,97 5,67 12,89 N=17 |
10,26 5,30 12,55 N=26 |
11,10 7,79 13,20 N=14 |
13,07 7,70 14,20 N=10 |
нет |
Таким образом, в результате проведения исследовательской работы было выяснено, что содержания GSHи активности GST и GPO в эритроцитах крови людей с ЛОР-патологиями, снижается. Так же установлено, что содержания GSH в эритроцитах крови людей, проживающих в экологически неблагоприятном районе, снижается, а активность GST и GPO повышается, по сравнению с соответствующими показателями в эритроцитах крови людей, проживающих в экологически благоприятном районе. Анализ активности GPO в различных возрастных группах показал, что активность постепенно снижается с увеличением возраста людей.
ВЫВОДЫ
1.Содержание GSH в эритроцитах крови людей с ЛОР-заболеваниями в 1,29 раз ниже, чем в эритроцитах крови практически здоровых людей, а активность GPO и GST в 2,77 и 1,46 раза ниже соответственно. По активности GR достоверных отличий не выявлено.
2. В эритроцитах крови людей, проживающих в экологически неблагоприятном районе наблюдается понижение содержания восстановленного глутатиона в 1,83 раза и повышение активности GPO и GST в 1,76 и 1,93 раза соответственно.
3. По содержанию GSH и активности глутатионзависимых ферментов между мужчинами и женщинами достоверных отличий не выявлено.
4. С увеличением возраста у практически здоровых людей наблюдается увеличение активности эритроцитарной GPO.
СПИСОК ЛИТЕРАТУРЫ
1. Абрамова, Ж.И. Человек и противоокислительные вещества / Ж.И. Абрамова, Г.И. Оксенгендлер. - Л.: Наука, 1988.-С.130-140.
2. Абрамова, Ж.И. Человек и противоокислительные вещества / Ж.И. Абрамова, Г.И. Оксенгендлер, Л., 1985. - 230с.
3. Авраамова Т.В. Руководство по большому биохимическому практикуму: Углеводный обмен / Т.В. Авраамова, Н.М.Титова. - Красноярск, 1978. - Ч.1. - C.90-92.
4. Акопова, Ю.С. Особенности состояния иммунного статуса и метаболизма лимфоцитов крови лиц, проживающих в экологически неблагоприятных районах города Красноярска: автореф. дис….конд. биол. наук: 03.00.16 / Юлия Сергеевна Акопова. – Красноярск, 2006. -161с.
5. Александров, М.Т. Проблемы реализации основных принципов лазерной медицины в клинической практике / М.Т. Александров, Н.С. Егоркина, А.С. Черкасов // Лазеры и аэроны в медицине: сб. науч. статей / Калужский государственный университет: Вып.3 –Калуга-Обнинск, 1997. –С.13-19
6. Андреев, А.А. Патогенетические факторы нарушения перекисного окисление липидов и антиоксидантной системы и антиоксидантная терапия у пострадавших с сочетанной травмой: автореф. дис…. канд. биол. наук: / Алексей Александрович Андреев – М., 1999. -24с.
7. Арчаков, А.И. Модификация белков активным кислородом и их распад / А.И. Арчаков, И.М. Мохосоев // Биохимия, 1999. - Т.54. №2.- С.179-185.
8. Ахмедов, А.А. Состояние здоровья населения в районе, загрязненном фторсодержащими выбросами Таджикского алюминиевого завода / А.А. Ахмедов // Гигиена и санитария, 2001. -№2. -С.35-38.
9. Белоусов, С.С. Влияние ПОЛ и антиоксидантной терапии на фосфолипидную структуру мембран и бетаадренорецепторы у больных ИБС / С.С. Белоусов, Е.В. Суслова, Е.М. Трунова // Перекисное окисление липидов и антиоксидантная терапия: сб. науч. статей / Нижегородский государственной университет: Вып.6. –Нижний Новгород, 1998. –С.5-14
10. Биленко, М.В. Ишемические и реперфузионные повреждение органов / М.В. Биленко. - М.: Медицина, 1999. –С.19-22.
11. Богданов, Н.А. Производственный флюороз/ Богданов Н.А, Гембицкий Е.В. – Л.: Наука, 1975. -210с.
12. Брискин, Б.С. Панкреонекроз в свете современных представлений диагностики и лечения / Б.С. Брискин, Г.С. Рыбаков // Тезисы докладов IX съезда хирургов, (Волгоград, 20-22 сентября 2000 г.): -Волгоград, 2000. –С.20
13. Бурлакова, Е.Б. Фтор в окружающей среде / Е.Б. Бурлакова, А.Е.Губарева, Г.В. Архипова, В.А. Рогинский // Вопр. мед. химии, 1992. -№2. -С.232-235.
14. Владимиров, Ю.А. Свободные радикалы и антиоксиданты / Ю.А. Владимиров // Вестник РАМН, 1998. -№8. –С.43-51.
15. Генкин, А.И. Влияние хронической интоксикации фтором на окислительные процессы в тканях организма / А.И. Генкин, Н.А. Глотов, К.С. Ждахина // Фармакология и токсикология, 1983. -№3. -С.97-99.
16. Гичев, Ю.П. Экологическая обусловленность преждевременного старения и сокращения продолжительности жизни населения России / Ю.П. Гичев // Гигиена и санитария, 2002. -№6. -С.48-51.
17. Дубинина, Е.Е. Биологическая роль супероксидного анион-радикала и супероксиддисмутвазы в тканях организма / Е.Е. Дубинина // Успехи современной биологии, 2001. - Т.108. №.1. - С.3-17.
18. Зенков, Н.К. Активированные кислородные метаболиты в биологических системах / Н.К. Зенков, Е.Б. Меньщикова // Успехи современной биологии, 2004. –Т.113. -№1. –С.286-296.
19. Зенков, Н.К. Окислительный стресс. Диагностика, терапия, профилактика / Н.К. Зенков, Е.Б. Меньщикова, С.М. Шергин. -Новосибирск: РАМН, 1993. -28с.
20. Зубакова, С.М. Возможности применения инфракрасного излучечения и его комплекса с другими физическими факторами в качестве стресс-стимулирующего воздействия / С.М. Зубакова, Н.И. Варакина, О.И. Николенко // Лазерная медицина, 1999, - Т.3. -№3-4. –С.56-60.
21. Иванищев, В.В. Ферменты метаболизма малата: характеристика, регуляция активности и биологическая роль / В.В. Иванищев // Биохимия, 1992. -Т.57. -С.653-662.
22. Иванова, Ю.Д.Распределение антропогенного загрязнения среды в г. Красноярске / Ю.Д. Иванова, А.А. Питенко, Р.Г. Хлебопрос, О.Э. Якубайлик // Инженерная экология, 2001. -№3. -С.20-24.
23. Игамбердиев В.М. Методологические аспекты оценки воздействия загрязнений на экосистемы / В.М. Игамбердиев // Экология человека, 2004. -№2. -С.5-11.
24. Кацнельсон, Б.А. Влияние кратковременных загрязнений атмосферного воздуха на смертность населения / Б.А. Кацнельсон, А.А. Кошелева, Л.И. Привалова, С.В. Кузьмин // Гигиена и санитария, 2000. -№1. -С.15-18.
25. Ковальчук, В.И. Корреция липидного состава мембран эритроцитов антиоксидантами у детей с острыми гнойными заболеваниями / В.И. Ковальчук, Б.И. Мацкевич // Система транспорта кислорода, 2004. -№1. –С.55-61.
26. Козлов, Ю.П. Биоаксиданты в регуляции метаболизма в норме и патологии / Ю.П. Козлов, В.Е. Каган. –Черноголовка.: Буква, 2006. -76с.
27. Коленчукова О.А. Особенности иммунного статуса и метаболизма изолятов staphyloccoccusepidermidis, выделенных у лиц, проживающих в районах с различной техногенной нагрузкой: автореф. дис…. конд. биол. наук:03.00.16 \ Оксана Александровна Коленчукова. - Красноярск, 2003. – 155с.
28. Колисниченко, Л.С. Глутатионтрансферазы \ Л.С. Колисниченко, В.И. Кулинский \\ Успехи современной биологии, 1999. – Т.107. -№3. –С.179-191
29. Кулинский, В.И. Структура, свойства,биологическая роль и регуляция глутатионредуктазы \ В.И. Кулинский, Л.С. Колисниченко \\ Успехи современной биологии,1993. –Т.113. -№5. –С.107-119.
30. Кучма, В.Р. Вопросы о оценке рисков влияния факторов окружающей среды на здоровье в гигиене детей и подростков / В.Р. Кучма // Здоровье населения и среда обитания, 2002. -№2. -С.11-14.
31. Мамырбаев, А.А. Отдаленные последствия воздействия фосфора и фтора и их производных на организм / А.А. Мамырбаев, Е.В. Богатова // Гигиена труда, 2002. -№4. -С.29-31.
32. Меньшиков В.В. Справочник по клиничексим лабораторны методам исследования / В.В. Меньшиков. - М.: Медицина, 1987. - 460с.
33. Меньщикова, Е.Б. Окислительный стресс. Прооксидаенты и антиоксидаены \ Е.Б. Меньщикова, В.З. Ланкин, Н.К. Зенков с соат. –М.: Фирма «Слова», 2006. -556с.
34. Новиков, Ю.В. Экология окружающая среда и человек: Учебное пособие для вузов, а так же учащихся средних школ и колледжей / Ю.В. Новиков -М.: ФИАР-ПРЕСС, 1999. -320с.
35. Онищенко, Г.Г. Проблемы изучения влияния среды обитания на здоровье населения / Г.Г. Онищенко // Здоровье населения и среда обитания, 2003. -№1. -С.1-6.
36. Пасечник, И.Н. Механизмы повреждающего действия активированных форм кислорода на биологические структуры у больных в критических состояниях / И.Н. Пасечник // Вестник интенсивной терапии, 2001. - №4. - С.3-9.
37. Пинигин, М.А. Гигиенические основы оценки степени загрязнения атмосферного воздуха/ М.А. Пинигин // Гигиена и санитария, 1991. -№7. -С.4-8.
38. Разумов, В.В. Хроническая фтористая интоксикация как патология соединительной ткани с исходом в преждевременное старение / В.В. Разумов // Медицина труда и промышленная экология, 1997. -№11. -С.22-30.
39. Ройт, А.В. Основы иммунологии: Пер. с англ. / А.В. Ройт -М.: Мир, 1991. -С.236-248.
40. Ребрик, И.И. Экологические проблемы алюминиевого производства \ И.И. Ребрик, Б.П. Куликов, И.А. Тарасов \\ Технико-экономический вестник Русского Алюминия, 2003. №2. С.20-29.
41. Савин, В.И. Атмосфера и человек / В.И. Савин // Известия академии промышленной экологии, 2001. -№3. -С.18-19.
42. Симонова, Н.И. Закономерности формирования и оценка техногенных экологических рисков в промышленных городах России / Н.И. Симонова // Медицина труда и промышленная экология, 2002. -№5. -С.3-8.
43. Чернов, Н.Н. Глутатионредуктаза / Н.Н. Чернов// Белки и пептиды: В 2-х т./ Под ред. В.Т. Иванова, В.М. Липкина.- М.: Наука, 1995. - С.78-83.
44. Abiaka, C. Effect of Prolonged Storage on the Activities of Superoxide Dismutase, Glutathione Reductase, and Glutathione Peroxidase / C. Abiaka // Clinical Chemistry, 2000. - Vol.46. - Issue 4 - P. 560-576.
45. Baynes, J.W. Role of oxidative stress in diabetic complications: a new perspective on an old paradigm/ J.W.Baynes // Diabetes, 1999. - Vol.48. - P.1-9.
46. Beutler E. Red cell metabolism a manual of biochemical methods / E. Beutler.- Grune & Stration, Orlando, 1990. - P.131-134.
47. Boitard, C. IDDM:an islet or an immune disease?/ C. Boitard, E. Larget, J. Timsit, P. Sempe // Diabetologia, 1994. - Vol.37. - Suppl.2. - P.90-98.
48. Brune, B The role of nitric oxide in cell injury / B. Brune, U.K. Messmer, K. Sandau // Toxicol Leff, 1995. -№82. P.233-237.
49. Cakatay, U. Oxidative protein damage in type I diabetic patients with and without complications / U. Cakatay, A. Telci, S. Salman, L. Satman // Endocr. Res, 2000. - Vol.26. Is.3. -P.365-379.
50. Cavalca, V. Oxidative Stress and Homocysteine in Coronary / V. Cavalca G. Cighetti, F. Bamonti, C. Novembrino// Clinical Chemistry, 2001.- Vol. 47. Issue 5. - Р. 887-892.
51. Davies, M.G. Clinical biology of nitric oxide / M.G.Davies, G.J. Fulton // Br. J.Surg, 1991. №16. –P.43-50.
52. Dean, T.R. Biochemistry and pathology of radical-mediated protein oxidation oger / T.R. Dean, S. Fu, R. Stocker, M.J. Davies // Biochem. J.,2007. - Vol.324. - P.1–18.
53. Devies, K.J. Protein damage and degradation by oxygen radicals. I. General aspects / K.J. Devies // J. Biol. Chem, 1995. - Vol.262. - Issue 20. - P.9895-9901.
54. Engstrom, J.M. Caeruloplasmin: physiological and pathological perspectives/ J.M. Engstrom // Crit. Rev. Clin. Lab. Sci, 2000. - Vol.14. - P.257-329.
55. Gebhardt, C Therapeutic strategy in acute pancreatitis. Two surgical procedure / C. Gebhardt // Fortschr. Med, 1984. -№9. –P.215-217.
56. Habig W.H. Glutathione-S-transferases. The first enzymes step mercapturic acid formation/ W.H. Habig, M.J. Pabst, W.B. Jacoby// J. Biol. Chem, 1974. -Vol.249. -Issue 22. - P.7130-7139.
57. Haglof, B. Cu,Zn-superoxidedismutase, Mn - superoxidedismutase, catalase and glutationeperoxidase in limphocytes and erythrocytes in insulindependent diabetic children/ B. Haglof // Acta Endocr, 2003.- Vol.102.- P.235-239.
58. Halliwell, B. DNA damage by oxygen-derived species. Its mechanism and measurement in mammalian systems / B. Halliwell, O.I. Aruoma // FEBS Lett, 2001. - Vol.281. - Р.9-19.
59. Lee, R. Feed-back inhibition of oxidative stress by oxidized lipid/amino acid reaction products / R. Lee // Biochemistry, 1997. -Vol.36. -Р.15765 –15771.
60. Martin, D. Interaction of 1-Hydroxyethyl Radical With Glutathione, Ascorbic Acid and a-Tocopherol / D. Martin // Free Radic. Biology and Med., 1985. - Vol.24, №1. - P.132-138.
61. McLeish, P.E. The role of xanthine oxidase and the effects of antioxidants in ischemia reperfusion cell injury/ P.E. McLeish // Acta Physiol. Pharmacol. Ther. Latinoam, 2003. - Vol.49. - P.13-20.
62. Miller, D.P. Purification and characterization of a glutathione dependent dehydroascorbate reductase from human erythrocytes/ D.P. Miller // Biochem. Biophys. Res. Commun, 1995. - Vol.64, №3. - P.485-491.
63. Morin, B. The protein oxidation product 3,4-dihydroxyphenylalanine (DOPA) mediates oxidative DNA damage / B. Morin, M.J. Davies, R.T. Dean // Biochem. J, 1998. - Vol.330. - P.1059-1067.
64. Paglia D.E. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase/ D.E. Paglia, W.N. Valentine // J. Clin. Lab. Med., 1967.- Vol.70.- P.158-169.
65. Scarpulla, S. Erythrocyte oxidant/antioxidant status of diabetic patients/ S. Scarpulla // J. Endocrinol. Invest, 2002. - Vol.23. Is.4. - P.228-230.
66. Simpson, J.A. Long-lived reactive species on free-radical-damaged proteins / J.A. Simpson, S. Narita, S. Gieseg // Biochem. J.,2002. - Vol.282.- P.621–624.
67. Xi, M. Effects of melatonin on enzyme activities of glucose-6-phosphate dehydrogenase from human erythrocytes in vitro and from rat erythrocytes in vivo/ M. Xi // Pharmacol. Res, 2003. - Vol.44. №1. - P.7-11.
68. Yeh, G.C. Modulation of glucose-6-phosphate dehydrogenase activity and expression is associated with aryl hydrocarbon resistance in vitro / G.C. Yeh, P.J. Daschner, J. Lopaczynska // J. Biol. Chem, 2001.- Vol.276.- Issue 37.- P.34708-34713.
The research showed that the GSH level and GPO & GST activity decrease in the erythrocytes of people having ENT pathologies.
Besides it was established that GSH level in red blood cells of the people living in ecologically disadvantaged areas decreases, and GST & GPO activity grows. Unlike Those in people from ecologically favorable region. The analysis of GPO activity in different age groups showed the decrease of the activity with aging.