Скачать .docx | Скачать .pdf |
Реферат: Гидросфера понятие и сущность
Содержание:
Введение…………………………………………………………………………...3
1. Гидросфера. Характеристика………………………………………………….4
2. Значение воды в биосфере……………………………………………………..5
3. Вода как среда обитания. Адаптация к обитанию в воде……………………8
4. Особенности загрязнения Мирового океана и пресных вод. Экологические проблемы Иртышского бассейна……………………………………………….11
5. Методика очистки. Технология очистки питьевой воды…………………..14
6. Биоиндикация…………………………………………………………………18
Заключение……………………………………………………………………….25
Список литературы………………………………………………………………27
Введение
В настоящее время проблема загрязнения водных объектов (рек, озер, морей, грунтовых вод и т.д.) является наиболее актуальной, т.к. всем известно – выражение «вода - это жизнь». Без воды человек не может прожить более трех суток, но даже понимая всю важность роли воды в его жизни, он все равно продолжает жестко эксплуатировать водные объекты, безвозвратно изменяя их естественный режим сбросами и отходами. Ткани живых организмов на 70% состоят из воды, и поэтому В.И.Вернадский определял жизнь как живую воду. Воды на Земле много, но 97% - это солёная вода океанов и морей, и лишь 3% - пресная. Из этих три четверти почти недоступны живым организмам, так как эта вода «законсервирована» в ледниках гор и полярных шапках (ледники Арктики и Антарктики). Это резерв пресной воды. Из воды, доступной живым организмам, основная часть заключена в их тканях. Потребность в воде у организмов очень велика. Например, для образования 1 кг биомассы дерева расходуется до 500 кг воды. И поэтому её нужно расходовать и не загрязнять. Основная масса воды сосредоточена в океанах. Испаряющаяся с его поверхности вода дает живительную влагу естественным и искусственным экосистемам суши. Чем ближе район к океану, тем больше там выпадает осадков. Суша постоянно возвращает воду океану, часть воды испаряется, особенно лесами, часть собирается реками, в которые поступают дождевые и снеговые воды. Обмен влагой между океаном и сушей требует очень большого количества энергии: на это затрачивается до 1/3 того, что Земля получает от Солнца. Цикл воды в биосфере до развития цивилизации был равновесным, океан получал от рек столько воды, сколько расходовал при её испарении. Если не менялся климат, то не мелели реки и не снижался уровень воды в озёрах. С развитием цивилизации этот цикл стал нарушаться, в результате полива сельскохозяйственных культур увеличилось испарение с суши. Реки южных районов обмелели, загрязнение океанов и появление на его поверхности нефтяной плёнки уменьшило количество воды, испаряемой океаном. Всё это ухудшает водоснабжение биосферы. Более частыми становятся засухи, возникают очаги экологических бедствий, например, многолетняя катастрофическая засуха в зоне Сахеля. Кроме того, и сама пресная вода, которая возвращается в океан и другие водоёмы с суши, часто загрязнена, практически не пригодной для питья стала вода многих рек России. Прежде неисчерпаемый ресурс - пресная чистая вода - становится исчерпаемым. Сегодня воды, пригодной для питья, промышленного производства и орошения, не хватает во многих районах мира. [5, 63-64 стр.]
1. Гидросфера. Характеристика
Гидросфера (в перев. с греч. hydro — вода и sphaira — шар) — водная оболочка Земли. Свыше 96% гидросферы составляют моря и океаны; около 2% — подземные воды, около 2% — ледники, 0,02% — воды суши (реки, озера, болота). Общий объем гидросферы Земли — свыше 1 миллиарда 500 миллионов км3. Из них в океанах и морях — 1370 миллионов км3, в подземных водах — около 60 миллионов км3 в виде льда и снега — около 30 миллионов км3, во внутренних водах — 0,75 миллиона км3, а в атмосфере — 0,015 миллиона км3.
Объем гидросферы постоянно меняется. По расчетам ученых, 4 миллиарда лет назад ее объем составлял всего 20 миллионов км3, то есть был почти в 7 тысяч раз меньше современного. В будущем количество воды на Земле, по-видимому, также будет возрастать, если учесть, что объем воды в мантии Земли оценивается в 20 миллиардов км3 — это в 15 раз больше современного объема гидросферы. Полагают, что поступление воды в гидросферу будет осуществляться из глубинных слоев Земли и при вулканических извержениях.
По данным, учитывающим только разведанные запасы подземной воды, на пресную воду на всей планете приходится только 2,8%; из них 2,15% находится в ледниках и только 0,65% в реках, озерах, подземных водах. Главная масса воды (97,2%) — соленая. Гидросфера — единая оболочка, так как все воды взаимосвязаны и находятся в постоянных больших или малых круговоротах. Полное обновление вод происходит по-разному. Воды в полярных ледниках возобновляются за 8 тысяч лет, подземные воды — за 5 тысяч лет, озера — за 300 дней, реки — за 12 дней, водяной пар в атмосфере — за 9 дней, а воды Мирового океана — за 3 тысячи лет.
Гидросфера играет очень большую роль в жизни планеты: она накапливает солнечное тепло и перераспределяет его на Земле; с Мирового океана на сушу поступают атмосферные осадки.
За геологическую историю в гидросфере происходили значительные изменения, однако известно о них мало. Подсчитано, что в ледниковые периоды резко возрастало количество льда, и за счет этого происходило уменьшение объема и понижение уровня Мирового океана на десятки метров. В настоящее время гидросфера охвачена невиданными по скорости и размерам преобразованиями, связанными с технической деятельностью человека. Ежегодно используется около 5 тысяч км3 воды, а загрязняется в 10 раз больше. Некоторые страны начали испытывать нехватку пресной воды. Это не означает, что ее на Земле мало: просто человек еще не научился ее рационально использовать.
Гидросфера взаимодействует с литосферой. Об этом свидетельствуют эрозионные и аккумулятивные процессы, связанные с работой воды. Взаимодействует гидросфера и с атмосферой: облака состоят из паров воды, испарившихся с поверхности морей и океанов. Гидросфера также взаимодействует и с биосферой, так как живые существа, населяющие биосферу, не могут жить без воды. Взаимодействуя с различными оболочками планеты, гидросфера выступает, в свою очередь, как часть целостной природы земной поверхности. [4, 82-85 стр.]
2. Значение воды в биосфере
Значение воды в биосфере огромно: вода является универсальным растворителем; большинство химических реакций осуществляется в водных растворах, в воде происходит диссоциация соединений, вода обладает огромной теплоемкостью, тепло - и электропроводностью.
Вода - самое распространенное неорганическое соединение на нашей планете. Вода - основа всех жизненных процессов, единственный источник кислорода в главном движущем процессе на Земле - фотосинтезе . Вода присутствует во всей биосфере: не только в водоемах, но и в воздухе, и в почве, и во всех живых существах. Последние содержат до 80-90% воды в своей биомассе. Потери 10- 20% воды живыми организмами приводят к их гибели.
В естественном состоянии вода никогда не свободна от примесей. В ней растворены различные газы и соли, находятся взвешенные твердые частички. В 1 л пресной воды может содержаться до 1 г солей.
Большая часть воды сосредоточена в морях и океанах. На пресные воды приходится всего 2% . Большая часть пресных вод (85% ) сосредоточена во льдах полярных зон и ледников. Возобновление пресных вод происходит в результате круговорота воды.
С появлением жизни на Земле круговорот воды стал относительно сложным, так как к простому явлению физического испарения (превращения воды в пар) добавились более сложные процессы, связанные с жизнедеятельностью живых организмов. К тому же роль человека по мере его развития становится все более значительной в этом круговороте.
Круговорот воды в биосфере происходит следующим образом. Вода выпадает на поверхность Земли в виде осадков, образующихся из водяного пара атмосферы. Определенная часть выпавших осадков испаряется прямо с поверхности, возвращаясь в атмосферу водяным паром. Другая часть проникает в почву, всасывается корнями растений и затем, пройдя через растения, испаряется в процессе транспирации. Третья часть просачивается в глубокие слои подпочвы до водоупорных горизонтов, пополняя подземные воды. Четвертая часть в виде поверхностного, речного и подземного стока стекает в водоемы, откуда также испаряется в атмосферу. Наконец, часть используется животными и потребляется человеком для своих нужд. Вся испарившаяся и вернувшаяся в атмосферу вода конденсируется и вновь выпадает в качестве осадков.
Таким образом, один из основных путей круговорота воды - транспирация, то есть биологическое испарение, осуществляется растениями, поддерживая их жизнедеятельность. Количество воды, выделяющееся в результате транспирации, зависит от вида растений, типа растительных сообществ, их биомассы, климатических факторов, времени года и других условий.
Интенсивность транспирации и масса испаряющейся при этом воды могут достигать весьма значительных величин. У таких сообществ, как леса (с большой фитомассой и листовой поверхностью) или болота (с водонасыщенной моховой поверхностью) транспирация в целом вполне сравнима с испарением открытых водоемов (океана) и нередко даже превышает его. В среднем для растительных сообществ умеренного климата транспирация составляет от 2000 до 6000 м воды в год.
Величина суммарного испарения (с почвы, с поверхности растений и через транспирацию) зависит от физиологических особенностей растений и их биомассы, поэтому служит косвенным показателем жизнедеятельности и продуктивности сообществ. Растительность в целом выполняет роль грандиозного испарителя, существенно влияя при этом на климат территории. Растительный покров ландшафтов, особенно леса и болота, имеет также огромное водо-охранное и водорегулирующее значение, смягчая перепады стока (паводки), способствуя удержанию влаги, препятствуя иссушению и эрозии почв.
Загрязнение природных вод
Под загрязнением водоемов понимается снижение их биосферных функций и экономического значения в результате поступления в них вредных веществ.
Одним из основных загрязнителей воды является нефть и нефтепродукты. Нефть может попадать в воду в результате естественных ее выходов в районах залегания. Но основные источники загрязнения связаны с человеческой деятельностью: нефтедобычей, транспортировкой, переработкой и использованием нефти в качестве топлива и промышленного сырья.
Среди продуктов промышленного производства особое место по своему отрицательному воздействию на водную среду и живые организмы занимают токсичные синтетические вещества. Они находят все более широкое применение в промышленности, на транспорте, в коммунально-бытовом хозяйстве. Концентрация этих соединений в сточных водах, как правило, составляет 5-15мг/л при ПДК - 0,1 мг/л. Эти вещества могут образовывать в водоёмах слой пены, особенно хорошо заметный на порогах, перекатах, шлюзах. Способность к пенообразованию у этих веществ появляется уже при концентрации 1-2 мг/л.
Из других загрязнителей необходимо назвать металлы(например, ртуть, свинец, цинк, медь, хром, олово, марганец), радиоактивные элементы, ядохимикаты, поступающие с сельскохозяйственных полей, и стоки животноводческих ферм. Небольшую опасность для водной среды из металлов представляют ртуть, свинец и их соединения .
Расширенное производство (без очистных сооружений) и применение ядохимикатов на полях приводят к сильному загрязнению водоемов вредными соединениями. Загрязнение водной среды происходит в результате прямого внесения ядохимикатов при обработке водоемов для борьбы с вредителями, поступления в водоемы воды, стекающей с поверхности обработанных сельскохозяйственных угодий, при сбросе в водоемы отходов предприятий- производителей, а также в результате потерь при транспортировке, хранении и частично с атмосферными осадками.
Наряду с ядохимикатами сельскохозяйственные стоки содержат значительное количество остатков удобрений (азота, фосфора, калия), вносимых на поля. Кроме того, большие количества органических соединений азота и фосфора попадают со стоками от животноводческих ферм, а также с канализационными стоками. Повышение концентрации питательных веществ в почве приводит к нарушению биологического равновесия в водоеме.
Вначале в таком водоеме резко увеличивается количество микроскопических водорослей. С увеличением кормовой базы возрастает количество ракообразных, рыб и других водных организмов. Затем происходит отмирание огромного количества организмов. Оно приводит к расходованию всех запасов кислорода, содержащегося в воде, и накоплению сероводорода. Обстановка в водоеме меняется настолько, что он становится непригодным для существования любых форм организмов. Водоем постепенно “умирает” .
Одним из видов загрязнения водоемов является тепловое загрязнение. Электростанции, промышленные предприятия часто сбрасывают подогретую воду в водоем. Это приводит к повышению в нем температуры воды. С повышением температуры в водоеме уменьшается количество кислорода, увеличивается токсичность загрязняющих воду примесей, нарушается биологическое равновесие.
В загрязненной воде с повышением температуры начинают бурно размножаться болезнетворные микроорганизмы и вирусы. Попав в питьевую воду, они могут вызвать вспышки различных заболеваний.
В ряде регионов важным источником пресной воды являлись подземные воды. Раньше они считались наиболее чистыми. Но в настоящее время в результате хозяйственной деятельности человека многие источники подземной воды также подвергаются загрязнению. Нередко это загрязнение настолько велико, что вода из них стала непригодной для питья.
Человечество потребляет на свои нужды огромное количество пресной воды. Основными ее потребителями являются промышленность и сельское хозяйство. Наиболее водоемкие отрасли промышленности - горнодобывающая, сталелитейная, химическая, нефтехимическая, целлюлозно-бумажная и пищевая. На них уходит до 70% всей воды, затрачиваемой в промышленности. Главный же потребитель пресной воды - сельское хозяйство: на его нужды уходит 60-80% всей пресной воды.
В современных условиях сильно увеличиваются потребности человека в воде на коммунально-бытовые нужды. Объем потребляемой воды для этих целей зависит от региона и уровня жизни, составлял от 3 до 700 л на одного человека, В Москве, например, на каждого жителя приходится около 650 л, что является одним из самых высоких показателей в мире.
Из анализа водопользования за 5-6 прошедших десятилетий вытекает, что ежегодный прирост безвозвратного водопотребления, при котором использованная вода безвозвратно теряется для природы, составляет 4-5%. Перспективные расчеты показывают, что при сохранении таких темпов потребления и с учетом прироста населения и объемов производства к 2100 г. человечество может исчерпать все запасы пресной воды.
Уже в настоящее время недостаток пресной воды испытывают не только территории, которые природа обделила водными ресурсами, но и многие регионы, еще недавно считавшиеся благополучными в этом отношении. В настоящее время потребность в пресной воде не удовлетворяется у 20% городского и 75% сельского населения планеты.
Вмешательство человека в природные процессы затронуло даже крупные реки (такие, как Волга, Дон, Днепр), изменив в сторону уменьшения объемы переносимых водных масс (сток рек). Используемая в сельском хозяйстве вода по большей части расходуется на испарение и образование растительной биомассы и, следовательно, не возвращается в реки. Уже сейчас в наиболее обжитых районах страны сток рек сократился на 8% , а у таких рек, как Дон, Терек, Урал - на 11-20%. Весьма драматична судьба Аральского моря, по сути, прекратившего существование из-за чрезмерного забора вод рек Сырдарьи и Амударьи на орошение.
Ограниченные запасы пресной воды еще больше сокращаются из-за их загрязнения. Главную опасность представляют сточные воды (промышленные, сельскохозяйственные и бытовые), поскольку значительная часть использованной воды возвращается в водные бассейны в виде сточных вод. [4, 94-112 стр.]
3. Вода как среда обитания. Адаптация к обитанию в воде
Вода – не только живительный источник для всех животных и растений на Земле, но является для многих из них и средой обитания. К их числу, например, относятся многочисленные виды рыб, в том числе караси, населяющие реки и озёра края, а также аквариумные рыбки в наших домах. Как видите, они прекрасно себя чувствуют среди водных растений. Дышат рыбки жабрами, извлекая кислород из воды. Некоторые виды рыб, например, макроподы дышат атмосферным воздухом, поэтому периодически поднимаются на поверхность.
Вода - среда обитания многих водных растений и животных. Одни из них всю жизнь проводят в воде, а другие находятся в водной среде лишь в начале своей жизни. В этом можно убедиться, посетив небольшой пруд или болото. В водной стихии можно обнаружить самых маленьких представителей - одноклеточные организмы, для рассмотрения которых требуется микроскоп. К ним относятся многочисленные водоросли и бактерии. Их количество измеряется миллионами на кубический миллиметр воды. Коловратки – из царства многоклеточных животных. Несмотря на крохотные размеры планктон следит за чистотой воды, перерабатывая отмёршую растительность и погибших животных. В свою очередь, они являются пищей для более крупных организмов. Таких, например, как личинки комаров, обитающие во множестве у поверхности воды. Молодой комар покидает своё временное убежище – куколку-лодочку весьма осторожно. Малейшее волнение на поверхности воды в это время губительно для комара, так как он может упасть в воду, откуда уже не в силах выбраться.
Поверхность воды имеет особую упругую плёнку – поверхностное натяжение, чем успешно пользуются мелкие водные жуки-вертячки. Они встречаются целыми стайками. Сверкая на солнце, вертячки оживлённо бороздят воду и ловят мелких беспозвоночных животных. Более крупную жертву, упавшую на поверхность воды, всегда заметит клоп-водомерка. Он хищник. Иногда жертвой водомерки становится даже стрекоза. В свою очередь, на водомерок нередко охотится тритон. Это хвостатое земноводное живёт в воде всё лето.
И под водой немало хищников. Один из них – клоп-гладыш. Это один из самых крупных водных клопов, сильный и ловкий хищник. Длина его тела более одного сантиметра. Гладыш плавает спиной вниз, брюшком кверху. Его большие красные глаза обращены при этом ко дну, высматривая добычу. Он легче воды и дышит атмосферным воздухом. В отличие от водомерки, гладыш неплохо летает, посещая подходящие для охоты водоёмы.
На дне водоёмов можно встретить странных обитателей - личинок ручейников. Их тело находится в особом футляре- чехлике, который личинка строит сама из подручных материалов, например, из камушек.
Все наши стрекозы откладывают яйца в воду или ткани водных растений. Личинка стрекозы имеет характерный облик, малоподвижна и хорошо приспособлена к жизни на дне водоёма. Она хищник в водной стихии, как и взрослые стрекозы в воздушной среде. Личинка стрекозы дышит трахейными жабрами. Нередко можно увидеть двух личинок, которые выясняют, кому именно принадлежит данный участок дна водоёма.
В воде живёт и паук-серебрянка. Это единственный из пауков, который отлично приспособился к подводному существованию. Он одинаково хорошо передвигается как на суше, так и в воде. Дышит паук атмосферным воздухом. Строит под водой из паутины жилища, которые наполняет воздухом. Такое жилище служит пауку надёжным подводным убежищем. Здесь он отдыхает и поедает пойманную добычу.
А это личинка жука плавунца. Настоящий хищник. Добычей, как правило, становится зазевавшийся головастик лягушки. Вне воды личинка плавунца беспомощна и может погибнуть.
В воде и только в воде откладывают икру все наши земноводные животные, такие как лягушки, жабы, тритоны и углозубы. Вы видите зелёных жаб во время брачных игр, предшествующих откладке икры. Обычно жабы живут вне водоёмов, но весной после зимней спячки они дружно и большими группами плавают и резвятся в воде.
Икра земноводных животных плавает на поверхности воды, среди водных растений и благодаря чёрному цвету хорошо прогревается лучами весеннего солнца. Из икринок выходят личинки, носящие название головастиков. Питаются головастики растительной пищей. Чуть позже у головастиков отрастают конечности, и форма их тела заметно изменяется.
Трагедией для жителей маленьких водоёмов является засуха. В считанные часы вода испаряется и все водные обитатели, в том числе и головастики, погибают. Лишь отдельные экземпляры чудом избегают смерти, благодаря более быстрому развитию среди собратьев.
Вода - среда обитания и некоторых млекопитающих.
Это речной бобр. В далёком прошлом бобра считали рыбой! Так тесно связан он с водой. Бобра вода кормит, поит, даёт жильё и убежище от врагов.
Зоологи называют бобров «инженерами». Бобры умеют грамотно строить настоящие плотины на реках, каналы на болотистой местности, хатки-дома с входом под водой. С помощью своих передних резцов, имеющих ярко-оранжевую окраску, бобр валит среднее деревце за две-три минуты!
Самое маленькое млекопитающее – выхухоль. Она живёт у воды и здесь же находит себе пропитание.
Вода является средою, которая во много раз плотнее воздуха. В силу этого она оказывает на живущие в ней организмы определённое давление и в то же время обладает способностью поддерживать тела, согласно закону Архимеда, по которому всякое тело, находящееся в воде, теряет в весе столько, сколько весит вытесненная им вода.
Среди водных животных, как и на суше, есть прожорливые хищники и мирные растительноядные, но для их жизнедеятельности нужна чистая без вредных примесей вода.
Сохраняя и оберегая воду наших рек, озёр, прудов, мы сохраняем и жизни наших братьев меньших. [5, 43-47 стр.]
4. Особенности загрязнения Мирового океана и пресных вод. Экологические проблемы Иртышского бассейна
Химическое загрязнение природных вод.
Всякий водоем или водный источник связан с окружающей его внешней средой. На него оказывают влияние условия формирования поверхностного или подземного водного стока, разнообразные природные явления, индустрия, промышленное и коммунальное строительство, транспорт, хозяйственная и бытовая деятельность человека. Последствием этих влияний является привнесение в водную среду новых, несвойственных ей веществ - загрязнителей, ухудшающих качество воды. Загрязнения, поступающие в водную среду, классифицируют по разному, в зависимости от подходов, критериев и задач. Так, обычно выделяют химическое, физическое и биологические загрязнения.
Химическое загрязнение представляет собой изменение естественных химических свойств вода за счет увеличения содержания в ней вредных примесей как неорганической (минеральные соли, кислоты, щелочи, глинистые частицы), так и органической природы (нефть и нефтепродукты, органические остатки, поверхностно-активные вещества, пестициды).
Неорганическое загрязнение.
Основными неорганическими (минеральными) загрязнителями пресных и морских вод являются разнообразные химические соединения, токсичные для обитателей водной среды. Это соединения мышьяка, свинца, кадмия, ртути, хрома, меди, фтора. Большинство из них попадает в воду в результате человеческой деятельности. Тяжелые металлы поглощаются фитопланктоном, а затем передаются по пищевой цепи более высокоорганизованным организмам. Токсический эффект некоторых наиболее распространенных загрязнителей гидросферы представлен .
Среди основных источников загрязнения гидросферы минеральными веществами и биогенными элементами следует упомянуть предприятия пищевой промышленности и сельское хозяйство. С орошаемых земель ежегодно вымывается около 6 млн. т солей.
Отходы, содержащие ртуть, свинец, медь локализованы в отдельных районах у берегов, однако некоторая их часть выносится далеко за пределы территориальных вод. Загрязнение ртутью значительно снижает первичную продукцию морских экосистем, подавляя развитие фитопланктона. Отходы, содержащие ртуть, обычно скапливаются в донных отложениях заливов или эстуариях рек. Дальнейшая ее миграция сопровождается накоплением метиловой ртути и ее включением в трофические цепи водных организмов.
Органическое загрязнение.
Среди вносимых в океан с суши растворимых веществ, большое значение для обитателей водной среды имеют не только минеральные, биогенные элементы, но и органические остатки. Вынос в океан органического вещества оценивается в 300 - 380 млн. т/год. Сточные воды, содержащие суспензии органического происхождения или растворенное органическое вещество, пагубно влияют на состояние водоемов. Осаждаясь, суспензии заливают дно и задерживают развитие или полностью прекращают жизнедеятельность данных микроорганизмов, участвующих в процессе самоочищения вод. При гниении данных осадков могут образовываться вредные соединения и отравляющие вещества, такие как сероводород, которые приводят к полному загрязнению воды в реке. Наличие суспензий затрудняют также проникновение света на глубину, и замедляет процессы фотосинтеза.
Одним из основных санитарных требований, предъявляемых к качеству воды, является содержание в ней необходимого количества кислорода. Вредное действие оказывают все загрязнения, которые, так или иначе, содействуют снижению содержания кислорода в воде. Поверхностно активные вещества - жиры, масла, смазочные материалы - образуют на поверхности воды пленку, которая препятствует газообмену между водой и атмосферой, что снижает степень насыщенности воды кислородом.
Значительный объем органических веществ, большинство из которых не свойственно природным водам, сбрасывается в реки вместе с промышленными и бытовыми стоками. Нарастающее загрязнение водоемов и водостоков наблюдается во всех промышленных странах.
В связи с быстрыми темпами урбанизации и несколько замедленным строительством очистных сооружений или их неудовлетворительной эксплуатацией водные бассейны и почва загрязняются бытовыми отходами. Особенно ощутимо загрязнение в водоемах с замедленным течением или непроточных (водохранилища, озера).
Разлагаясь в водной среде, органические отходы могут стать средой для патогенных организмов. Вода, загрязненная органическими отходами, становится практически непригодной для питья и других надобностей. Бытовые отходы опасны не только тем, что являются источником некоторых болезней человека (брюшной тиф, дизентерия, холера), но и тем, что требуют для своего разложения много кислорода. Если бытовые сточные воды поступают в водоем в очень больших количествах, то содержание растворимого кислорода может опуститься ниже уровня, необходимого для жизни морских и пресноводных организмов. Поэтому сточные воды необходимо подвергать тщательной очистке.
Экологические проблемы Иртышского бассейна
Река Иртыш испытывает интенсивную нагрузку от сбросов сточных вод, содержащих загрязняющие вещества. Всего в бассейн реки Иртыш только в 2000 году сброшено со сточными водами около 86390 тыс. т. загрязняющих веществ, в том числе токсичных металлов от предприятий металлургии и горнодобывающей промышленности: цинка – 125,6 т, меди – 5,48 т, свинца – 0,76 т.
Сточными водами только двух очистных сооружений города Семипалатинска в реку Иртыш сбрасывается 418,1 т соединений различных металлов. Наиболее сильное загрязнение этого водоема (на 28,1 – 32,02 %) происходит хромом, цинком, медью, стронцием, никелем.
Основными источниками накопления химических элементов в водных системах и их составной части – донных отложениях – на территории Иртышского бассейна являются обнаженные поверхности горных выработок, их отвалы, хвостохранилища и продуктохранилища обогатительных фабрик, отвальные продукты и промышленные стоки металлургических, химико-металлургических, химических, машиностроительных, теплоэнергетических предприятий и предприятий стройиндустрии, а также их промышленные выбросы в атмосферу, осаждающиеся впоследствии на земную поверхность.
Загрязнителями тяжелыми металлами являются и средства химизации, широко применяемыми в сельском хозяйстве региона.
Важной экологической проблемой для реки Иртыш является забор ею воды Китаем на промышленные цели и для ирригационных систем. В начале 1999 г. в КНР началось строительство канала для отвода вод Черного Иртыша на Карамайские нефтепромыслы в Синьцзян-Уйгурском автономном районе для питьевого и промышленного водоснабжения, в последнее время стало известно о строительстве новых водохранилищ.
По предварительным подсчетам, у китайского канала максимальный водозабор составит 10-11 % общего объема воды реки, что меньше 12 % предусматриваемых Хельсинскими соглашениями. Средний многолетний сток Черного Иртыша – 9 км3, но величина годового стока подвержена значительным колебаниям. Если в многоводные годы объем будет составлять 20 %, то в маловодные годы он может составить 50 % и более от стока Черного Иртыша, что может привести к серьезным экологическим и экономическим проблемам.
Казахстанские ученые считают, что под угрозой окажутся уникальные места воспроизводства биопродукции, существенно ухудшится самоочищающая способность озера Зайсан и Бухтарминского водохранилища, поскольку из Китая в реку Иртыш поступает уже загрязненная тяжелыми металлами, нитратами и нефтепродуктами вода. Снижение стока реки Иртыш при сохранении существующих объемов сброса промышленных предприятий в районе г. Усть-Каменогорска приведет к увеличению уровня загрязненности вод реки. Естественно это ухудшит качество питьевой воды. В свою очередь, это негативно отразится на здоровье людей.
Также внимание общества еще совсем недавно привлекало другое экологическое бедствие - угроза попадания ртути в реку Иртыш. Но в настоящее время уровень концентрации паров ртути в атмосферном воздухе достаточно стабильный, незначительное превышение ПДК наблюдается непосредственно на площадке бывшего корпуса №31 ОАО “Павлодарский химический завод”.
Сейчас на Павлодарском химическом заводе продолжаются работы по ликвидации очага ртутного загрязнения. Из-за несовершенства технологии некогда действовавшего здесь хлорного производства под землей скопилось более 900 тонн ртути. Угрозы, что ртуть попадет в Иртыш, как говорят специалисты, больше не существует. [3, 73-79 стр.]
5. Методика очистки. Технология очистки питьевой воды
Предварительная очистка воды
Если в качестве источника водоснабжения для приготовления питьевой воды используются поверхностные и подземные воды, требуется проведение тщательной предварительной очистки, которая включает в себя:
• первичное отстаивание с применением или без применения реагентов, в зависимости от состава исходной воды.
• коагуляция (т.е. введение в обрабатываемую воду солей алюминия, железа или полиэлектролитов), для укрупнения взвешенных и коллоидных частиц и перевода их в фильтруемую форму.
• механическая очистка воды с помощью фильтрования. Очистка воды с помощью фильтрования применяется для самых различных целей. Для очистки воды, подаваемой из общественных водопроводных сетей, как правило, применяется тонкое фильтрование с использованием:
фильтров обратной промывки (данный тип фильтров представляет собой сетчатые фильтры, очистка в которых происходит посредством осаждения механических загрязнений на сетке фильтра и при обратной промывке водой смываются в дренаж)
или патронных фильтров (данный тип фильтров представляет собой колбу со сменным фильтрующим элементом – патроном (картриджем), по истечении срока службы которого, производится замена на новый фильтрующий элемент).
В качестве элементов очистки используют сетки и картриджи со степенью фильтрации от 5мкм до 1мм, в зависимости от уровня загрязнений. В технике подготовки воды из индивидуальных подземных или поверхностных источников водоснабжения наиболее широко применяют скорые напорные фильтры. В качестве фильтрующего материала в зависимости от целей фильтрации применяется кварцевый песок, антрацит, доломит.
Очистка воды от железа
Решение проблемы очистки воды от железа представляется довольно сложной и комплексной задачей, в связи с этим вряд ли возможно установить какие-либо универсальные правила очистки.
Наиболее часто используемыми методами при очистке воды от железа являются:
• аэрация, т. е. Нагнетание воздуха и интенсивный процесс окисления в емкости. Расход воздуха для насыщения воды кислородом составляет около 30 л/м3.
• обработка воды сильными окислителями – озон, хлор, гипохлорит натрия, перманганат калия.
• фильтрование через модифицированную загрузку (пропускание воды через материалы для удаления железа, которые осуществляют не только очистку воды от окисленного железа (осадка), но и от растворенного железа с помощью химического взаимодействия).
Типичная картина, которая наблюдается при подъеме железистой воды из скважины, такова: вначале вода, выкачанная из скважины, абсолютно прозрачна и кажется чистой, но проходит несколько десятков минут и вода мутнеет, приобретая специфический желтоватый цвет. Через несколько часов муть начинает оседать, образуя рыхлый осадок. Процесс осаждения может длиться несколько дней. Скорость осаждения зависит от температуры и состава воды. Наличие железа можно определить и на вкус. Начиная с концентрации 1,0-1,5 мг/л вода имеет характерный неприятный металлический привкус. Игнорирование проблемы железа в воде оканчиваются плохо, и стоит дорого: потеря «белизны» ванн, отказ импортной бытовой техники, систем отопления и нагрева воды. В системе горячего водоснабжения проблемы, обусловленные повышенным содержанием железа, многократно возрастают. Уже при концентрации 0,5 мг/л идет интенсивное появление хлопьев, образующих рыхлый шлам, который забивает теплообменники, радиаторы, трубопроводы, сужает их проходное сечение.
Российские санитарные нормы ограничивают концентрацию железа в воде для хозяйственно-питьевых нужд в пределах 0,3 мг/л. В подземной же воде она колеблется в пределах от 0,5 до 20 мг/л. В Центральном регионе, включая Подмосковье - от 0,5 до 10 мг/л, наиболее часто 3-5 мг/л.
Все многообразие методов, применяемых в технологии очистки воды от железа, можно свести к двум основным типам – реагентные (для восстановления фильтрующих свойств загрузки используется дополнительный реагент) и безреагентные (для восстановления фильтрующих свойств загрузки используется промывка водой). Очистку от железа поверхностных вод можно осуществлять лишь реагентными методами, а в очистке от железа подземных вод распространение получили оба метода.
Очистка воды от солей жесткости
С жесткой водой сталкивается каждый, достаточно вспомнить о накипи в чайнике. В жесткой воде хуже пенится стиральный порошок и мыло. Жесткая вода не годится при окрашивании тканей водорастворимыми красками, в пивоварении, производстве водки, негативно влияет на стабильность майонезов и соусов. Чай и кофе тоже лучше заваривать мягкой водой.
Жесткость воды определяется суммарным содержанием в ней растворенных солей кальция и магния. Гидрокарбонаты кальция и магния образуют карбонатную или временную жесткость воды, которая полностью устраняется при кипячении воды в течение часа. В процессе кипячения растворимые гидрокарбонаты переходят в нерастворимые карбонаты, выпадающие в виде белого осадка или накипи, с выделением при этом углекислого газа. Соли же сильных кислот, например, сульфаты и хлориды кальция и магния - образуют некарбонатную или постоянную жесткость, не изменяющуюся при кипячении воды.
Жесткость пресных природных водоемов меняется в течение года, имея минимум в период паводка. Артезианская вода, как правило, более жесткая, чем вода из поверхностных источников. В Подмосковье жесткость артезианских вод меняется от 3 до 15-20 мг-экв/л в зависимости от места и глубины скважины.
Высокая гидрокарбонатная (временная) жесткость воды делает её непригодной для питания газовых и электрических паровых котлов и бойлеров. Стенки котлов постепенно покрываются слоем накипи. Слой накипи в 1,5 мм снижает теплоотдачу на 15%, а слой толщиной 10 мм - снижает теплоотдачу уже на 50%.
Снижение теплоотдачи ведет к увеличению расхода топлива или электроэнергии, что в свою очередь ведет к образованию прогаров, трещин на трубах и стенках котлов, выводя преждевременно из строя системы отопления и горячего водоснабжения.
В тех случаях, когда вода слишком жесткая и её необходимо умягчить, применяют следующие методы очистки воды:
• термический, основанный на нагревании воды,
• дистилляция или вымораживание
• реагентный
• ионообменный
• обратный осмос
• электродиализ
• и комбинированный, представляющего собой различные сочетания перечисленных методов.
Очистка воды обеззараживанием
Обеззараживание питьевой воды имеет важное значение в общем цикле очистки воды и почти повсеместное применение, так как это последний барьер на пути передачи связанных с водой бактериальных и вирусных болезней. Обеззараживание воды является заключительным этапом подготовки воды питьевой кондиции. Использование для питья подземной и поверхностной воды в большинстве случаев невозможно без обеззараживания.
Обычными методами обеззараживания при очистке воды являются:
• хлорирование путем добавления хлора, диоксида хлора, гипохлорита натрия или кальция;
• озонирование воды;
• ультрафиолетовое облучение.
Очистка воды на активированном угле
Очистка воды на активированном угле чаще всего применяется на одной из последних ступеней очистки и является одним из классических способов получения питьевой воды. Такую дополнительную очистку воды необходимо в тех случаях, когда требуется устранить незначительные нарушения показателей цветности, вкуса и запаха воды. Активные угли также используются для очистки муниципальной водопроводной воды от хлора и хлорсодержащих соединений.
Очистка воды обратным осмосом
С помощью этого метода можно проводить глубокую очистку воды. При оптимальных значениях температуры и давления подаваемой воды, степень очистки воды обратным осмосом составляет 95-98%. Разделение воды и содержащихся в ней веществ достигается с помощью полупроницаемой мембраны. Сами мембраны изготавливаются из различных материалов, например, полиамида или ацетатцеллюлозы и выпускаются в виде полых волокон или рулонов. Через микроскопически малые поры этих мембран (размер порядка 0,0001 микрона), могут пройти только молекулы воды и кислорода, а микроорганизмы, растворенные в воде соли и органические соединения и т.п. задерживаются мембраной.
Степень очистки воды и связанная с этим производительность зависит от различных факторов, прежде всего от общего солесодержания сырой воды, а также солевого состава, давления и температуры.
На стадии предварительной очистки воды следует ее отфильтровать и при необходимости очистить от хлора. Особые преимущества обратного осмоса заключаются в его высокой экологической безопасности. [50-57 стр.]
6. Биоиндикация
Наиболее часто цитируемой и, в то же время, наиболее идеологически расплывчатой областью экологии является некоторая совокупность методов, называемая “биоиндикацией”. Хотя истоки наблюдений за индикаторными свойствами биологических объектов можно найти в трудах естествоиспытателей самой глубокой древности, до сих пор отсутствует стройная теория и адекватные методы биоиндикации.
Основой задачей биоиндикации является разработка методов и критериев, которые могли бы адекватно отражать уровень антропогенных воздействий с учетом комплексного характера загрязнения и диагностировать ранние нарушения в наиболее чувствительных компонентах биотических сообществ. Биоиндикация, как и мониторинг, осуществляется на различных уровнях организации биосферы: макромолекулы, клетки, органа, организма, популяции, биоценоза. Очевидно, что сложность живой материи и характера ее взаимодействия с внешними факторами возрастает по мере повышения уровня организации. В этом процессе биоиндикация на низших уровнях организации должна диалектически включаться в биоиндикацию на более высоких уровнях, где она предстает в новом качестве и может служить для объяснения динамики более высокоорганизованной системы.
Считается, что использование метода биоиндикации позволяет решать задачи экологического мониторинга в тех случаях, когда совокупность факторов антропогенного давления на биоценозы трудно или неудобно измерять непосредственно. К сожалению, современная практика биоиндикации носит в значительной мере феноменологический характер, выраженный в пространном изложении подмеченных исследователем фактов поведения различных видов организмов в конкретных условиях среды. Иногда эти описания сопровождаются не всегда обоснованными выводами, носящими, как правило, сугубо оценочный характер, основанными на чисто визуальных методах сравнения или использовании недостаточно достоверных индексов. Чаще всего такой "прогноз" делается, когда "общественное" мнение по конечному результату оценки качества экосистемы уже заранее известно, например, по прямым или косвенным параметрам среды. В результате этого, роль биоиндикации оказалась сведенной к следующей совокупности действий, технологически совпадающей с биомониторингом:
· выделяется один или несколько исследуемых факторов среды (по литературным данным или в связи с имеющейся программой мониторинговых исследований);
· собираются полевые и экспериментальные данные, характеризующие биотические процессы в рассматриваемой экосистеме, причем теоретически эти данные должны измеряться в широком диапазоне варьирования исследуемого фактора (например, в условно-чистых и в условно-грязных районах);
· некоторым образом (путем простого визуального сравнения, с использованием системы предварительно рассчитанных оценочных коэффициентов или с применением математических методов первичной обработки данных) делается вывод об индикаторной значимости какого-либо вида или группы видов.
В редких случаях делаются практические попытки оценить лимитирующий уровень рассматриваемого фактора загрязнения, т.е. выполнить так называемый "анализ биологически значимых нагрузок". И только в исключительных случаях выполняется собственно операция "индикации", когда с использованием биоиндикаторных показателей прогнозируются неизвестные факторы среды и оценивается их значимость для всей экосистемы в ближайшем и отдаленном будущем. В качестве немногочисленных примеров организации комплексных гидроэкологических биоиндикационных исследований, в результате которых был сформулирован некоторый комплекс научно-обоснованных природоохранных решений, можно привести работы по оценке экологического состояния оз. Байкал, рек Невы и Чапаевки.
В значительной мере теоретическая и практическая неполнота работ в области биоиндикации связана с объективными методологическими трудностями отображения и моделирования предметной области. Оценка антропогенного воздействия на биотические компоненты экосистем во многом осложняется пространственно-временной дифференциацией видовой структуры, т.к. ценопопуляции одного и того же вида, входящие в разные сообщества организмов, характеризуются различными экологическими условиями обитания и их реакции на действие фактора могут существенно отличаться. У видов со слабо выраженными механизмами популяционного гомеостаза эти реакции всегда достаточно контрастно выражаются в снижении физиологической устойчивости части особей к действию антропогенных факторов и, в конечном счете, в нарушении процессов репродукции. Однако для большинства видов реагирование на любое техногенное воздействие (если, разумеется, оно не носит катастрофический характер) принципиально не отличается от выработанных в ходе эволюции тривиальных реакций на колеблющиеся изменения среды. В процессе адаптации биоценоза к меняющимся условиям включаются компенсационные механизмы и, при умеренных воздействиях, в популяциях вырабатывается некоторый средний, генетически обусловленный уровень интенсивности воспроизводства за счет "перераспределения факторов смертности". И только в том случае, когда давление антропогенных факторов выводит экосистему за рамки естественной изменчивости, происходит нарушение динамической стабилизации популяционных связей, изменяется генетический состав и идет подавление наиболее генерализированного свойства популяций - воспроизводственного процесса.
Необходимым условием для выявления качественных нарушений биотических процессов, происходящих в экосистемах под влиянием антропогенных факторов, является знание диапазона естественной изменчивости биоценозов, т.е. построение пространства состояния популяций. В связи с этим возникает необходимость определения тех параметров, которые позволят с заданной подробностью и точностью оценить состояние биоценоза, вычленить изменения, вызванные действием антропогенных факторов, и получить необходимую и достаточную информацию для прогноза возможных изменений состояния экосистемы. Однако для получения такого “динамически достаточного описания” (термин Б.К.Павлова) необходимо знание "правил" внутреннего преобразования популяций в результате действия каких-либо факторов. Но мы не можем сформулировать эти "правила" до тех пор, пока не определим ряд необходимых и достаточных параметров описания состояния популяций, достаточно чувствительных, информативных и обладающих достаточной селективностью в рамках поставленной задачи.
Относительно благополучно дело обстоит с описательным объяснением терминов. Например, согласно определению Н.Ф. Реймерса:
“Биоиндикатор: группа особей одного вида или сообщество, по наличию, состоянию и поведению которых судят об изменениях в среде, в том числе о присутствии и концентрации загрязнителей… Сообщество индикаторное - сообщество, по скорости развития, структуре и благополучию отдельных популяций микроорганизмов, грибов, растений и животных которого можно судить об общем состоянии среды, включая, ее естественные и искусственные изменения”.
Безусловно, объективные факты свидетельствуют о существовании тесного влияния факторов среды на биотические процессы экосистемы (плотность популяций, динамику видовой структуры, поведенческие особенности). Такие факторы среды, как свет, температура, водный режим, биогенные элементы (макро- и микроэлементы), соленость и другие имеют функциональную важность для организмов на всех основных этапах жизненного цикла. Однако можно использовать обратную закономерность и судить, например, по видовому составу организмов о типе физической среды. Поэтому “Биоиндикация - это определение биологически значимых нагрузок на основе реакций на них живых организмов и их сообществ. В полной мере это относится ко всем видам антропогенных загрязнений”.
Существенные методологические трудности биоиндикации возникают и при оценке состояния биоценоза по соотношению видов в конкретной экосистеме выборочным методом. Если исходить из понимания популяции, как совокупности особей, то информация, которую мы получили, не может быть экстраполирована за пределы временного периода или станции (полигона), на котором осуществлена выборка. Необходимо получить информацию о форме распределения вероятностей нахождения особей в той или иной точке пространства экосистемы. Исходя из найденного закона распределения, можно рассчитать число необходимых проб, обеспечивающих заданную точность интерполяции. Такой подход возможен для оценки состояния популяций на небольших площадях, например, в небольших замкнутых мелководных водоемах. Для крупных водоемов количество выборок ограничивается временем, за которые можно сделать пробы в сходных условиях (например, даже в течение суток может произойти перераспределение планктонных особей в пространстве). Проблемы, связанные с изучением пространственно-временной дифференциации зоопланктона при проведении мониторинговых исследований, показаны, например, на большом экспериментальном материале О.М. Кожовой и Б.К. Павловым [1986].
Таким образом, биоиндикацию можно определить как совокупность методов и критериев, предназначенных для поиска информативных компонентов экосистем, которые могли бы:
· адекватно отражать уровень воздействия среды, включая комплексный характер загрязнения с учетом явлений синергизма действующих факторов;
· диагностировать ранние нарушения в наиболее чувствительных компонентах биотических сообществ и оценивать их значимость для всей экосистемы в ближайшем и отдаленном будущем.
С точки зрения математики поставленная задача биоиндикации в реальных условиях относится к классу плохо формализуемых задач, поскольку характеризуется следующими особенностями:
· существенной многомерностью факторов среды и измеряемых параметров экосистем;
· сильной взаимообусловленностью всего комплекса измеренных переменных, не позволяющей выделить в чистом виде функциональную связь двух индивидуальных показателей F(x);
· нестационарностью большей части информации об объектах и среде;
· трудоемкостью проведения всего комплекса измерений в единых координатах пространства и времени, в результате чего обрабатываемые данные имеют обширные пропуски.
В связи с этим, нахождение адекватной связи индикаторов и индицируемых факторов является типичной операцией с "размытыми" множествами, а, следовательно, характеризуется существенной неопределенностью (стохастичностью).
В то же время, к настоящему моменту сложились условия, позволяющие преодолеть некоторую математическую "ущербность" биоиндикации:
· сформированы банки многолетних данных по наблюдениям за природными экосистемами;
· разработан и апробирован ряд методов и математических моделей интегральной оценки состояния сложных систем различного типа, позволяющих, по терминологии А.П. Левича и А.Т. Терехина, осуществлять “поиск детерминации и распознавание образов в многомерном пространстве экологических факторов для выделения границ между областями нормального и патологического функционирования экосистем”;
· развиваются аппаратные и программные информационные компьютерные технологии, позволяющие анализировать необходимые массивы экологических данных;
· существует огромный объем неформальных знаний высококвалифицированных специалистов, частично сконцентрированный в методических разработках.
Рассмотрим в этой связи некоторые специальные методы решения задач биоиндикации.
Оценка значимости воздействий
В соответствии с природоохранительным законодательством Российской Федерации, оценка качества окружающей природной среды производится с целью установления предельно допустимых норм воздействия, гарантирующих экологическую безопасность населения, сохранение генофонда и обеспечивающих рациональное использование и воспроизводство природных ресурсов в условиях устойчивого развития хозяйственной деятельности [Федеральный закон.., 2002, ст. 1, 3, 19, 63]. При этом, под воздействием вообще понимается антропогенная деятельность, связанная с реализацией экономических, рекреационных, культурных интересов и вносящая физические, химические, биологические изменения в природную среду.
Оценка значимости воздействий
Значимость воздействия непосредственно зависит от его вида или природы (шумовое, радиационное, выбросы определенных веществ в воздух и т.д.), физической величины и вероятности его возникновения [Черп и др., 2000]. Понятие величины охватывает здесь несколько факторов, таких как интенсивность воздействия (например, повышение величины показателя БПК5 в реке до 10 мг/л); продолжительность воздействия; масштаб распространения воздействия. При этом масштаб распространения воздействия оценивается как в терминах площади (например, территория, на которой зафиксировано повышение радиационного уровня), так и в терминах численности биологических объектов, наличия особо охраняемых территорий и т.д., подвергающихся воздействию данного фактора. Дополнительным аспектом, который чаще всего не учитывается при оценке значимости воздействий, является его контекст. Воздействия, одинаковые по величине и вероятности, могут рассматриваться как более или менее важные, влиять на принимаемые решения в большей или меньшей степени в зависимости от того, где именно они имеют место, как они воспринимаются заинтересованными лицами, какова сложившаяся социальная обстановка и т.д.
Для оценки значимости существует множество методов: например, Н. Ли описывает 24 метода. Наиболее простым и часто применяемым методом оценки значимости является сравнение их с универсальными стандартами. Стандарты могут быть количественными (например, предельно допустимые концентрации загрязняющих веществ) или носить характер качественных норм (например, ограничения на определенные виды хозяйственной деятельности в пределах особо охраняемой природной территории или вблизи культурных памятников). Однако следует иметь в виду важные ограничения применимости стандартов для оценки значимости:
· на многие виды воздействия стандарты отсутствуют (например, в момент написания этой книги в России не существовало стандарта на концентрации или выбросы диоксинов);
· многие стандарты разработаны на основе приблизительных данных (недостаточно проверенных, неточных или неполных) и, таким образом, их область применения ограничена;
· стандарты основаны на представлении о "пороговом воздействии", в то время как многие виды воздействия (например, ионизирующее излучение) не имеют порогового значения: не исключено, что их влияние проявляется при сколь угодно малых величинах;
· стандарты не всегда годятся для учета непрямых, кумулятивных воздействий, синергетического действия нескольких факторов;
· стандарты редко применимы для учета уникальных условий, характерных для конкретной ситуации.
Очень близок к сравнению со стандартами метод оценки значимости, основанный на сравнении величины воздействия с усредненными значениями данного параметра для рассматриваемой местности. Такой метод вносит в оценку значимости элемент "контекста", учета местной ситуации. К этому типу методов относится сравнение параметров состояния окружающей среды с фоновыми значениями. Сравнение величины воздействий со стандартами или с характерными значениями является "объективным" методом оценки значимости воздействий (хотя стандарты, конечно, могут рассматриваться как субъективная величина).
Биологические методы оценки. Биотестирование
Оценка степени загрязнения может быть проведена с использованием физико-химических и биологических методов. Биологические методы оценки - это характеристика состояния экосистемы по растительному и животному населению.
Любая экосистема, находясь в равновесии с факторами внешней среды, имеет сложную систему подвижных биологических связей, которые нарушаются под воздействием антропогенных факторов. Прежде всего, влияние антропогенных факторов, и в частности, загрязнения отражается на видовом составе сообществ и соотношении численности слагающих их видов. Биологический метод оценки состояния системы позволяет решить задачи, разрешение которых с помощью физических и химических методов невозможно. Рекогносцировочная оценка степени загрязнения по составу бионтов позволяет быстро установить его санитарное состояние, определить степень и характер загрязнения и пути его распространения в экосистеме, а также дать количественную характеристику протекания процессов естественного самоочищения.
Биотестирование - использование в контролируемых условиях биологических объектов (тест-объектов) для выявления и оценки действия факторов (в том числе и токсических) окружающей среды на организм, его отдельную функцию или систему организмов.
Наиболее полно методы биотестирования разработаны для гидробионтов и позволяет использовать их для оценки токсичности загрязнений природных вод, контроля токсичности сточных вод, экспресс - анализа в санитарно-гигиенических целях, для проведения химических анализов в лабораторных целях и решения целого ряда других задач.
В зависимости от целей и задач токсикологического биотестирования в качестве тест - объектов применяются различные организмы: высшие и низшие растения, бактерии, водоросли, водные и наземные беспозвоночные и другие.
Например, при сбросе в водоем токсических веществ, содержащихся в промышленных сточных водах, происходит угнетение и обеднение фитопланктона. При обогащении водоемов биогенными веществами, содержащимися, например, в бытовых стоках, значительно повышается продуктивность фитопланктона. При перегрузке водоемов биогенами возникает бурное развитие планктонных водорослей, окрашивающих воду в зеленый, сине-зеленый, золотистый, бурый или красный цвета ("цветение "воды). "Цветение" воды наступает при наличии благоприятных внешних условий для развития одного, редко двух-трех видов. При разложении избыточной биомассы, выделяется сероводород или другие токсичные вещества. Это может приводить к гибели зооценозов водоема и делает воду непригодной для питья. Многие планктонные водоросли в процессе жизнедеятельности нередко выделяют токсичные вещества. Увеличение в водоемах содержания биогенных веществ в результате хозяйственной деятельности человека, сопровождаемые чрезмерным развитием фитопланктона, называют антропогенным эвтрофированием водоемов.
Подчеркивая всю важность биоиндикационных методов исследования, необходимо отметить, что биоиндикация предусматривает выявление уже состоявшегося или происходящего загрязнения окружающей среды по функциональным характеристикам особей и экологическим характеристикам сообществ организмов. Постепенные же изменения видового состава формируются в результате длительного отравления водоема, и явными они становятся в случае в случае далеко идущих изменений. Таким образом, видовой, видовой состав гидробионтов из загрязняемого водоема служит итоговой характеристикой токсикологических свойств водной среды за некоторый промежуток времени и не дает ее оценки на момент исследования. [1, 89-101 стр.]
Заключение
Защита водных ресурсов от истощения и загрязнения и их рационального использования для нужд народного хозяйства - одна из наиболее важных проблем, требующих безотлагательного решения. В России широко осуществляются мероприятия по охране окружающей Среды, в частности по очистке производственных сточных вод.
Одним из основных направлений работы по охране водных ресурсов является внедрение новых технологических процессов производства, переход на замкнутые (бессточные) циклы водоснабжения, где очищенные сточные воды не сбрасываются, а многократно используются в технологических процессах. Замкнутые циклы промышленного водоснабжения дадут возможность полностью ликвидировать сбрасываемые сточных вод в поверхностные водоемы, а свежую воду использовать для пополнения безвозвратных потерь.
В химической промышленности намечено более широкое внедрение малоотходных и безотходных технологических процессов, дающих наибольший экологический эффект. Большое внимание уделяется повышению эффективности очистки производственных сточных вод.
Значительно уменьшить загрязненность воды, сбрасываемой предприятием, можно путем выделения из сточных вод ценных примесей, сложность решения этих задач на предприятиях химической промышленности состоит в многообразии технологических процессов и получаемых продуктов. Следует отметить также, что основное количество воды в отрасли расходуется на охлаждение. Переход от водяного охлаждения к воздушному позволит сократить на 70-90 % расходы воды в разных отраслях промышленности. В этой связи крайне важными являются разработка и внедрение новейшего оборудования, использующего минимальное количество воды для охлаждения.
Существенное влияние на повышение водооборота может оказать внедрение высокоэффективных методов очистки сточных вод, в частности физико-химических, из которых одним из наиболее эффективных является применение реагентов. Использование реагентного метода очистки производственных сточных вод не зависит от токсичности присутствующих примесей, что по сравнению со способом биохимической очистки имеет существенное значение. Более широкое внедрение этого метода как в сочетании с биохимической очисткой, так и отдельно, может в определенной степени решить ряд задач, связанных с очисткой производственных сточных вод.
В ближайшей перспективе намечается внедрение мембранных методов для очистки сточных вод.
На реализацию комплекса мер по охране водных ресурсов от загрязнения и истощения во всех развитых странах выделяются ассигнования, достигающие 2-4 % национального дохода ориентировочно, на примере США, относительные затраты составляют (в %) : охрана атмосферы 35,2 % , охрана водоемов - 48,0, ликвидация твердых отходов - 15,0, снижение шума -0,7, прочие 1,1. Как видно из примера, большая часть затрат - затраты на охрану водоемов, Расходы, связанные с получением коагулянтов и флокулянтов, частично могут быть снижены за счет более широкого использования для этих целей отходов производства различных отраслей промышленности, а также осадков, образующихся при очистке сточных вод, в особенности избыточного активного ила, который можно использовать в качестве флокулянта, точнее биофлокулянта.
Таким образом, охрана и рациональное использование водных ресурсов - это одно из звеньев комплексной мировой проблемы охраны природы.
СПИСОК ЛИТЕРАТУРЫ:
1. Ашихмина Т.Я. и др. Биоиндикация и биотестирование - методы познания экологического состояния окружающей среды. - Киров, 2005.
2. Дьяченко Г.И. Мониторинг окружающей среды (Экологический мониторинг) Новосибирск. - 2003.
3. Новиков Ю. В. Экология, окружающая среда и человек. Москва, Фаир, 1999.
4. Селиванов А. О. Изменчивая гидросфера Земли. Москва, Знание, 1990.
5. Спенглер О. А. Слово о воде. Ленинград, Гидрометиоиздат, 1980.
6. Охрана окружающей среды – справочник.