Скачать .docx | Скачать .pdf |
Реферат: Физиология системы крови
Физиология системы крови.
Кровь, нагнетаемая сердцем, протекает внутри тела со скоростью 11 м/с, то есть 40 км/ч. Кровоток - это сплошной поток плотностью 1,06 г/см3. Он протекает по сети кровеносных сосудов, которая включает в себя большие вены и артерии, многократно ветвящиеся и постепенно уменьшающиеся до размеров крохотных капилляров. Через тончайшие стенки капилляров легко просачиваются различные вещества, отчего в живых тканях происходит непрерывный обмен: кровь отдает клеткам организма вещества, поддерживающие жизнь, и вымывает продукты распада.
Поступая во все части организма кровь выполняет различные важные функции:
• Питательная функция
. Кровь переносит кислород (О2) и различные питательные вещества, отдает их клеткам тканей и забирает углекислый газ (С02) и прочие продукты распада для их выведения из организма.
• Транспортная функция
- перенос различных веществ: кислорода и углекислого газа (дыхательная функция), питательных веществ (трофическая функция), медиаторов, ферментов, электролитов. Экскреторная функция проявляется как перенос конечных продуктов обмена веществ - мочевины, мочевой кислоты, избытка воды, органических и минеральных веществ к органам их выделения (почки, потовые железы, легкие, кишечник). Кровь переносит пептиды, ионы и гормоны, вырабатываемые эндокринными железами, к соответствующим органам, передавая таким образом «молекулярную информацию» из одних зон в другие (гуморальная, регуляторная функция).
• Способность останавливать кровотечение
. Когда происходит сосудистое кровотечение, кровь посылает туда многочисленные лейкоциты, заставляет выходить плазму из сосудов или сосредоточивает кровяные пластинки - тромбоциты - в местах потери крови.
• Терморегуляторная функция
. Кровь подобна обогревательной системе, так как распределяет тепло по всему организму.
• Функция регулятора рН
. Кровь препятствует изменению кислотности внутренней среды (7,35-7,45) с помощью таких веществ, как белки и минеральные соли.
• Защитная функция
. Кровь, транспортируя лейкоциты и антитела, защищающие организм от патогенных микроорганизмов, участвует в осуществлении неспецифического и cпецифического иммунитета.
Объем и физико-химические свойства крови
Общее количество крови
в организме взрослого человека составляет в среднем 6 – 8% от массы тела, что соответствует от 5 до 6 литров крови, а у женщины – от 4 до 5. Каждый день это количество крови проходит через сердце более 1000 раз.
Но кровь не заполняет кровеносную систему до краев, а с большим или меньшим постоянством находится лишь в какой-то части организма, оставляя значительную долю сосудистой системы "пустой".
Дело в том, что протяженность кровеносной системы человека может доходить до 100 000 километров и, по подсчетам А.Карреля, для ее заполнения требуется 200 000 литров, т.е. по 2 литра крови на один километр, тогда как наш организм располагает лишь 5-7 литрами. Грубо говоря, кровеносная система человека заполнена на 1/40 000 ее потенциального объема.
Повышение общего объема крови называют гиперволемией, уменьшение – гиповолемией.
Относительная плотность крови
– 1,050 – 1.060 зависит в основном от количества эритроцитов. Относительная плотность плазмы крови – 1.025 – 1.034, определяется концентрацией белков.
Вязкость крови –
5
усл.ед., плазмы – 1,7 – 2,2 усл.ед., если вязкость воды принять за 1. Обусловлена наличием в крови эритроцитов и в меньшей степени белков плазмы.
Осмотическое давление крови
– сила, с которой растворитель переходит через полунепроницаемую мембрану из менее в более концентрированный раствор. Осмотическое давление крови вычисляют криоскопическим методом путем определения точки замерзания крови (депрессии), которая для нее равна 0,56 – 0,58 С. Осмотическое давление крови в среднем составляет 7,6 атм. Оно обусловлено растворенными в ней осмотически активными веществами, главным образом неорганическими электролитами, в значительно меньшей степени – белками. Около 60% осмотического давления создается солями натрия (NаСl).
Осмотическое давление определяет распределение воды между тканями и клетками
. Функции клеток организма могут осуществляться лишь при относительной стабильности осмотического давления. Если эритроциты поместить в солевой раствор, имеющий осмотическое давление, одинаковое с кровью, они не изменяют свой объем. Такой раствор называют изотоническим, или физиологическим. Это может быть 0,85% раствор хлористого натрия. В растворе, осмотическое давление которого выше осмотического давления крови, эритроциты сморщиваются, так как вода выходит из них в раствор. В растворе с более низким осмотическим давлением, чем давление крови, эритроциты набухают в результате перехода воды из раствора в клетку. Растворы с более высоким осмотическим давлением, чем давление крови, называются гипертоническими, а имеющие более низкое давление – гипотоническими.
Онкотическое давление крови
– часть осмотического давления, создаваемого белками плазмы. Оно равно 0,03 – 0,04 атм, или 25 – 30 мм рт.ст. Онкотическое давление в основном обусловлено альбуминами. Вследствие малых размеров и высокой гидрофильности они обладают выраженной способностью притягивать к себе воду, за счет чего она удерживается в сосудистом русле, При снижении онкотического давления крови происходит выход воды из сосудов в интерстициальное пространство, что приводит к отеку тканей.
Кислотно-основное состояние крови (КОС)
. Активная реакция крови обусловлена соотношением водородных и гидроксильных ионов. Для определения активной реакции крови используют водородный показатель рН – концентрацию водородных ионов, которая выражается отрицательным десятичным логарифмом молярной концентрации ионов водорода. В норме рН – 7,36 (реакция слабоосновная); артериальной крови – 7,4; венозной – 7,35. При различных физиологических состояниях рН крови может изменяться от 7,3 до 7,5. Активная реакция крови является жесткой константой, обеспечивающей ферментативную деятельность. Крайние пределы рН крови, совместимые с жизнью, равны 7,0 – 7,8. Сдвиг реакции в кислую сторону называется ацидозом
, который обусловливается увеличением в крови водородных ионов. Сдвиг реакции крови в щелочную сторону называется алкалозом
. Это связано с увеличением концентрации гидроксильных ионов ОН и уменьшением концентрации водородных ионов.
В организме человека всегда имеются условия для сдвига активной реакции крови в сторону ацидоза или алкалоза, которые могут привести к изменению рН крови. В клетках тканей постоянно образуются кислые продукты. Накоплению кислых соединений способствует потребление белковой пищи. Напротив, при усиленном потреблении растительной пищи в кровь поступают основания. Поддержание постоянства рН крови является важной физиологической задачей и обеспечивается буферными системами крови. К буферным системам крови относятся гемоглобиновая, карбонатная, фосфатная и белковая.
Буферные системы нейтрализуют значительную часть поступающих в кровь кислот и щелочей, тем самым препятствуя сдвигу активной реакции крови. В организме в процессе метаболизма в большей степени образуется кислых продуктов. Поэтому запасы щелочных веществ в крови во много раз превышают запасы кислых, Их рассматривают как щелочной резерв крови.
Состав крови
Кровь состоит из жидкой части плазмы и взвешенных в ней форменных элементов: эритроцитов, лейкоцитов и тромбоцитов. На долю форменных элементов приходится 40 – 45%, на долю плазмы – 55 – 60% от объема крови. Это соотношение получило название гематокритного соотношения
, или гематокритного числа. Часто под гематокритным числом понимают только объем крови, приходящийся на долю форменных элементов.
• Плазма крови.
• Эритроциты, или красные кровяные тельца. Содержат гемоглобин - дыхательный пигмент красного цвета.
• Лейкоциты, или белые кровяные тельца. Выполняют защитные функции.
• Тромбоциты, или кровяные пластинки. Необходимы для свертывания крови.
Если налить в пробирку немного крови, то через 10 или 15 минут она превратится в пастообразную однообразную массу - сгусток
. Затем сгусток сжимается и отделяется от желтоватой прозрачной жидкости - сыворотки крови
.
Сыворотка отличается от плазмы тем, что в ней отсутствует фибриноген
, белок плазмы, который в процессе коагуляции (свертывания) превращается в фибрин
, благодаря совместному действию протромбина
, вещества, вырабатываемого печенью, и тромбопластина
, находящегося в кровяных пластинках - тромбоцитах. Таким образом, сгусток
представляет собой сеть фибрина, улавливающую эритроциты и действующую как пробка, закупоривающая раны.
Плазма крови
- это раствор, состоящий из воды (90-92%) и сухой остаток (10 – 8%), состоящий из органических и неорганических веществ. В него входят форменные элементы - кровяные тельца и пластинки. Кроме того, в плазме содержится целый ряд растворенных веществ:
• Белки. Это альбумины, глобулины и фибриноген.
• Неорганические соли. Находятся растворенными в виде анионов (ионы хлора, бикарбонат, фосфат, сульфат) и катионов (натрий, калий, кальций и магний). Действуют как щелочной резерв, поддерживающий постоянство рН, и регулирует содержание воды.
• Транспортные вещества. Это вещества - производные от пищеварения (глюкоза, аминокислоты) или дыхания (азот, кислород), продукты обмена (двуокись углерода, мочевина, мочевая кислота) или же вещества, всасываемые кожей, слизистой оболочкой, легкими и т.д.
• В плазме постоянно присутствуют все витамины, микроэлементы, промежуточные продукты метаболизма (молочная и пировиноградная кислоты).
К органическим веществам плазмы крови
относятся белки, которые составляют 7 – 8%. Белки представлены альбуминами (4,5%), глобулинами (2 – 3,5%) и фибриногеном (0,2 – 0,4%).
Белки плазмы
крови выполняют разнообразные функции: 1) коллоидно-осмотический и водный гомеостаз; 2) обеспечение агрегатного состояния крови; 3) кислотно-основной гомеостаз; 4) иммунный гомеостаз; 5) транспортная функция; б) питательная функция; 7) участие в свертывании крови.
Альбумины
составляют около 60% всех белков плазмы. Благодаря относительно небольшой молекулярной массе (70000) и высокой концентрации альбумины создают 80% онкотического давления. Альбумины осуществляют питательную функцию, являются резервом аминокислот для синтеза белков. Их транспортная функция заключается в переносе холестерина, жирных кислот, билирубина, солей желчных кислот, солей тяжелых металлов, лекарственных препаратов (антибиотиков, сульфаниламидов). Альбумины синтезируются в печени.
Глобулины
подразделяются на несколько фракций: a -, b - и g -глобулины.
a -Глобулины включают гликопротеины, т.е. белки, простетической группой которых являются углеводы. Около 60% всей глюкозы плазмы циркулирует в составе гликопротеинов. Эта группа белков транспортирует гормоны, витамины, микроэлементы, липиды. К a -глобулинам относятся эритропоэтин, плазминоген, протромбин.
b -Глобулины участвуют в транспорте фосфолипидов, холестерина, стероидных гормонов, катионов металлов. К этой фракции относится белок трансферрин, обеспечивающий транспорт железа, а также многие факторы свертывания крови.
g -Глобулины включают в себя различные антитела или иммуноглобулины 5 классов: Jg A, Jg G, Jg М, Jg D и Jg Е, защищающие организм от вирусов и бактерий. К G -глобулинам относятся также a и b – агглютинины крови, определяющие ее групповую принадлежность.
Глобулины образуются в печени, костном мозге, селезенке, лимфатических узлах.
Фибриноген
– первый фактор свертывания крови. Под воздействием тромбина переходит в нерастворимую форму – фибрин, обеспечивая образование сгустка крови. Фибриноген образуется в печени.
Белки и липопротеиды способны связывать поступающие в кровь лекарственные вещества. В связанном состоянии лекарства неактивны и образуют как бы депо. При уменьшении концентрации лекарственного препарата в сыворотке он отщепляется от белков и становится активным. Это надо иметь в виду, когда на фоне введения одних лекарственных веществ назначаются другие фармакологические средства. Введенные новые лекарственные вещества могут вытеснить из связанного состояния с белками ранее принятые лекарства, что приведет к повышению концентрации их активной формы.
К органическим веществам плазмы крови относятся также небелковые азотсодержащие соединения
(аминокислоты, полипептиды, мочевина, мочевая кислота, креатинин, аммиак). Общее количество небелкового азота в плазме, так называемого остаточного азота
, составляет 11 – 15 ммоль/л (30 – 40 мг%). Содержание остаточного азота в крови резко возрастает при нарушении функции почек.
В плазме крови содержатся также безазотистые органические вещества
: глюкоза 4,4 – 6,6 ммоль/л (80 – 120 мг%), нейтральные жиры, липиды, ферменты, расщепляющие гликоген, жиры и белки, проферменты и ферменты, участвующие в процессах свертывания крови и фибринолиза. Неорганические вещества плазмы крови составляют 0,9 – 1%. К этим веществам относятся в основном катионы Nа+
, Са2+
, К+
, Mg2+
и анионы Сl-
, НРО4
2-
, НСО3
-
. Содержание катионов является более жесткой величиной, чем содержание анионов. Ионы обеспечивают нормальную функцию всех клеток организма, в том числе клеток возбудимых тканей, обусловливают осмотическое давление, регулируют рН.
Из плазмы крови образуются телесные жидкости
: жидкость стекловидного тела, жидкость передней камеры глаза, перилимфа, цереброспинальная жидкость, целомическая жидкость, тканевая жидкость, кровь, лимфа.
Форменные элементы крови
– | Форменные элементы крови человека в мазке. 1 – эритроцит, 2 – сегментоядерный нейтрофильный гранулоцит, 3 – палочкоядерный нейтрофильный гранулоцит, 4 – юный нейтрофильный гранулоцит, 5 – эозинофильный гранулоцит, 6 – базофильный гранулоцит, 7 – большой лимфоцит, 8 – средний лимфоцит, 9 – малый лимфоцит, 10 – моноцит, 11 – тромбоциты (кровяные пластинки). Электронная микрофотография гемолиза эритроцитов и образование их “теней” 1 – дискоцит, 2 – эхиноцит, 3 – “тени” (оболочки) эритроцитов. |
К форменным элементам крови относятся эритроциты, лейкоциты и тромбоциты.
Эритроциты выполняют в организме следующие функции
:
1) основной функцией является дыхательная – перенос кислорода от альвеол легких к тканям и углекислого газа от тканей к легким;
2) регуляция рН крови благодаря одной из мощнейших буферных систем крови – гемоглобиновой;
3) питательная – перенос на своей поверхности аминокислот от органов пищеварения к клеткам организма;
4) защитная – адсорбция на своей поверхности токсических веществ;
5) участие в процессе свертывания крови за счет содержания факторов свертывающей и противосвертывающей систем крови;
6) эритроциты являются носителями разнообразных ферментов (холинэстераза, угольная ангидраза, фосфатаза) и витаминов (В1
, В2
, В6
, аскорбиновая кислота);
7) эритроциты несут в себе групповые признаки крови.
Эритроциты составляют более 99% клеток крови. Они составляют 45% объема крови. Эритроциты - это красные кровяные тельца, имеющие форму двояковогнутых дисков диаметром от 6 до 9 мкм, а толщиной 1 мкм с увеличением к краям до 2,2 мкм. Эритроциты такой формы называются нормоцитами
. Особая форма эритроцитов приводит к увеличению диффузионной поверхности, что способствует лучшему выполнению основной функции эритроцитов – дыхательной. Специфическая форма обеспечивает также прохождение эритроцитов через узкие капилляры.
Кровь имеет красный цвет благодаря присутствующему в эритроцитах белку, который называется гемоглобин. Именно гемоглобин
связывает кислород и разносит его по всему организму, обеспечивая дыхательную функцию и поддержание рН крови. Гемоглобин - белок, образованный четырьмя цепями аминокислот. Каждая цепь присоединяется к молекулярной группе,группе гема
, которая имеет один атом железа, фиксирующий молекулу кислорода. При этом валентность железа, к которому присоединяется кислород, не изменяется, т.е. железо остается двухвалентным. Гемоглобин, присоединивший к себе кислород, превращается в ярко красное вещество оксигемоглобин
. Это соединение непрочное. В виде оксигемоглобина переносится большая часть кислорода. После высвобождения кислорода возникает более темное вещество, называемоедезоксигемоглобин
.
У мужчин в крови содержится в среднем 130 – 1б0 г/л гемоглобина, у женщин – 120 – 150 г/л. В клинических условиях принято вычислять степень насыщения эритроцитов гемоглобином. Это так называемый цветовой показатель
. В норме он равен 1. Такие эритроциты называются нормохромными
. При цветовом показателе более 1,1 эритроциты гиперхромные
, менее 0,85 –гипохромные
. Цветовой показатель важен для диагностики анемий различной этиологии.
Содержание эритроцитов в крови
обозначают их числом в одном кубическом миллиметре.
В норме в крови у мужчин содержится 4,0 – 5,0х10"/л, или 4 млн – 5 млн эритроцитов в 1 мкл, у женщин – 4,5х10"/л, или 4,5 млн в 1 мкл. Повышение количества эритроцитов в крови называется эритроцитозом
, уменьшение эритропенией
.
Образование эритроцитов
происходит в костном мозге путем эритропоэза
. Образование идет непрерывно, потому что каждую секунду макрофаги селезенки уничтожают около двух миллионов отживших эритроцитов, которые нужно заменить.
Кровь снабжается клетками в основном при помощи красного костного мозга (тельца миелоидного происхождения). Поэтому у детей практически весь костный мозг-красный, в то время как у взрослого человека его процент составляет только половину, и только в определенных костях производится кровь.
Когда лимфоциты переходят в лимфатические узлы, образуются лимфоциты В, участвующие в выработке антител, а когда переходят в тимус, образуются лимфоциты Т, вызывающие отторжения при пересадке органов.
Но каково происхождение крови? Несмотря на то что это еще довольно неясный вопрос, в настоящее время считается, что все клетки крови восходят к одной единственной изначальной клетке - материанской полипотентной клетке
, которая порождает различные типы клеток и может воспроизводить сама себя. От нее происходят унопотентные материнские клетки, вынужденные дифференцироваться на эритроциты, лейкоциты или кровяные пластинки.
Этот процесс происходит примерно на третьей неделе жизни человеческого зародыша. И только к четвертому месяцу начинают проявлять активность костный мозг и лимфатические органы.
Для образования эритроцитов требуются железо и ряд витаминов.
Железо
организм получает из гемоглобина разрушающихся эритроцитов и с пищей.
Для образования эритроцитов требуются витамин В12
(цианокобаламин) и фолиевая кислота
.
Для нормального эритропоэза необходимы микроэлементы - медь, никель, кобальт, селен.
Физиологическими регуляторами эритропоэза являются эритропоэтины
, образующиеся главным образом в почках, а также в печени, селезенке и в небольших количествах постоянно присутствующие в плазме крови здоровых людей. Эритропоэтины усиливают пролиферацию клеток-предшественников эритроидного ряда – КОЕ-Э (колониеобразующая единица эритроцитарная) и ускоряют синтез гемоглобина. Они стимулируют синтез информационной РНК, необходимой для образования энзимов, которые участвуют в формировании гема и глобина. Эритропоэтины увеличивают также кровоток в сосудах кроветворной ткани и увеличивают выход в кровь ретикулоцитов. Продукция эритропоэтинов стимулируется при гипоксии различного происхождения: пребывание человека в горах, кровопотеря, анемия, заболевания сердца и легких. Эритропоэз активируется мужскими половыми гормонами, что обусловливает большее содержание эритроцитов в крови у мужчин, чем у женщин. Стимуляторами эритропоэза являются соматотропный гормон, тироксин, катехоламины, интерлейкины. Торможение эритропоэза вызывают особые вещества – ингибиторы эритропоэза, образующиеся при увеличении массы циркулирующих эритроцитов, например у спустившихся с гор людей. Тормозят эритропоэз женские половые гормоны (эстрогены), кейлоны. Симпатическая нервная система активирует эритропоэз, парасимпатическая – тормозит. Нервные и эндокринные влияния на эритропоэз осуществляются, по-видимому, через эритропоэтины.
Об интенсивности эритропоэза судят по числу ретикулоцитов
–
предшественников эритроцитов. В норме их количество составляет 1 – 2%. Созревшие эритроциты циркулируют в крови в течение 100 – 120 дней.
Разрушение эритроцитов происходит в печени, селезенке, в костном мозге посредством клеток мононуклеарной фагоцитарной системы. Продукты распада эритроцитов также являются стимуляторами кроветворения.
Процесс разрушения оболочки эритроцитов
и выход гемоглобина в плазму крови называется гемолизом
. При этом плазма окрашивается в красный цвет и становится прозрачной – “лаковая кровь”. Различают несколько видов гемолиза.
Осмотический гемолиз
может возникнуть в гипотонической среде. Концентрация раствора NаСl, при которой начинается гемолиз, носит название осмотической резистентности эритроцитов, Для здоровых людей границы минимальной и максимальной стойкости эритроцитов находятся в пределах от 0,4 до 0,34%.
Химический гемолиз
может быть вызван хлороформом, эфиром, разрушающими белково-липидную оболочку эритроцитов.
Биологический гемолиз
встречается при действии ядов змей, насекомых, микроорганизмов, при переливании несовместимой крови под влиянием иммунных гемолизинов.
Температурный гемолиз
возникает при замораживании и размораживании крови в результате разрушения оболочки эритроцитов кристалликами льда.
Механический гемолиз
происходит при сильных механических воздействиях на кровь, например встряхивании ампулы с кровью.
Скорость оседания эритроцитов (СОЭ)
у здоровых мужчин составляет 2 – 10 мм в час, у женщин – 2 – 15 мм в час. СОЭ зависит от многих факторов: количества, объема, формы и величины заряда эритроцитов, их способности к агрегации, белкового состава плазмы. В большей степени СОЭ зависит от свойств плазмы, чем эритроцитов.
|
Лейкоциты
Лейкоциты
или белые кровяные шарики
обладают полной ядерной структурой. Их ядро может быть округлым, в виде почки или многодольчатым. Их размер - от 6 до 20 мкм. Количество лейкоцитов в периферической крови взрослого человека колеблется в пределах 4,0 – 9,0х10' /л, или 4000 – 9000 в 1 мкл. Увеличение количества лейкоцитов в крови называется лейкоцитозом., .уменьшение – лейкопенией. В клинике имеет значение не только общее количество лейкоцитов, но и процентное соотношение всех видов лейкоцитов, получившее название лейкоцитарной формулы, или лейкограммы.
.Каждую секунду погибает примерно 10 миллионов эритроцитов, каждый из которых совершил около 172 000 полных оборотов в системе кровообращения.
Врачи следят за количеством лейкоцитов, поскольку любое его изменение зачастую является признаком болезни или инфекции. Лейкоциты - это пехота, защищающая организм от инфекции. Эти клетки защищают организм путем фагоцитоза
(поедания) бактерий или же посредством иммунных процессов - выработки особых веществ, которые разрушают возбудителей инфекций. Лейкоциты действуют в основном вне кровеносной системы, но в участки инфекции они попадают именно с кровью.
Осуществление защитной функции различными видами лейкоцитов происходит по-разному.
Нейтрофилы
являются самой многочисленной группой. Основная их функция – фагоцитоз бактерий и продуктов распада тканей с последующим перевариванием их при помощи лизосомных ферментов (протеазы, пептидазы, оксидазы, дезоксирибонуклеазы). Нейтрофилы первыми приходят в очаг повреждения. Так как они являются сравнительно небольшими клетками, то их называют микрофагами
. Нейтрофилы оказывают цитотоксическое действие, а также продуцируют интерферон, обладающий противовирусным действием. Активированные нейтрофилы выделяют арахидоновую кислоту, которая является предшественником лейкотриенов, тромбоксанов и простагландинов. Эти вещества играют важную роль в регуляции просвета и проницаемости кровеносных сосудов и в запуске таких процессов, как воспаление, боль и свертывание крови.
По нейтрофилам можно определить пол человека, так как у женского генотипа имеются круглые выросты – “барабанные палочки”.
Эозинофилы
также обладают способностью к фагоцитозу, но это не имеет серьезного значения из-за их небольшого количества в крови. Основной функцией эозинофилов является обезвреживание и разрушение токсинов белкового происхождения, чужеродных белков, а также комплекса антиген-антитело. Эозинофилы продуцируют фермент гистаминазу, который разрушает гистамин, освобождающийся из поврежденных базофилов и тучных клеток при различных аллергических состояниях, глистных инвазиях, аутоиммунных заболеваниях. Эозинофилы осуществляют противоглистный иммунитет, оказывая на личинку цитотоксическое действие. Поэтому при этих заболеваниях увеличивается количество эозинофилов в крови (эозинофилия). Эозинофилы продуцируют плазминоген, который является предшественником плазмина – главного фактора фибринолитической системы крови. Содержание эозинофилов в периферической крови подвержено суточным колебаниям, что связано с уровнем глюкокортикоидов. В конце второй половины дня и рано утром их на 20~ меньше среднесуточного уровня, а в полночь – на 30% больше.
Базофилы
продуцируют и содержат биологически активные вещества (гепарин, гистамин и др.), чем и обусловлена их функция в организме. Гепарин препятствует свертыванию крови в очаге воспаления. Гистамин расширяет капилляры, что способствует рассасыванию и заживлению. В базофилах содержатся также гиалуроновая кислота, влияющая на проницаемость сосудистой стенки; фактор активации тромбоцитов (ФАТ); тромбоксаны, способствующие агрегации тромбоцитов; лейкотриены и простагландины. При аллергических реакциях (крапивница, бронхиальная астма, лекарственная болезнь) под влиянием комплекса антиген-антитело происходит дегрануляция базофилов и выход в кровь биологически активных веществ, в том числе гистамина, что определяет клиническую картину заболеваний.
Моноциты
обладают выраженной фагоцитарной функцией. Это самые крупные клетки периферической крови и их называют макрофагами
. Моноциты находятся в крови 2-3 дня, затем они выходят в окружающие ткани, где, достигнув зрелости, превращаются в тканевые макрофаги (гистиоциты). Моноциты способны фагоцитировать микробы в кислой среде, когда нейтрофилы не активны. Фагоцитируя микробы, погибшие лейкоциты, поврежденные клетки тканей, моноциты очищают место воспаления и подготавливают его для регенерации. Моноциты синтезируют отдельные компоненты системы комплемента. Активированные моноциты и тканевые макрофаги продуцируют цитотоксины, интерлейкин (ИЛ-1), фактор некроза опухолей (ФНО), интерферон, тем самым осуществляя противоопухолевый, противовирусный, противомикробный и противопаразитарный иммунитет; участвуют в регуляции гемопоэза. Макрофаги принимают участие в формировании специфического иммунного ответа организма. Они распознают антиген и переводят его в так называемую иммуногенную форму (презентация антигена). Моноциты продуцируют как факторы, усиливающие свертывание крови (тромбоксаны, тромбопластины), так и факторы, стимулирующие фибринолиз (активаторы плазминогена).
Лимфоциты
являются центральным звеном иммунной системы организма. Они осуществляют формирование специфического иммунитета, синтез защитных антител, лизис чужеродных клеток, реакцию отторжения трансплантата, обеспечивают иммунную память. Лимфоциты образуются в костном мозге, а дифференцировку проходят в тканях. Лимфоциты, созревание которых происходит в вилочковой железе, называются Т-лимфоцитами
(тимусзависимые). Различают несколько форм Т-лимфоцитов. Т–киллеры (убийцы) осуществляют реакции клеточного иммунитета, лизируя чужеродные клетки, возбудителей инфекционных заболеваний, опухолевые клетки, клетки-мутанты. Т-хелперы (помощники), взаимодействуя с В-лимфоцитами, превращают их в плазматические клетки, т.е. помогают течению гуморального иммунитета. Т-супрессоры (угнетатели) блокируют чрезмерные реакции В-лимфоцитов. Имеются также Т-хелперы и Т-супрессоры, регулирующие клеточный иммунитет. Т-клетки памяти хранят информацию о ранее действующих антигенах.
В-лимфоциты
(бурсозависимые) проходят дифференцировку у человека в лимфоидной ткани кишечника, небных и глоточных миндалин. В-лимфоциты осуществляют реакции гуморального иммунитета. Большинство В-лимфоцитов являются антителопродуцентами. В-лимфоциты в ответ на действие антигенов в результате сложных взаимодействий с Т-лимфоцитами и моноцитами превращаются в плазматические клетки. Плазматические клетки вырабатывают антитела, которые распознают и специфически связывают соответствующие антигены. Различают 5 основных классов антител, или иммуноглобулинов: JgA, Jg G, Jg М, JgD, JgЕ. Среди В-лимфоцитов также выделяют клетки-киллеры, хелперы, супрессоры и клетки иммунологической памяти.
О-лимфоциты
(нулевые) не проходят дифференцировку и являются как бы резервом Т- и В-лимфоцитов.
Лейкоциты образуются в разных органах тела
: в костном мозге, селезенке, тимусе, подмышечных лимфатических узлах, миндалинах и пластинках Пэйе, в слизистой оболочке желудка.
Процесс образования лейкоцитов, известный как лейкопоэз
, может быть различным. С одной стороны, происходит процесс, порождающий гранулоциты: унопотентная материнская клетка претерпевает первое преобразование и превращается в миелобласт, с почти круглым ядром, а затем делится на миелоциты, с собственными признаками, которые приведут соответственно к образованию базофилов, нейтрофилов и эозинофилов.
Моноциты всегда сохраняют признаки первичной клетки, поэтому они могут образовываться как при последовательных преобразованиях унопотентной материнской клетки, так и непосредственно из полипотентной материнской клетки.
Лейкоциты делятся на две большие группы: гранулоциты и агранулоциты в зависимости от того, наблюдается или нет зернистость в их цитоплазме.
У первых имеется ядро различных форм, они осуществляют фагоцитоз. Самые многочисленные и активные - это нейтрофилы (70% от общего числа); кроме них имеются базофилы (1%) и эозинофилы (4%).
Незернистые лейкоциты - это моноциты, большего размера и с большой фагоцитарной активностью, и лимфоциты, подразделяющиеся на малые (90%) и большие (остальные 10%).
Тромбоциты , или кровяные пластинки – плоские клетки неправильной округлой формы диаметром 2 – 5 мкм. Тромбоциты человека не имеют ядер - это фрагменты клеток, которые меньше половины эритроцита. Количество тромбоцитов в крови человека составляет 180 – 320х10'/л, или 180 000 – 320 000 в 1 мкл. Имеют место суточные колебания: днем тромбоцитов больше, чем ночью. Увеличение содержания тромбоцитов в периферической крови называется тромбоцитозом, уменьшение – тромбоцитопенией.
Тромбоциты, прилипшие к стенке аорты в зоне повреждения эндотелиального слоя. |
Главной функцией тромбоцитов является участие в гемостазе. Тромбоциты помогают "ремонтировать" кровеносные сосуды, прикрепляясь к поврежденным стенкам, а также участвуют в свертывании крови, которое предотвращает кровотечение и выход крови из кровеносного сосуда.
Способность тромбоцитов прилипать к чужеродной поверхности (адгезия), а также склеиваться между собой (агрегация) происходит под влиянием разнообразных причин. Тромбоциты продуцируют и выделяют ряд биологически активных веществ: серотонин (вещество, вызывающее сужение кровеносных сосудов уменьшение кровотока), адреналин, норадреналин, а также вещества, получившие название пластинчатых факторов свертывания крови. Так у тромбоцитов есть различные белки, способствующие коагуляции крови. Когда лопается кровеносный сосуд, тромбоциты прикрепляются к стенкам сосуда и частично закрывают брешь, выделяя так называемый тромбоцитарный фактор III
, который начинает процесс свертывания крови путем превращения фибриногена в фибрин. Тромбоциты способны выделять из клеточных мембран арахидоновую кислоту и превращать ее в тромбоксаны, которые, в свою очередь, повышают агрегационную активность тромбоцитов. Эти реакции происходят под действием фермента циклооксигеназы.
Тромбоциты способны к передвижению за счет образования псевдоподий и фагоцитозу инородных тел, вирусов, иммунных комплексов, тем самым, выполняя защитную функцию. Тромбоциты содержат большое количество серотонина и гистамина, которые влияют на величину просвета и проницаемость капилляров, определяя тем самым состояние гистогематических барьеров.
Тромбоциты образуются в красном костном мозге из гигантских клеток мегакариоцитов. Унопотентная клетка претерпевает неполное деление, потому что ядро делится, а цитоплазма нет. В результате образуется мегакариобласт, от цитоплазмы которого в конце отделяются пластинки.
Продукция тромбоцитов регулируется тромбоцитопоэтинами. Тромбоцитопоэтины
образуются в костном мозге, селезенке, печени. Различают тромбоцитопоэтины кратковременного и длительного действия. Первые усиливают отщепление тромбоцитов от мегакариоцитов и ускоряют их поступление в кровь. Вторые способствуют дифференцировке и созреванию мегакариоцитов.
Продолжительность жизни тромбоцитов составляет от 5 до 11 дней. Разрушаются кровяные пластинки в клетках системы макрофагов.
Активность тромбоцитопоэтинов регулируется интерлейкинами (ИЛ-6 и ИЛ-11). Количество тромбоцитопоэтинов повышается при воспалении, необратимой агрегации тромбоцитов.
Гемостаз
Под сосудисто-тромбоцитарным (первичным) гемостазом (Primary (temporary) hemostasis) понимают прекращение или уменьшение кровопотери за счет сокращения (спазма) травмированного сосуда и образования тромбоцитного агрегата ("тромбоцитной пробки", "первичной гемостатической пробки" ) в зоне повреждения сосуда (см. Гемостаз: общая схема ). Данные реакции в совокупности обеспечивают полную остановку кровотечения из капилляров и венул , но кровопотеря из вен , артериол и артерий прекращается лишь частично. Это обусловлено тем, что кровь в них движется под относительно высоким давлением, и поэтому рыхлая структура тромбоцитного агрегата не образует непроницаемую преграду для истечения крови (она проницаема тем более, чем выше давление в сосуде). Первичный гемостаз называют иногда также временным, имея в виду, что реакции, охватываемые этим термином, могут обеспечить остановку кровотечения, но не всегда и не полностью. Кроме того, цепь гемостатических реакций не заканчивается образованием "тромбоцитной пробки". То есть, первичный гемостаз является лишь первым этапом в остановке кровотечения. Этот процесс начинается в первые секунды после повреждения и играет ведущую роль в остановке кровотечения из капилляров, мелких артериол и венул.
Три важнейших этапа сосудисто-тромбоцитарного гемостаза:
- активация и дегрануляция тромбоцитов.
- агрегация тромбоцитов.
Нарушения на любом из этих этапов могут привести к кровоточивости.
Кроветворение (гемопоэз):
Клетки крови играют ключевую роль в доставке кислорода к тканям, защитных реакциях организма и гемостазе. Эритроциты живут в среднем 120 сут, тромбоциты - 7-10 сут, а гранулоциты - всего 6-8 ч. Дольше всех (иногда - годами) могут жить лимфоциты, однако лимфопоэз неэффективен - лишь около 5% клеток в процессе созревания проходят отбор в костном мозге и тимусе и попадают в кровь.
Ежедневно в организме взрослого человека весом 70 кг погибают более 0,5 триллиона дифференцированных клеток, включая 200 млрд эритроцитов и 70 млрд нейтрофилов .
В норме скорость образования клеток крови равна скорости разрушения, но в ответ на увеличение потребности один или несколько клеточных ростков гиперплазируются .
Таким образом, поддержание постоянства состава крови требует непрерывного образования новых клеток. Этот процесс называется кроветворением. Он обеспечивается стволовыми кроветворными клетками - небольшой (0,01%) фракцией костномозговых клеток, из которых возникают все клетки крови.
Гематопоэз это процес генерации зрелых клеток крови , которых за день организм человека производит не много не мало 400 миллиардов. Гематопоэтические клетки происходят от очень небольшого числа тотипотентных стволовых клеток , которые дифференцируются, давая все линии клеток крови. Тотипотентные стволовые клетки наименее специализированы. Более специализированы плюрипотентные стволовые клетки. Они способны дифференцироваться, давая только определенные линии клеток. Различают две популяции плюрипотентных клеток - лимфоидные и миелоидные.
Лимфоидные плюрипотентные клетки дают при дифференцировке В- и Т-лимфоциты.
Миелоидные -дают множество клеток, включая эритроциты, нейтрофилы, моноциты, переходящие в макрофаги, дендритные клетки (dendritic cells, не путать с дендритами нервной системы, dendrites), которые, как теперь выясняется, играют очень важную роль в иммунном ответе, и являются антиген представляющими клетками , эозинофилы, базофилы и мегакариоциты, дающие в свою очередь тромбоциты (Platelets). Эти клетки являются зрелыми. Они уже неспособны к пролиферации. Между плюрипотентными и зрелыми клетками находятся еще более, чем плюрипотентные клетки, специализированные прогениторные клетки (progenitor cells). Однако они также способны к значительной пролиферации.
Лимфоидная линия (lineage) включает в себя В- и Т-клеточные линии. Миелоидная линия включает эритроидную, гранулоцитную (дающую нейтрофилы, предназначенные для борьбы с инфекцией), макрофаговую ( дающую макрофаги), дендритную и мегакариотическую линии. Первичным местом гематопоэза является красный костный мозг .
При угнетении кроветворения симптоматика появляется по мере убыли нормальных клеток. Так как первыми исчезают гранулоциты, вначале снижается устойчивость к инфекциям; позднее присоединяется тромбоцитопеническая кровоточивость . Бледность , слабость и одышка при нагрузке (результат убыли эритроцитов ) появляются в последнюю очередь.
Литература
1. Батуев А.С. и др. Биология. Человек: Словарь-справочник. - М.: Дрофа, 2000. - 160 с.
2. Захаров В.Б. Анатомия и физиология человека. - М.: Просвещение, 2000. - 288 с.
3. Лемеза Н.А., Камлюк Л.В., Лисов Н.Д. Биология в экзаменационных вопросах и ответах. - М.: Рольф, 1998. - С.452-456.
4. Леонтьева М.Н., Маринова К.В. Анатомия и физиология детского организма. - М.: Просвещение, 1986. - С. 124-126.
5. Сапин М.Р. Анатомия и физиология человека. - М.: Просвещение, 2000. - 256 с.
6. Татаринов В.Г. Анатомия и физиология. - М.: Медицина, 1969. - С.228-235.
МОСКОВСКАЯ ГОСУДАРСТВЕННАЯ АКАДЕМИЯ
ВЕТЕРИНАРНОЙ МЕДИЦЫНЫ И БИОТЕХНОЛОГИИ
ИМЕНИ К.С. СКРЯБИНА
РЕФЕРАТ
по физиологии
На тему:
«Физиология системы крови»
Выполняла
студентка 3го курса
ВБФ 1 группа
Литовченко Анастасия
2009