Похожие рефераты | Скачать .docx |
Курсовая работа: ГРЭС-2200МВт
1. Выбор генераторов
Исходя из установленной мощности ГРЭС-2200МВт принимаем установку генераторного типа ТГВ-500–2У3; ТГВ-200–2У3. Данные генераторов записываем в таблицу 1.1.
Таблица 1.1.
Тип генератора | Частота вращения об/мин | Номинальные значения | Xd`` | Цена, тыс. руб. | |||
Sном МВ·А | Pном МВт | Uном кВ | cosφ | ||||
ТГВ-500–2У3 | 3000 | 588 | 500 | 20 | 0.85 | 0.243 | 1280 |
ТГВ-200–2У3 | 3000 | 235,3 | 200 | 15,75 | 0,85 | 0,190 | 593,4 |
2. Выбор двух вариантов схем на проектируемой электростанции
В первом варианте рисунок 2.1 к шинам высокого напряжения 500кВ присоединено четыре генератора ТГВ-500–2У3 через блоки. К шинам среднего напряжения 110кВ присоединен через блок генератор ТГВ-200–2У3. Во втором варианте рисунок 2.2 к шинам высокого напряжения 500кВ присоединено 3 генератора ТГВ-500–2У3 через блоки. К шинам среднего напряжения 110кВ присоединены через блоки генератор ТГВ-500–2У3 и генераторТГВ-200–2У3.
3. Выбор трансформаторов на проектируемой электростанции
1. При выборе блочных трансформаторов для генератора ТГВ-200–2Д надо учесть, что вся мощность генератора должна быть передана в сеть высокого напряжения, гдеSном, Рном.г, cosφ – соответственно активная, полная мощность и коэффициент мощности генератора (см. Таблица 1.1.).
Sном.г=235.3=100% Sс.н ==16.73 МВ·А; [3.с. 8. (1.1)]
Определяем номинальную мощность трансформатора, МВ·А;
Sном.тSном.г–Sс.н = 235.3. – 16.73 = 218.57 МВ·А;
2. Выбираем трансформатор для генератора ТВМ-300-У3.
Sном.г = 353 = 100% Sс.н= = 25.13 МВ·А;
Определяем номинальную мощность трансформатора, МВ·А;
Sном.тSном.г–Sс.н = 353 – 25.13 = 327.87 МВ·А;
3. Выбираем трансформатор для генератора ТВФ-120–2У3.
Sном.г = 125 = 100% Sс.н = = 8.9 МВ·А;
Определяем номинальную Sном.тSном.г – Sс.н = 125 – 8.9 = 133.9 МВ·А;
мощность трансформатора, МВ·А;
По справочной литературе выбираем трансформаторы, и все данные вносим в таблицу 3.1.
Таблица 3.1.
№ | Тип | Мощность МВ·А | Напряжение | Потери кВт | Напряжение к.з. Uк, % | ||
ВН | НН | Pхх | Pкз | ||||
1 | ТДЦ-250000/220 | 250 | 242 | 13.8; | 130 | 660 | 11 |
2 | ТДЦ-250000/110 | 250 | 121 | 13.8; | 170 | 550 | 10.5 |
3 | ТДЦ-400000/220 | 400 | 242 | 15.75; | 280 | 870 | 11 |
4 | ТДЦ-200000/110 | 200 | 121 | 10.5; | 170 | 550 | 10.5 |
Согласно задания, связь с системой осуществляется на высшем напряжении, а автотрансформаторы должны обеспечить питание потребителей среднего напряжения, а также выдачу избыточной мощности в распределительные устройства в режимах нагрузки на среднем напряжении. При аварийном отключении одного из автотрансформаторов связи, другой может быть перегружен на 40 процентов.
Расчетный переток мощности через автотрансформатор связи определяют по формуле
Sрасч =; [3.с. 13. (1.4)]
Выбираем автотрансформаторы связи на ГРЭС, структурные схемы вариантов Iи IIпоказаны на рисунке 2.1. и 2.2. на станции установлен генератор по 100 МВт, cosφ =0.8, нагрузка на среднем напряжении 110кВ Pmax = 150 MBт; Pmin = 120 MBт; cosφ = 0.93. Вся остальная мощность выдается в сеть 220 кВ.
Подсчитываем реактивные составляющие мощностей.
Qc.max = Pc.max · tgφ = 150 · 0.394 = 59.1 МВар;
Qc.min = Pc.min · tgφ = 120 · 0.394 = 47.28 МВар;
Qном.г = Pном.г · tgφ = 100 · 0.75 = 75 МВар;
Расход на собственные нужды
Pс.н.max = = 8 МВт;
Qс.н.max =Pс.н.max · tgφ = 8 · 0.75 = 6 МВар;
Определяем расчетный переток мощности через автотрансформатор связи.
I вариант (рис. 2.1.)
Sрасч 1 = = 58.83 МВ·А;
Sрасч 2 = = 35.44 МВ·А;
Рассчитываем нагрузку при отключении одного из блоков, присоединенных к шинам 110кВ.
Sав. = = 161.22 МВ·А;
Выбираем номинальную мощность автотрансформатора по формуле.
Sном.АТ МВ·А; Sном.АТ = 115.15 МВ·А
Подсчитываем реактивные составляющие мощностей для II варианта.
Qном.г = Pном.г · tgφ = 200 · 0.62 = 124 МВар;
Определяем расчетный переток мощности через автотрансформатор связи.
II вариант (рис. 2.2.)
Sрасч 1 = = 35.12 МВ·А;
Sрасч 2 = = 100.92 МВ·А;
Рассчитываем нагрузку при отключении одного из блоков, присоединенных к шинам 110кВ.
Sав. = = 161.22 МВ·А;
Выбираем номинальную мощность автотрансформатора по формуле.
Sном.АТ = 115.15 МВ·А
В первом и втором случае выбираем два автотрансформатора по 125МВ·А –
2 125000/220/110. По справочной литературе выбираем автотрансформаторы, и все данные вносим в (Таблицу 3.2).
Таблица 3.2
Тип | Мощность МВ·А |
Напряжение кВ | Потери кВт | Напряжение к.з. Uк.% | |||||
ВН | СН | НН | Pх | Pк | Uк. в-с | Uк. в-н | Uк. с-н | ||
АТДЦТН- 125000/220/110 |
125 | 230 | 121 | 6.3; |
65 | 315 | 11 | 45 | 28 |
4. Технико-экономическое сравнение вариантов схем проектируемой станции
Экономическая целесообразность схемы определяется минимальными приведенными затратами:
З = pн ·К + И
где pн – нормативный коэффициент экономической эффективности, равный 0.12;
К – капиталовложения на сооружения электроустановки, тыс. р; И – годовые эксплутационные издержки, тыс. р.год.
Вторая составляющая расчетных затрат – годовые и эксплутационные издержки – определяется по формуле: И = [4.§ 5.1.7.с. 327 (5.11)] где pa, po – отчисления на амортизацию и обслуживание, %; β – стоимость 1 кВт · ч.
Произведем технико-экономическое сравнение структурных схем ГРЭС, приведенных на рисунке 2.1 и 2.2.
На ГРЭС установлены (рис. 2.1) 6 генераторов 5ТГВ-200–2Д; 1ТВФ-120–2У3; на (рис. 2.2) 3ТВМ-300-У3; 1ТГВ-200–2Д; в блоке с трансформаторами
ТДЦ-250000/220 (Pхх = 130 кВт. Pкз = 660 кВт.) ТДЦ-250000/110 (Pхх = 170 кВт. Pкз = 550 кВт.) ТДЦ-400000/220 (Pхх = 280кВт. Pкз = 870 кВт.) ТДЦ-200000/110 (Pхх = 170 кВт. Pкз = 550 кВт.) Тмах = 8234 ч.
Вся остальная мощность выдается в систему по линиям 220кВ. Связь между РУ осуществляется с помощью автотрансформаторов: I вариант (рис. 2.1)
АТДЦТН-125000/220/110 (Pх =65 кВт. Pк = 315кВт.). II вариант (рис 2.2) АТДЦТН-125000/220/110 (Pх =65 кВт. Pк = 315кВт.). Составляем таблицу подсчета капитальных затрат, учитывая основное оборудование.
Таблица 4.1.
Оборудование | стоимость единицы, тыс. руб. | варианты | |||
I вариант (рис. 2.1) | II вариант (рис. 2.2) | ||||
Колич. един. шт. | Общая стоимость тыс. руб. | Колич. един. шт. |
Общая стоимость тыс. руб | ||
Генератор ТГВ-200–2Д | 593.4 | 5 | 2967 | 1 | 593.4 |
Генератор ТВФ-120–2У3 | 350 | 1 | 350 | – | – |
Генератор ТВМ-300-У3 | 900 | – | – | 3 | 2700 |
Блочный трансформатор ТДЦ-250000/220 | 316 | 5 | 1580 | – | |
Блочный трансформатор ТДЦ-250000/110 | 257 | – | – | 1 | 257 |
Блочный трансформатор ТДЦ-400000/220 | 420 | – | – | 3 | 1260 |
Блочный трансформатор ТДЦ-200000/110 | 290 | 1 | 290 | – | – |
Автотрансформатор АТДЦТН- 125000/220/110 |
270 | 2 | 540 | 2 | 540 |
Ячейки ОРУ-110кВ | 30 | 2 | 60 | 2 | 60 |
Ячейки ОРУ-220кВ | 76 | 6 | 456 | 4 | 304 |
ИТОГО | 6243 | 5714,4 | |||
ИТОГО с учетом удорожания | К 266243 | К 265714,4 |
Для определения времени максимальных потерь используем годовой график. (Рис. 4.1.)
Рис. 4.1.
Определяем продолжительность каждой ступени.
Т1 = 365·3 = 1095 ч. Т2 = 365·10 = 3650 ч. Т3 = 365·5 = 1825 ч. Т4 = 365·1 = 365 ч.
Т5 = 365·5 = 1825 ч.
Определяем мощность каждой ступени при Pмах = 150 МВт.
P = ; P1 = =150 МВт; P2 = =144 МВт;
P3 = =138 МВт; P4 = =136.5 МВт; P5 = =133.5 МВт.
Определяем продолжительность использования максимальной нагрузки.
Тмах = = = 8234 ч.
Находим время максимальных потерь по графику [4.с. 328. (рис. 5.5)].
при cosφ = 0.93; τв = τс =τн = 8000 ч.
Определяем потери в блочных трансформаторах для первого варианта.
; [4.с. 328 (5.13)] = 5.07·106 кВт·ч.
= 3.35·106 кВт·ч.
Так как трансформаторов несколько необходимо найти общие потери.
; = 5 · 5.07 = 25.35·106 ;= (25.35+ 3.35)· 106 = 28.7 · 106 кВт·ч.
Определяем потери в автотрансформаторе.
; [4.с. 328. (рис. 5.14)].
= 4.56·106 кВт·ч.
Так как автотрансформатора два, тогда =2 ·=2 ·4.56·106 = 9.12·106 кВт·ч.
Определяем суммарные годовые потери.
= (9.12+28.7)·106 = 37.82·106 кВт·ч.
Определяем годовые эксплутационные издержки Pа = 6.4%; Pо = 2%;
β = 65 коп/кВт·ч.
И1 = ·26·6243+68 (37.82·106 )·10-5 = 39352.4 тыс. руб.
Определяем приведенные затраты.
З1 = 0.12 · 26 · 6243+39352.4 = 58830.56 тыс. руб.
Определяем потери в блочных трансформаторах для второго варианта.
= 4.68·106 кВт·ч.
= 6.94·106
Так как трансформаторов несколько необходимо найти общие потери.
; = 3 · 6.94 = 20.82·106 ;= (20.82+ 4.68)· 106 = 25.5 · 106 кВт·ч.
Определяем потери в автотрансформаторе.
= 4.56·106 кВт·ч.
Так как автотрансформатора два, тогда =2 ·=2 · 4.56·106 = 9.12·106 кВт·ч.
Определяем суммарные годовые потери.
= (9.12+25.5)·106 = 34.62 кВт·ч.
Определяем годовые эксплутационные издержки Pа = 6.4%; Pо = 2%;
β = 65 коп/кВт·ч.
И2 = ·26·5714.4+68 (34.62·106 )·10-5 = 36021.84 тыс. руб.
Определяем приведенные затраты.
З2 = 0.12 · 26 · 5714.4+36021.84 = 53850.74 тыс. руб.
ЗI > ЗII;
Вариант IIРис. 2.2. экономичнее первого на значит, выбираем IIвариант.
5. Расчёт токов короткого замыкания
Выполняем расчет токов к.з. для выбора электрических аппаратов и токоведущих частей, и проверке их на термическую и динамическую стойкость.
1. Составляем расчетную схему.
Рис. 5.1.
Параметры отдельных элементов:
Система: Sс1 = 2280 МВ·А; Хс* = 0.02; L1–4 – 270 км;
Генераторы: G1 = G2 = G3 – ТВМ-300-У3 Sном = 353 МВ·А;
Х˝d = 0.203; G4 – ТГВ-200–2Д; Sном = 235.3 МВ·А; Х˝d = 0.185;
Трансформаторы: Т1 = Т2 = Т3 –ТДЦ-400000/220; Sном = 400МВ·А;
Uк% = 11; Т4 – ТДЦ-250000/110; Sном = 250 МВ·А; Uк% = 10,5;
Автотрансформаторы: АТ1 = АТ2 – АТДЦТН – 125000/220/110;
Sном = 125 МВ·А; Uк.в-с% = 11; Uк.в-н% = 45; Uк.с-н% = 28;
Расчёт ведём в относительных единицах. Для дальнейших расчётов принимаем Sб = 1000 МВ·А. Знак (*) опускаем для упрощения записи.
Сопротивление генераторов вычисляем по формуле:
; [4. с. 104 (Т.3.4.)]
Сопротивление трансформаторов вычисляем по формуле:
; [4. с. 104 (Т.3.4.)]
; ;
Так как сопротивление автотрансформаторов Х12, Х14, примерно равны нулю, то можно их не учитывать.
[4. с. 100 (Т.3.3.)]
Определяем сопротивление каждой обмотки:
;
Определяем сопротивление линии по формуле;
; [4. с. 104 (Т.3.4.)]
;
Определяем сопротивление энергосистемы по формуле:
; [4. с. 104 (Т.3.4.)]
;
Сводим данные и дальнейшие расчёты в таблицу 5.1.
Проводим расчёт токов короткого замыкания для точки К2 используя рис. 5.5. и рис. 5.6.
Дальнейший расчёт ведём в таблице 5.1.
Таблица 5.1.
Точки короткого замыкания | К 1 | К 2 | |||
Источники | С | G1, G2, G3 | G4 | С, G1, G2, G3 | G4 |
Базовая мощность S б МВ∙А | 1000 | ||||
Среднее напряжение U ср, кВ | 230 | 230 | 230 | 115 | 115 |
Ном. Мощность источников S ном, МВ∙А | 2280 | 353+353+ +353=1059 |
235,3 | 2280+1059= =3339 |
235,3 |
Хрез | 0.518 | 0.282 | 1.764 | 0.742 | 1.204 |
кА | |||||
Е | 1 | 1,13 | 1,13 | 1,13 | 1,13 |
кА | |||||
кА | |||||
In.o / ном | 4.82/5.7=0.84 | 10.1/2.7=3.74 | 1.6/0.59=2.71 | 7.6/16.7=0.45 | 4.65/1.2=3.8 |
с | 0.01+0.08=0.09 | 0.01+0.08=0,09 | 0.01+0.08=0.09 | 0.01+0.08=0,09 | 0.01+0.08=0.09 |
1 | 0.95 | 0.75 | 1 | 0.65 | |
Ку | 1.717 | 1.975 | 1.985 | 1.975 | 1.985 |
Та | 0.03 | 0.392 | 0.546 | 0.392 | 0.546 |
кА | 1.4∙4.82∙1,717= =11.58 |
1.4∙10.1∙1.975= =27.92 |
1.4∙1.6∙1.985= =4.45 |
1.4∙7.6∙1.975= =21.01 |
1.4∙4.65∙1.985= =12.92 |
0.049 | 0.8 | 0.85 | 0.79 | 0.85 | |
кА | 1.4∙4.82∙0.049= =0.33 |
1,4∙10.1∙0.8= =11.31 |
1.4∙1.6∙0.85= =1.9 |
1,4∙7.6∙0.79= =8.4 |
1.4∙4.65∙0.85==5.53 |
кА | 1∙4.82=4.82 | 0.95∙10.1=9.59 | 0.75∙1.6=1.2 | 1∙7.6=7.6 | 0,65∙4.65=2.6 |
Составляем сводную таблицу результатов из таблицы 5.1. в таблицу 5.2. и определяем суммарные токи короткого замыкания;
Таблица 5.2.
Точка КЗ |
Uср; кВ | Источники | In.o; кА | Iу; кА | In.τ; кА | Iаτ; кА |
К1 | 230 | С G1, G2, G3 G4 |
4.82 10.1 1.6 |
11.58 27.92 4.45 |
4.82 9.59 1.2 |
0.33 11.31 1.9 |
Суммарные токи | 16.52 | 43.95 | 15.61 | 13.54 | ||
К2 | 115 | С, G1, G2, G3 G4 |
7.6 4.65 |
21.01 12.92 |
7.6 2.6 |
8.4 5.53 |
Суммарные токи | 12.25 | 33.93 | 10.2 | 13.93 |
6. Выбор электрических аппаратов и токоведущих частей для цепи 220 кВ
Выбор выключателей и разъединителей:
Определяем расчётные токи продолжительного режима в цепи блока генератора – трансформатора определяется по наибольшей электрической мощности ТВМ-300-У3
(Sном = 353 МВ·А);
;[8. с. 223. (4–3)]
А;
Расчётные токи короткого замыкания принимаем по таблице 5.2., с учётом того, что все цепи проверяются по суммарному току короткого замыкания. Термическая стойкость определяется по формуле кА2 ∙с; [8. с. 225. (4–8)]
Выбираем выключатель серии ВМТ – 220Б – 20/1000 и разъединитель серии РДЗ – 220/1000.
Дальнейший расчёт проводим в таблице 6.1.
Таблица 6.1.
Расчётные данные |
Каталожные данные | |
Выключатель ВМТ – 220Б – 20/1000 |
Разъединитель РДЗ – 220/1000 |
|
Uуст = 220 кВ | Uном = 220 кВ | Uном = 220 кВ |
Iмах = 887А | Iном = 1000 А | Iном = 1000 А |
In.τ = 15.61 кА | Iоткл = 20 кА | ∙∙∙ |
iу = 43.95 кА | Iдин = 52 кА | Iдин = 100 кА |
Iа.τ = 13.54 кА | ∙∙∙ | |
Вк = 141 кА2 ∙с |
Выбор шин:
Выбираем сборные шины 220 кВ и токоведущие части по наибольшей электрической мощности ТВМ-300-У3; А.
Принимаем провод серии АС 500/27; д = 500мм2 ; Iдоп = 960 А. Фазы расположены горизонтально с расстоянием между фазами 500 см.
Токоведущие части выполняются гибким проводниками, сечение выбираем по экономической плотности тока jэ=1 [А/мм2 ].
qэ = мм2 ; Принимаем 2×АС 500/27; d = 29.4мм2 ;
Iдоп = 2∙960 = 1920 А; Iмах = 887 А < Iдоп = 1920 А;
Выбор изоляторов:
На стороне 220 кВ согласно ПУЭ [5.с. 45 (Т.2–4)] принимаем к установке подвесные изоляторы типа ПС12 – А по 12 изоляторов в гирлянде.
Выбор трансформаторов тока и напряжения:
Сборные шины 220 кВ выполняются гибкими проводами, поэтому трансформаторы тока и напряжения устанавливаются открыто. Предварительно принимаем к установке трансформаторы тока типа ТФЗМ – 220 – У1. Составляем таблицу вторичной нагрузки.
Таблица 6.2.
Прибор | ТИП | Нагрузка фаз, В∙А | ||
А | В | С | ||
Амперметр | Э – 335 | 0.5 | 0,5 | 0.5 |
Ваттметр | Д – 335 | 0.5 | ∙∙∙ | 0.5 |
Варметр | Д – 335 | 0.5 | ∙∙∙ | 0.5 |
Счётчик активной энергии | САЗ–И674 | 2.5 | ∙∙∙ | 2.5 |
Счётчик реактивной энергии | САЗ–И681 | 2.5 | ∙∙∙ | 2.5 |
ИТОГО: | 6.5 | 0,5 | 6.5 |
Из таблицы видно, что наиболее загружены фазы А и С. Рассчитываем общее сопротивление
; ОМ; Ом;
Допустимое сопротивление проводов: RПР = R2НОМ -Rприб -RК =1.2–0.26–0.1=0.84 Ом;
Предварительно принимаем трансформатор напряжения типа НКФ – 58 – У1. Составляем таблицу вторичной нагрузки трансформатора напряжения (Таблица 6.3.)
Таблица 6.3.
Прибор | ТИП | Мощ. Одн. Об. ВА |
Число обмоток |
cosφ | sinφ | число | Потреб.мощн. | |
Р, ВТ | Q,Вар | |||||||
Ваттметр | Д – 395 | 1.5 | 2 | 1 | 0 | 3 | 9 | - |
Варметр | Д – 395 | 1.5 | 2 | 1 | 0 | 3 | 9 | - |
Счётчик активной энергии | САЗ–И674 | 3 | 2 | 0.38 | 0.925 | 6 | 36 | 87 |
Счётчик реактивной энергии | САЗ–И681 | 2 | 2 | 0.38 | 0.925 | 6 | 24 | 58 |
Вольтметр | Э – 335 | 2 | 1 | 1 | 0 | 3 | 6 | - |
Частотомер | И – 397 | 7 | 1 | 1 | 0 | 1 | 7 | - |
Вольтметр | Н – 394 | 100 | 1 | 1 | 0 | 1 | 10 | - |
Ваттметр | И – 395 | 10 | 2 | 1 | 0 | 1 | 20 | - |
Синхроноскоп | Э – 327 | 10 | 2 | 1 | 0 | 1 | 20 | - |
Итого | 141 | 145 |
Определяем вторичную нагрузку трансформатора напряжения НКФ – 58 – У1.
В∙А; S2 =202.25 В∙А < SНОМ =400 В∙А.
Принимаем к установке трансформатор напряжения НКФ220 – 58 – У1.
7. Выбор схемы собственных нужд и трансформаторов собственных нужд
В проектируемой электростанции генераторы соединяются в блоки. На блочных электростанциях трансформаторы собственных нужд присоединяются отпайкой от энергоблока. Исходя из количества блоков на станции выбираем к установке четыре рабочих и два резервных трансформатора собственных нужд.
1. Мощность рабочих трансформаторов собственных нужд присоединенных к блокам 353 МВт. Sт.сн =
Sт.сн= = 25 МВ·А; На блоках мощностью 353МВт. устанавливаются трансформаторы собственных нужд типа ТРДНС-25000/35. [6.С. 130 (Т3.4)]
2. Мощность рабочих трансформаторов собственных нужд присоединенных к блокам 235.3
Sт.сн= = 16 МВ·А; На блоках мощностью 235МВт. устанавливаются трансформаторы собственных нужд типа ТРДНС-16000/20. [6.С. 130 (Т3.4)]
Мощность пуско резервных трансформаторов собственных нужд определяется по формуле.
1. Sпртсн 1.5 · Sт.сн Sпртсн = 40000Sт.сн 1.5 · 25000 = 40000/35
2. Sпртсн 1.5 · Sт.сн Sпртсн = 25000Sт.сн 1.5 · 16000 = 25000/20
Третий ПРТСН остается в холодном резерве.
8. Выбор и обоснование схем распределительных устройств
Согласно норм технологического проектирования при числе присоединений на стороне шин РУ-220Кв. равным девяти применяется схема двумя рабочими и обходной системой шин. На стороне шин РУ-110Кв. при числе присоединений равным семи принимаем схему двумя рабочими и обходной системой шин.
9. Описание конструкции распределительного устройства
ОРУ. – 220Кв. Выполнено по схеме двумя рабочими и обходной системой шин. сборные шины выполнены проводами АС 500/27. К сборным шинам подключены трансформаторы напряжения НКФ – 58 – У1. Для питания токовых обмоток приборов установлены трансформаторы тока ТФЗМ – 220 – У1.
Достоинства заключаются в том что схема с двумя системами шин позволяет производить ремонт одной системы шин, сохраняя в работе все присоединения. Также расматриваемея схема является гибкой и достаточно надежной.
Недостатки схемы является то что при отказе одного выключателя при аварии приводит к отключению всех источников питания и линии, присоединенных к данной системе шин, отключаются все присоединения. Большое количество операций разъединителями при выводе в ревизию и ремонт выключателей усложняет эксплуатацию РУ. Необходимость установки шиносоединительного, обходного выключателей и большого количества разъединителей увеличивает затраты на сооружение РУ.
Список литературы
генератор электростанция трансформатор блочный
1.Программа действий по повышению надежности ЕЭС России. «ЭНЕРГЕТИК». – 2006 №3.
2.Справочные данные для курсовых и дипломных работ по электрооборудованию -2003 г.
3.Методические указания к выполнению курсового проекта по предмету «электрооборудование станций и подстанций».
4.Рожкова Л.Д., Козулин В.С. «электрооборудование станций и подстанций». – 2-е изд., 2005. – 448 с.
5.«Правила устройства электроустановок» 6-е изд., переработал и дополнил: Энергоатомиздат, 1989.-648 с.
6.Неклепаев Б.Н., Крючков И.П. электрическая часть электростанций и подстанций (справочные материалы). – 4-е изд., переработал и дополнил: Энергоатомиздат, 1989.-608 с.
Похожие рефераты:
Проектирование электрической части ТЭЦ 180 МВт
Проектирование электрических сетей
Компенсация реактивной мощности в системах электроснабжения с преобразовательными установками
Линия электропередачи напряжением 500 кВ
Электроснабжение текстильного комбината
Проект новой подстанции для обеспечения электроэнергией нефтеперерабатывающего завода
Реконструкция подстанции "Гежская" 110/6 кВ
Расчет, анализ и оптимизация режимов и потерь электроэнергии в предприятии "КАТЭКэлектросеть"
Оценка эффективности инвестиционного проекта строительство парогазовой установки мощностью 410 МВт