Скачать .docx |
Реферат: Атомная энергетика, атомные станции
Содержание:
1. Основы ядерной энергетики. 1 стр.
1.1 Способы получения энергии. 1 стр.
1.2 Способы организации реакции горения, цепные реакции 1 стр.
2. Взаимодействие нейтронов с ядерным веществом, реакция
деления ядер. 2 стр.
2.1. Общие сведения о ядерных реакциях взаимодействия
нейтронов с ядрами 2 стр.
2.2. Эффективные сечения ядерных реакций 3 стр.
2.3 Реакция радиационного захвата и реакция рассеяния 3 стр.
2.3.1 Реакция рассеяния 4 стр.
2.3.2 Реакция поглощения (захвата) 4 стр.
2.4 Реакция деления ядер 5 стр.
2.4.1 Общая схема реакции деления 5 стр.
2.4.2 Энергетический баланс реакции деления 5 стр.
2.4.3 Сечение деления. 6 стр.
2.4.4 Образование нейтронов 6 стр.
2.4.5 Запаздывающие нейтроны 7 стр.
3. Жизненный цикл нейтронов
3.1 Возможность цепной реакции 8 стр.
3.2 Основные характеристики цепной реакции 8 стр.
3.2.1 Коэффициент размножения на быстрых нейтронах 8 стр.
3.2.2 Вероятность избежать радиационного захвата 9 стр.
3.2.3 Коэффициент теплового использования 10 стр.
3.2.4 Количество испускаемых U235 быстрых нейтронов 10 стр.
3.3 Жизненный цикл нейтронов 10 стр.
4. Принцип построения атомной энергетики.
4.1 Элементы ядерной физики 11 стр.
4.1.1 Строение атомов, ядер 11 стр.
4.1.2 Ядерные реакции 12 стр.
4.1.3 Деление ядер 13 стр.
4.1.4 Ядерный реактор 14 стр.
5.1 Проблемы развития энергетики 15 стр.
6.1 Классификация ядерных реакторов 18 стр.
6.1.2 Реакторы с водой под давлением. 19 стр.
6.3.2 Кипящие реакторы 20 стр.
6.3.3 Уран-графитовые реакторы 21 стр.
7. Список литературы. 22 стр.
1. ОСНОВЫ ЯДЕРНОЙ ЭНЕРГЕТИКИ
1.1 Способы получения энергии
В наше время, с каждым годом возрастают потребности человечества в энергии. На получение необходимого количества энергии затрачивается примерно 30% производственных усилий человека. Совершенно очевидно, что полный запас энергии в природе в соответствии с законом сохранения энергии не меняется. Поэтому процесс получения энергии представляет собой перевод энергии из связанной ( энергия покоя ) в свободную форму ( энергию относительного движения тел). Свободная энергия быстро рассеивается в пространстве, поэтому ее можно использовать.
Итак мы приходим к тому, что необходимо уметь вызывать процессы, которые приводят к убыли массы тел и эквивалентному выигрышу свободной энергии. Конечно, получать энергию можно лишь при условии существования достаточного количества топлива. Пусть микрочастицы вещества топлива находятся в состоянии с энергией E1 и существует другое возможное состояние этих частиц с энергией E2 ( E1 > E2 ). В принципе есть возможность перехода во второе состояние, но ему препятствует существование энергетического барьера, то есть некоторого необходимого промежуточного состояния с энергией E’ ( E’ > E1 ). Таким образом процесс сжигания топлива должен быть инициирован некоторым внешним возбуждением.
1.2 Способы организации реакции горения, цепные реакции
Существует два способа возбуждения реакции горения топлива. Первый - использование кинетической энергии столкновения частиц ( термоядерный процесс ). Другой способ состоит в использовании энергии связи присоединяющихся частиц. Для возбуждения такой реакции нужно направлять в топливо активные частицы.
Достаточно большое количество вещества может испытать превращение лишь при самоподдерживающейся цепной реакции.
Цепная реакция обладает следующим важным свойством - акт реакции возбуждается при поглощении частицы, а в результате ее должны появляться вторичные активные частицы.
При ядерных превращениях носителем цепного процесса может служить нейтрон, поскольку он не имеет электрического заряда и может беспрепятственно сближаться с атомными ядрами. Среди известных ядерных реакций лишь одна обладает свойством цепных реакций. Это реакция деления тяжелых ядер, которые легко возбуждаются нейтроном и дают в среднем 2,5 на акт деления вторичных нейтронов. Основную трудность представляет собой не организация цепной реакции, а получение чистых делящихся веществ. Важной чертой цепных ядерных реакций является тот факт, что их скорости не зависят от температуры среды, что является их главным преимуществом перед процессами с тепловым возбуждением.
2. ВЗАИМОДЕЙСТВИЕ НЕЙТРОНОВ С ЯДЕРНЫМ ВЕЩЕСТВОМ, РЕАКЦИЯ ДЕЛЕНИЯ ЯДЕР.
2.1. Общие сведения о ядерных реакциях взаимодействия нейтронов с ядрами
В связи с вышесказанным совершенно очевидно, какое значение сегодня имеет использование ядерной энергии. Устройство, предназначенное для организации и поддержания цепной реакции деления ядер с целью получения энергии называется ядерным энергетическим реактором.
В основе работы ядерного реактора лежат процессы взаимодействия нейтронов с ядерным веществом, наиболее важными из которых являются - реакция деления ядер, реакция радиационного захвата (поглощения) и реакция рассеяния.
деление (fission)
n A поглощение (capture)
рассеяние (scattaring)
Ядерные реакции подчиняются законам квантовой механики, поэтому можно говорить лишь о вероятности протекания той или иной из них. Мерой вероятности данного типа реакции является эффективное (микроскопическое) сечение.
2.2. Эффективные сечения ядерных реакций
Рассмотрим тонкую пластинку, содержащую Nя ядер, на которую падает поток нейтронов со скоростью v и концентрацией n.
Найдем количество реакций того или иного типа.
Пусть количество реакций равно R, тогда
R = j Nя s (1)
j = n v - плотность потока нейтронов, s - микроскопическое сечение взаимодействия. s измеряется в барнах ( 1 б = 10-24 см2 ).
Можно записать уравнение (1 ) для трех основных ядерных реакций:
Rf = j Nя sf - реакция деления
Rc = j Nя sc - реакция радиационного захвата
Rs = j Nя ss - реакция рассеяния
stotal = sf + sc + ss
Вообще говоря, микроскопические сечения взаимодействия всех реакций зависят от массового числа ядра и от энергии нейтрона. При этом вид зависимости s(EН ) определяется тем, к какой области принадлежит энергия нейтрона EН . В соответствии с этим принято делить область энергий на три части: Область тепловых нейтронов, где E < 0,625 эВ; область промежуточных нейтронов или резонансная область, где 0,625 эВ < E < 0.1 МэВ; область быстрых нейтронов, где E > 0.1 МэВ;
2.3 Реакция радиационного захвата и реакция рассеяния
Рассмотрим коротко два важных типа ядерных реакций - захвата (поглощения) и рассеяния , а затем перейдем к подробному описанию третьего - реакции деления ядер, которая необходима для поддержания цепной реакции.
2.3.1 Реакция рассеяния
Существует два типа реакций рассеяния: упругое взаимодействие, при котором суммарная кинетическая энергия взаимодействующих нейтрона и ядра не меняется после реакции и неупругое взаимодействие, при котором часть кинетической энергии идет на возбуждение конечного ядра и затем испускается в виде g-кванта.
E0 A E1
n A
n E2
n
n A A+1 g
A
Нужно отметить, что реакция неупругого рассеяния происходит лишь при определенных значениях энергии нейтрона (Eпор » 0,1 МэВ), в то время как энергия упругого рассеяния возможна всегда.
Значение реакции рассеяния в ядерной энергетике трудно переоценить, поскольку именно на ней основаны системы замедления нейтронов в реакторе. В качестве веществ-замедлителей обычно используют тяжелую и легкую воду, графит.
2.3.2 Реакция поглощения (захвата)
Данная реакция играет важную роль в физике реактора, поскольку она является конкурирующей по отношению к реакции деления.
g
n A A+1
A+1
В результате нейтрон выбывает из цепной реакции. sc зависит от энергии нейтрона и от массового числа A.
В области тепловых нейтронов сечение подчиняется закону sc (E) обратно пропорционально скорости нейтрона v (или квадратному корню из E). При увеличении энергии нейтрона начинается резонансная область, в которой sc имеет множество максимумов и минимумов.
2.4 Реакция деления ядер
Данная реакция наиболее специфична для ЯР. Схематично эту реакцию можно представить так:
2.4.1 Общая схема реакции деления
n
A1 gоск
n A A+1 gмгн b
u
n n A2 gоск
n b
u
Под действием нейтрона ядро тяжелого элемента делится на две части (осколка) отношение масс которых обычно (для часто используемых элементов) близко к 95/140. Нуклиды, которые делятся нейтронами - это тяжелые нуклиды. Некоторые из них делятся тепловыми нейтронами: U235 , Pu239 , Pu241 (в природе встречается только U235 , содержание которого в естественном U238 составляет 0.714%). Другие нуклиды, например, естественный уран, делятся только быстрыми нейтронами. Вообще говоря, процесс не протекает по строгой схеме, поскольку существует много вариантов деления на различные осколки.
2.4.2 Энергетический баланс реакции деления
Рассмотрим энергетический баланс реакции деления.
Пусть Eнач = 0.025 эВ - средняя энергия теплового движения при 200 С. Тогда Eвыдел = 200 МэВ.
продукт реакции |
вид получаемой энергии |
E, МэВ |
Кинетическая энергия осколков |
тепло |
167 |
Кинетическая энергия g |
тепло |
6 |
Кинетическая энергия n |
тепло |
5 |
Кинетическая энергия b |
тепло |
8 |
Кинетическая энергия u |
энергия теряется |
12 |
Сечение деления.
Зависимость sf (E) имеет достаточно сложный вид, поскольку на кривую E-1/2 накладывается много резонансов. Если бы характер этой зависимости описывался формулой sf (E) = E-1/2 , то график зависимости f(E) = sf E1/2 для U235 в области тепловых нейтронов имел вид прямой, параллельной оси абсцисс. Однако на практике эта зависимость имеет вид, с резонансом в точке E = 0,3 эВ.
Сечения деления ядер нейтронами различных энергий можно определить по специальным таблицам.
Образование нейтронов
Как видно из приведенной выше схемы, при реакции деления кроме новых ядер могут появляться g-кванты, b-частицы распада, g-кванты распада, нейтроны деления и нейтрино. С точки зрения цепной ядерной реакции наиболее важным является образование нейтронов. Среднее число появившихся в результате реакции деления нейтронов обозначают uf . Эта величина зависит от массового числа делящегося ядра и энергии взаимодействующего с ним нейтрона. образовавшиеся нейтроны обладают различной энергией (обычно от 0,5 до 15 МэВ), что характеризуется спектром нейтронов деления. Для U235 среднее значение энергии нейтронов деления равно 1.93 МэВ.
В процессе ядерной реакции могут появляться как ядра способствующие поддержанию цепной реакции (те которые испускают запаздывающий нейтрон), так и ядра, оказывающие неблагоприятное воздействие на ее ход (если они обладают большим сечением радиационного захвата).
2.4.5 Запаздывающие нейтроны
Заканчивая рассмотрение реакции деления, нельзя не упомянуть о таком важном явлении как запаздывающие нейтроны. Те нейтроны, которые образуются не непосредственно при делении тяжелых нуклидов (мгновенные нейтроны), а в результате распада осколков называются запаздывающими нейтронами. Характеристики запаздывающих нейтронов зависят от природы осколков. Обычно запаздывающие нейтроны делят на 6 групп по следующим параметрам: T - среднее время жизни осколков, bi - доля запаздывающих нейтронов среди всех нейтронов деления, bi /b - относительная доля запаздывающих нейтронов данной группы, E - кинетическая энергия запаздывающих нейтронов.
В следующей таблице приведены характеристики запаздывающих нейтронов при делении U235
№ группы |
T, сек. |
bi |
bi /b , % |
E, МэВ |
1 |
80.0 |
0.21 |
3.3 |
0.25 |
2 |
32.8 |
1.40 |
21.9 |
0.56 |
3 |
9.0 |
1.26 |
19.6 |
0.43 |
4 |
3.3 |
2.52 |
39.5 |
0.62 |
5 |
0.88 |
0.74 |
11.5 |
0.42 |
6 |
0.33 |
0.27 |
4.2 |
- |
В целом:
Nзап / (Nзап + Nмгн ) = b = 0.0065; Tзап » 13 сек.; Tмгн » 0.001 сек.
На этом мы закончим рассмотрение реакции деления ядер и перейдем к изучению цепной реакции деления и жизненного цикла нейтронов.
3. ЖИЗНЕННЫЙ ЦИКЛ НЕЙТРОНОВ
3.1 Возможность цепной реакции
В результате деления ядра появляется в среднем 2.5 нейтрона. Поэтому можно организовать цепную реакцию деления, при которой новые нейтроны, в свою очередь активируют реакцию деления ядер топлива. Однако помимо реакции деления всегда присутствуют конкурирующая реакция радиационного захвата и утечка нейтронов из активной зоны реактора. В состав АЗ всегда входят теплоноситель, конструкционные материалы и замедлитель, которые увеличивают захват нейтронов.
Таким образом мы приходим к необходимости изучения того, при каких условиях возможна цепная реакция деления в ЯР на тепловых нейтронах (именно такие реакторы обычно применяются для энергетических целей). Нужно отметить, что мы будем рассматривать реакторы, использующие естественный U238 , обогащенный U235 . Кроме того для простоты будем считать, что активная зона реактора - бесконечная и гомогенная.
3.2 Основные характеристики цепной реакции
Рассмотрим соотношения, характеризующие протекание цепной реакции деления.
3.2.1 Коэффициент размножения на быстрых нейтронах
Пусть в среде есть N быстрых нейтронов, они будут взаимодействовать с ядрами среды, в том числе и с ядрами U238 , те из них которые имеют энергию выше порога деления (1 МэВ) могут вызывать деление урана и образование новых быстрых нейтронов. При этом их энергия будет меньше порога деления.
Коэффициент размножения на быстрых нейтронах m - число нейтронов ушедших под порог деления U238 на один быстрый нейтрон (появившийся в результате деления ядер U235 ).
Ясно, что величина m тем больше, чем больше доля U238 в топливе. Можно оценить, что mmax = 1.35 (если доля U238 равна 100%). Для тепловых реакторов m = 1.01 - 1.03.
3.2.2 Вероятность избежать радиационного захвата
Пусть в среде есть N нейтронов, энергия которых меньше порога деления U238 . За счет рассеяния но ядрах среды они теряют свою энергию и попадают в область энергии, в которой находятся гигантские резонансы сечения захвата U238 . Введем величину j - вероятность избежать радиационного захвата.
j тем больше, чем быстрее нейтронам в процессе замедления удастся преодолеть резонансную область. j уменьшается при увеличении доли ядер U238 в среде. В гомогенном реакторе j » 0.65, а в гетерогенном j » 0.93.
3.2.3 Коэффициент теплового использования
Пусть в среде есть N тепловых нейтронов, тогда в процессе диффузии часть из них захватится в топливе. Обозначим долю захваченных в топливе нейтронов q. Ясно, что коэффициент теплового использования можно увеличить, используя гетерогенную структуру активной зоны реактора.
3.2.4 Количество испускаемых U235 быстрых нейтронов
Пусть в топливе поглотилось N тепловых нейтронов. Ясно, что не всякое поглощение приводит к делению и испусканию новых быстрых нейтронов. Введем величину uт эф равную количеству вторичных нейтронов деления на один тепловой нейтрон, поглощенный в топливе. Ясно, что uт эф тем больше, чем выше доля U235 в топливе.
3.3 Жизненный цикл нейтронов
Рассмотрим жизненный цикл нейтронов в тепловом ЯР, активная зона которого бесконечна и гомогенна.
Пусть на некотором этапе цепной реакции в рассматриваемой среде присутствует N1 быстрых нейтронов деления 1 поколения. За счет взаимодействия с ядрами U238 под порог деления этих ядер (1 МэВ) уйдет m N1 нейтронов (m - коэффициент размножения на быстрых нейтронах).
В результате рассеяния на ядрах среды эти нейтроны будут замедляться и попадут в область промежуточных энергий. Миновать эту область, избежав поглощения ядрами U238 удастся m j N1 нейтронам (j - вероятность избежать радиационного захвата).
Часть из этих нейтронах, которые теперь стали тепловыми, захватится в топливе. Количество захваченных в топливе нейтронов будет равно m j q N1 (q - коэффициент теплового использования).
Некоторые из нейтронов, захваченных в топливе инициируют деление ядер U235 и появление новых быстрых нейтронов. Количество нейтронов второго поколения N2 = uт эф m j q N1.
Итак, мы видим, что реакция действительно является самоподдерживающейся и циклической. Цикл жизни нейтронов схематично представлен на рис. 4. На данной схеме, в отличие от вышеприведенного описания рассмотрение начинается со стадии тепловых нейтронов.
Можно вывести коэффициент размножения нейтронов в бесконечной гомогенной среде:
K¥ = Ni+1 /Ni = uт эф m j q - формула 4-х сомножителей.
Для конечных сред можно ввести коэффициент
Kэф = uт эф m j q P, где P - вероятность избежать утечки.
На этом рассмотрение физических основ протекания цепной ядерной реакции в ЯР можно завершить. Используя описанную цепную ядерную реакцию, можно переводить энергию из формы энергии связи частиц в ядре в кинетическую энергию движения частиц, то есть в тепло. Как уже отмечалось ранее основную трудность представляет собой не организация цепной реакции, а получение чистых делящихся веществ и другие технические и технологические нюансы ядерной энергетики.
4. Принцип построения атомной энергетики.
4.1 Элементы ядерной физики
4.1.1 Строение атомов, ядер
Как известно, все в мире состоит из
молекул, которые представляют собой
сложные комплексы взаимодействующих
атомов. Молекулы - это наименьшие
частицы вещества, сохраняющие его
свойства. В состав молекул входят атомы
различных химических элементов.
Химические элементы состоят из атомов одного типа.
Атом, мельчайшая частица химического элемента, сос-
тоит из "тяжелого" ядра и вращающихсявокруг электро-
нов.
Ядра атомов образованы совокупностью положительно заряженных протонов и нейтральных нейтронов. Эти частицы, называемые нуклонами, удерживаются в ядрахкороткодействующими силами притяжения, возникающими за счет обменов мезонами, частицами меньшей массы.
Ядро элемента X обозначают как или X-A, например
уран U-235 -
где Z - заряд ядра, равный числу протонов, определяющий атомный номер ядра, A - массовое число ядра, равное
суммарному числу протонов и нейтронов.
Ядра элементов с одинаковым числом протонов, но разным числом нейтронов называются изотопами (например, уран
имеет два изотопа U-235 и U-238); ядра при N=const, z=var - изобарами.
4.1.2 Ядерные реакции
Ядра водорода, протоны, а также нейтроны, электроны (бета-частицы) и одиночные ядра гелия (называемые альфа-частицами), могут существовать автономно вне ядерных структур.
Такие ядра или иначе элементарные частицы, двигаясь в пространстве и приближаясь к ядрам на расстояния порядка поперечных размеров ядер, могут взаимодействовать с ядрами, как говорят участвовать в реакции. При этом частицы могут захватываться ядрами, либо после столкновения - менять направление движения, отдавать ядру часть кинетической энергии. Такие акты взаимодействия называются ядерными реакциями. Реакция без проникновения внуть ядра называется упругим рассеянием.
После захвата частицы составное ядро находится в возбужденном состоянии. "Освободиться" от возбуждения ядро может несколькими способами - испустить какую-либо другую частицу и гамма-квант, либо разделиться на две неравные части. Соответственно конечным результатам различают реакции - захвата, неупругого рассеяния, деления, ядерного превращения с испусканием протона или альфа-частицы.
Дополнительная энергия, освобождаемая при ядерных превращениях, часто имеет вид потоков гамма-квантов.
Вероятность реакции характеризуется величиной "поперечного сечения" реакции данного типа.
4.1.3 Деление ядер при процессе.
Деление тяжелых ядер происходит при
захвате нейтронов. При этом испускаются
новые частицы и освобождается энергия
связи ядра, передаваемая осколкам
деления. Это фундаментальное явление
было открыто в конце 30-ых годов немецким и учеными Ганом и Штрасманом, что заложило основу для практического использования ядерной энергии.
Ядра тяжелых элементов - урана, плутония и некоторых других интенсивно поглощают тепловые нейтроны. После акта захвата нейтрона, тяжелое ядро с вероятностью ~0,8 делится на две неравные по массе части, называемые осколками или продуктами деления. При этом испускаются - быстрые нейтроны/ (в среднем около 2,5 нейтронов на каждый акт деления), отрицательно заряженные бета-частиц и нейтральные гамма-кванты, а энергия связи частиц в ядре преобразуется в кинетическую энергию осколков деления, нейтронов и других частиц. Эта энергия затем расходуется на тепловое возбуждение составляющих вещество атомов и молекул, т.е. на разогревание окружающего вещества.
После акта деления ядер рожденные при делении осколки ядер, будучи нестабильными, претерпевают ряд последовательных радиоактивных превращений и с некоторым запаздыванием испускают "запаздывающие" нейтроны, большое число альфа, бета и гамма-частиц. С другой стороны некоторые осколки обладают способностью интенсивно поглощать нейтроны.
4.1.4 Ядерный реактор
Ядерный реактор - это техническая установка, в которой осуществляется самоподдерживающаяся цепная реакция деления тяжелых ядер с освобождением ядерной энергии. Ядерный реактор состоит из активной зоны и отражателя, размещенных в защитном корпусе.Активная зона содержит ядерное топливо в виде топливной композиции в защитном покрытии и замедлитель. Топливные элементы обычно имеют вид тонких стержней. Они собраны в пучки и заключены в чехлы. Такие сборные композиции называются сборками или кассетами.
Вдоль топливных элементов двигается теплоноситель, который воспринимает тепло ядерных превращений. Нагретый в активной зоне теплоноситель двигается по контуру циркуляции за счет работы насосов либо под действием сил Архимеда и, проходя через теплообменник, либо парогенератор, отдает тепло теплоносителю внешнего контура.
Перенос тепла и движения его носителей можно представить в виде простой схемы:
1.Реактор
2.Теплообменник, парогенератор
3.Паротурбинная установка
4.Генератор
5.Конденсатор
6.Насос
5.1 Проблемы развития энергетики
Развитие индустриального общества опирается на постоянно растущий уровень производства и потребления
различных видов энергии.
Как известно, в основе производства тепловой и электрической энергии лежит процесс сжигания ископаемых
энергоресурсов -
угля
нефти
газа
а в атомной энергетике - деление ядер атомов урана и плутония при поглощении нейтронов.
Масштаб добычи и расходования ископаемых энергоресурсов, металлов, потребления воды, воздуха для производства необходимого человечеству количества энергии огромен, а запасы ресурсов, увы, ограничены. Особенно остро стоит проблема быстрого исчерпания запасов органических природных энергоресурсов.
1 кг природного урана заменяет 20 т угля.
Мировые запасы энергоресурсов оцениваются величиной 355 Q, где Q - единица тепловой энергии, равная Q=2,52*1017 ккал = 36*109 тонн условного топлива /т.у.т/, т.е. топлива с калорийностью 7000 ккал/кг, так что запасы энергоресурсов составляют 12,8*1012 т.у.т.
Из этого количества примерно 1/3 т.е. ~ 4,3*1012 т.у.т. могут быть извлечены с использованием современной техники при умеренной стоимости топливодобычи. С другой стороны современнные потребности в энергоносителях составляют 1,1*1010 т.у.т./год, и растут со скоростью 3-4% в год, т.е. удваиваются каждые 20 лет.
Легко оценить, что органические ископаемые ресурсы, даже если учесть вероятное замедление темпов роста энергопотребления, будут в значительной мере израсходованы в будущем веке.
Отметим кстати, что при сжигании ископаемых углей и нефти, обладающих сернистостью около 2,5 %, ежегодно образуется до 400 млн.т. сернистого газа и окислов азота, т.е. около 70 кг. вредных веществ на каждого жителя земли в год.
Использование энергии атомного ядра, развитие атомной энергетики снимает остроту этой проблемы.
Действительно, открытие деления тяжелых ядер при захвате нейтронов, сделавшее наш век атомным, прибавило к запасам энергетического ископаемого топлива существенный клад ядерного горючего. Запасы урана в земной коре оцениваются огромной цифрой 1014 тонн. Однако основная масса этого богатства находится в рассеяном состоянии - в гранитах, базальтах. В водах мирового океана количество урана достигает 4*109 тонн. Однако богатых месторождений урана, где добыча была бы недорога, известно сравнительно немного. Поэтому массу ресурсов урана,которую можно добыть при современной технологии и при умеренных ценах, оценивают в 108 тонн. Ежегодные потребности в уране составляют, по современным оценкам, 104 тонн естественного урана. Так что эти запасы позволяют, как сказал академик А.П.Александров, "убрать Дамоклов меч топливной недостаточности практически на неограниченное время".
Другая важная проблема современного индустриального общества - обеспечение сохранности природы, чистоты воды, воздушного бассейна.
Известна озабоченность ученых по поводу "парникового эффекта", возникающего из-за выбросов углекислого газа при сжигании органического топлива, и соответствующего глобального потепления климата на нашей планете. Да и проблемы загазованности воздушного бассейна, "кислых" дождей, отравления рек приблизились во многих районах к критической черте.
Атомная энергетика не потребляет кислорода и имеет ничтожное количество выбросов при нормальной эксплуатации. Если атомная энергетика заменит обычную энергетику, то возможности возникновения "парника" с тяжелыми экологическими последствиями глобального потепления будут устранены.
Чрезвычайно важным обстоятельством является тот факт, что атомная энергетика доказала свою экономическую эффективность практически во всех районах земного шара. Кроме того, даже при большом масштабе энергопроизводства на АС атомная энергетика не создаст особых транспортных проблем, поскольку требует ничтожных транспортных расходов, что освобождает общества от бремени постоянных перевозок огромных количеств органического топлива.
6.1 Классификация ядерных реакторов
Ядерные реакторы делятся на несколько групп:
в зависимости от средней энергии спектра нейтронов - на быстрые, промежуточные и тепловые;
по конструктивным особенностям активной зоны - на корпусные и канальные;
по типу теплоносителя - водяные, тяжеловодные, натриевые;
по типу замедлителя - на водяные, графитовые, тяжеловодные и др.
Для энергетических целей, для производства электроэнергии применяются:
водоводяные реакторы с некипящей или кипящей водой под давлением,
уран-графитовые реакторы с кипящей водой или охлаждаемые углекислым газом,
тяжеловодные канальные реакторы и др .
В будущем будут широко применяться реакторы на быстрых нейтронах, охлаждаемые жидкими металлами (натрий и др.); в которых принципиально реализуем режим воспроизводства топлива, т.е. создания количества делящихся изотопов плутония Pu-239 превышающего колич ество расходуемых излотопов урана U-235. Параметр, характеризующий воспроизводство топлива называется плутониевым коэффициентом. Он показывает, сколько актов атомов Pu-239 создается при реакциях захвата нейтронов в U-238 на одмин атом U-235, захва тившег о нейтрон и претерпевшего деление или радиационное превращение в U-235.
6.1.2 Реакторы с водой под давлением.
Реакторы с водой под давлением занимают видное место в мировом парке энергетических реакторов. Кроме того, они широко используются на флоте в качестве источников энергии как для надводных судов, так и для подводных лодок. Такие реакторы относительно компактны, просты и надежны в эксплуатации. Вода, служащая в таких реакторах теплоносителем и замедлителем нейтронов, относительно дешева, неагрессивна и обладает хорошими нейтронно-физическими свойствами.
Реакторы с водой под давлением называются иначе водоводяными или легководными. Они выполняются в виде цилиндрического сосуда высокого давления со сьемной крышкой. В этом сосуде (корпусе реактора) размещается активная зона, составленная из топливных сборок (топливных кассет) и подвижных элементов системы управления и защиты. Вода входит через патрубки в корпус, подается в пространство под активной зоной, двигается вертикально вверх вдоль топливных элементов и отводится через выходные патрубки в контур циркуляции. Тепло ядерных реакций передается в парогенераторах воде второго контура, более низкого давления. Движение воды по контуру обеспечивается работой циркуляционных насосов, либо, как в реакторах для станций теплоснабжения, - за счет движущего напора естественной циркуляции.
Типичная тепловая схема водоводяных энергетических реакторов (ВВЭР), действующих с 1964 года в СССР, показана на Рис.1:
6.3.2 Кипящие реакторы
1.Реактор
2.Парогенератор
3.Циркуляционный насос
6.3.3 Уран-графитовые реакторы
7. Л И Т Е Р А Т У Р А
1. Рудик А. П. Физические основы ядерных реакторов. М.: Атомиздат, 1980.
2. Климов А. Н. Ядерная физика и ядерные реакторы. М.: Атомиздат, 1971.
3. Нигматулин Н. Н., Нигматулин Б. Н., Ядерные энергетические установки. М.: Энергоатомиздат, 1986.
4. Емельянов И. Я. и др. Конструирование ядерных реакторов. М.: Энергоатомиздат, 1982
5. Камерон И. Ядерные реакторы. М.: Энергоатомиздат, 1987
6. Шихов С. Б., Троянский В. Б. Элементарная теория яднрных реакторов. М.: Атомиздат, 1978