Скачать .docx  

Реферат: Кинематика

Кинематика

тема 1 кинематика точки

1.1 п редмет изучения

С самого рождения и на протяжении всей своей жизни мы встречаемся с движением материи. Простейшей формой движения материи является механика. В разделе «кинематика» мы будем изучать только одну сторону механического движения – геометрическую, т.е. мы будем изучать геометрию движения тела без учета его массы и сил, действующих на него. Механически движение в общем смысле будет изучаться в разделе «динамика».

Под движением в механике мы будем понимать перемещение данного тела в пространстве и времени по отношению к другим телам.

Для определения положения движущего тела вводится система отсчета, связанная с телом, условно принимаемым за неподвижное. Движение тела происходит в пространстве и времени. Мы будем рассматривать трехмерное эвклидо пространство. За единицу длины в нем принимается 1 метр. Время считается универсальным, т. е. не зависящим от выбранной системы отсчета. За единицу времени принимается 1 секунда. В задачах механики время принимается за независимую переменную. Все остальные кинематические величины (расстояния, скорости, ускорения и т.д.) являются функциями времени.

Прежде чем изучать движение его необходимо задать, т.е. описать каким-либо математическими формулами так, чтобы можно было узнать положение тела и все его кинематические характеристики в любой момент времени.

Основная задача кинематики заключается в том, чтобы по известному закону движения тела (или какой-либо его точки) найти все остальные
кинематические характеристики движения.

Изучение кинематики мы начнем с изучения движения простейшего тела – точки, т.е. такого тела, размерами которого можно пренебречь и рассматривать его как геометрическую точку.

1.2 Способы задания движения точки

Мы будем рассматривать три способа задания движения: векторный, координатный и естественный.

1.2.1 Векторный способ

Положение движущейся точки М определяется с помощью радиуса вектора , проведенного из некоторого неподвижного центра О в эту точку (рис. 1.1). В процессе движения этот вектор изменяется по величине и направлению, т.е. является функцией времени. Зависимость

(1.1)

называется уравнением движения (или законом движения) в векторной форме. Линия, описываемая концом этого вектора называется траекторией движения.


1.2.2 Координатный способ

С неподвижным центром О связывается неподвижная система координат ОХ у Z . Положение точки определяется тремя координатами: х , у , z (рис. 1.2). В процессе движения эти координаты изменяются, т.е. они являются функциями времени.


Зависимости

х=f1 (t); у=f2 (t); z=f3 (t) (1.2)

называются уравнениями движения точки в координатной форме. Эти уравнения являются одновременно параметрическими уравнениями траектории движения (параметром является t ).

Чтобы получить уравнение траектории в явной форме, надо из уравнений (1.2) исключить параметр t.

1.2.3 Естественный способ

При естественном способе задания движения траектория заранее известна. На траектории выбирается начало отсчета (т. 0) и устанавливается положи-тельное и отрицательное направления отсчета.

Положение точки на траектории однозначно определяется криволинейной координатой S , измеряемой вдоль траектории. Зависимость

S = f(t) (1.3)

называется уравнением движения в естественной форме.


1.2.4 Связь между способами задания движения

Координатный векторный способы связаны зависимостью:

(1.4)

где - единичные орты координатных осей.

Переход от координатного способа к естественному:

здесь: ;

(т.е. здесь и в дальнейшем производная по времени обозначается точкой над буквой).

1.3 Определение скорости и ускорение точки при векторном задании движения

Пусть точка за время переходит из положения М в положение М1 , двигаясь вдоль траектории (Рис. 1.4) называется вектором перемеще-ния. - средняя скорость.

Например, вектор по хорде М М1 . если уменьшать промежуток времени , то хорда будет приближаться к касательной, а средняя скорость к мгновенной.

Рис. 1.4

(1.6)

Направлен вектор скорости по касательной к траектории.

Определение ускорения:

Пусть в положении М скорость , а в положении М1 (через время ) скорость . Приращение скорости (рис. 1.5).

Среднее ускорение:


Ускорение в данный момент

(1.7)

Лежит вектор ускорения в плоскости, проведенных через касательной к траектории в двух бесконечно близких точках. Эта плоскость называется соприкасающейся или плоскостью главной кривизны.

1.4 Определение скорости и ускорения точки при координатном способе задания движения

при координатном способе задания движения:

(а)

с другой стороны:

(б)

Сравнивая (а) и (б) находим:

; ; (1.8)

т.е. проекция вектора скорости на оси координат равны первым производным по времени от соответствующих координат.

Величина скорости:

(1.9)

направление вектора скорости определяется с помощью направляющих косинусов, т.е. косинусов углов между вектором скорости и осями координат (рис. 1.6).


(1.10)

Аналогично ищем ускорения:

Сравнивая (в), (г), (д) находим:


(1.11)

Проекция ускорения равны первым производным по времени от соответствующих проекций скорости или вторым производным по времени от соответствующих координат.

Величина ускорения:

(1.12)

Направляющие косинусы:

; ; ; (1.13)

1.5 Определение скорости и ускорения точки при естественном задании движения

Пусть за время точка переместилась из положения М в положение М1 , совершив перемещение (рис. 1.17).



величина скорости точки:

(1.14)

Направлена скорость по касательной к траектории:

Найдем ускорение точки.

Пусть в положении М точка имеет скорость (рис. 1.8).

Полное ускорение точки будет:

Обозначим угол между касательными через (угол смежности). Спроецируем вектор ускорения на касательную и нормам п .


Найдем эти пределы, учитывая, что при одновременно и и .

где ρ – радиус кривизны траектории в данной точке.

Подставив эти значения в ап получим:

Т.о. величины касательного, нормального и полного ускорений определяется формулами:

(1.17)

(1.16)
(1.15)

Касательное ускорение направлено по касательной к траектории (в сторону скорости при ускоренном движении и противоположно скорости – при замедленном) и характеризует изменение величины скорости.

Нормальное ускорение направлено по нормам к траектории к центру кривизны и характеризует изменение направления скорости.

1.6 Частные случаи движения точки

По виду траектории движение делится на прямолинейное и криволинейное. При прямолинейном движении ап = 0, т.к. ρ = ∞.

По изменению величины скорости движения делится на равномерные и неравномерные.

Движение называется равномерным, если величина скорости постоянна (V=const ).

Закон равномерного движения:

S=S0 +Vt (1.18)

Движение называется равномерным, если величина касательного ускорения постоянна.

Т.о. равномерное движение описывается двумя формулами:

(1.19)

Нормальное ускорение направлено от данной точки к оси вращения


Тема 2 Простейшие движения тела

К простейшим движениям твердого тела относятся поступательное движение и вращательное движение вокруг неподвижной оси.

2.1 Поступательное движение твердого тела

Поступательным называется такое движение тела, при котором любой отрезок прямой проведенной в теле перемещается параллельно самому себе.

Это самое простое движение тела.

Оно описывается одной теоремой:

При поступательном движении тела все его точки описывают одинаковые, при наложении совпадающие траектории, и имеют одинаковые скорости и одинаковые ускорения.

Доказательство:

Проведем в теле произвольный отрезок АВ . При движении тела он остается параллельным самому себе (рис. 2.1). траектория точки А на величину АВ , т.е. они одинаковые.


Проведем из неподвижного центра О радиусы-векторы точек А и В (), а также вектор из точки А в точку В .

Очевидно, что


Продифференцируем это векторное равенство по времени, учитывая, что .

; но , значит

(2.1)

дифференцируя (2.1) по времени: , получаем:

(2.2)

Так как точки А и В взяты произвольно, то все выводы справедливы для всех точек тела.

Следовательно, при поступательном движении тела его можно считать точкой и пользоваться формулами кинематики точки.

2.2 Вращение тела вокруг неподвижной оси

Вращательным называется такое движение тела, при котором хотя бы две точки, принадлежащие телу или жестко с ним связанные, во все время движения остаются неподвижными. Прямая, проходящая через эти две неподвижные точки называется осью вращения.

Проведем через ось вращения две полуплоскости: неподвижную І и подвижную II, жестко связанную с телом и вращающуюся вместе с ним (рис. 2.2).

Положением тела будет однозначно определяться углом φ между этими полуплоскостями. Угол φ называется углом поворота. Измеряется он в радианах. Положительное направление φ – против часовой стрелки, если смотреть навстречу оси Z .

Зависимость

φ = φ(t) (2.3)

называется уравнением вращательного движения.


Быстрота вращения характеризуется угловой скоростью ω . Средняя угловая скорость определяется как отношения приращения угла поворота ∆φ к промежутку времени ∆t , за который оно произошло.

Угловая скорость в данный момент времени:

(2.3)

Вектор угловой скорости направлен по оси вращения в ту сторону, чтобы, глядя навстречу ему, мы видели вращение происходящей против часовой стрелки. Изменяется ω в радиан/сек. На производстве угловую скорость измеряют в об/мин. В этом случае она обозначается буквой «п».

Формула перехода:

(2.4)

Изменение угловой скорости характеризуется угловым ускорением ε , которая определяется как первая производная от угловой скорости или вторая производная от угла поворота по времени:

(2.5)

Направлен вектор также по оси вращения в сторону при ускоренном и противоположном при замедленном вращении. Единица измерения – 1Рад/с2 .

2.3 Равномерное и равнопеременное вращение

Вращение называется равномерным, если угловая скорость постоянна, т.е. ω = const .

Закон равномерного вращения:

φ=φ0t (2.6)

Вращение называется равнопеременным, если угловое ускорение постоянно, т.е. ε = const .

Но . Разделяя переменные и интеграции находим, что

(2.7)

Подставив сюда и еще раз интегрируя , получим уравнение переменного вращения:

(2.8)

2.4 Скорости и ускорение точек вращающегося тела

пусть за время dt тело повернулось на угол , а точка М , находящаяся на расстоянии R от оси вращения, получила перемещение dS =ч* (рис. 2.3).

Тогда скорость точки

(2.9)

Направлен вектор скорости по касательной к траекториям, т.е. по касательной к окружности радиуса R , центр которой лежит на оси вращения, а ее плоскость перпендикулярна оси вращения.

Найдем нормальное и касательное ускорение точки:



(2.10)

Нормальное ускорение направлено от данной точки к оси вращения.

Касательное ускорение направлено по касательной к округлости, которую описывает точка и совпадает с направлением скорости при ускоренном вращении, а при немедленном – противоположно скорости.

Рассмотрим векторное произведение (рис. 2.4). Его модуль , а направление совпадает с направлением скорости. Из этого делаем вывод, что вектор скорости:

(2.11)

взяв от этого выражения производную по времени, получим:

Первое произведение по величине и направлению совпадает с касательным, а вторая – с нормальным ускорением.

Таким образом, касательная и нормальная составляющие вектора полного ускорения при вращательном движении определяется формулами:

(2.12)



Отметим, что радиус-вектор точки М можно проводить из любой точки О1 , лежащей на оси вращения (все точки оси вращения неподвижны) и что этот вектор постоянный по модулю (у него меняется только направление).

2.5 Простейшие передаточные механизмы

Передаточными называют механизмы, служащие для передачи вращения с одного вала на другой. К простейшим из них относятся: зубчатые, ременные, цепные и фрикционные. Схематическое изображение зубчатых и фрикционных механизмов показано на рис. 2.5а , а ременных и цепных на рис. 2.5.б .

Найдем скорость точки а : на колесе І и на колесе ІІ. Так как проскальзывание отсутствует, то .

Отсюда:

(2.13)


т.е. угловые скорости обратно пропорциональны радиусом колес. Величина i 1-2 называется передаточным отношением.

У зубчатых и цепных передач – передаточное отношение точное, у ременных и фрикционных – может быть проскальзывание. Ременные и цепные передачи позволяют передавать вращение на большие расстояния, чем зубчатые и фрикционные. С устройством передаточных механизмов, их изготовлением, расчетами и эксплуатацией вы познакомитесь в курсах «Теория механизмов и машин» и «Детали машин».


Тема 3 Сложное движение точки

3.1 Основные определения

До сих пор мы рассматриваем движение точки в одной, неподвижной системе отсчета. Однако, часто встречаются случаи, когда точка движется по определенному закону в некоторой системе отсчета, которая, в свою очередь, перемещается относительно неподвижной системы отсчета. Такое движение точки называется сложным. Введем основные определения сложного движения точки.

Движение точки в подвижной системе отсчета называется относительным. Скорость и ускорение точки в этом движении называются относительными и обозначаются: (или ).

Движение точки вместе с подвижной системой называется переносным. Скорость и ускорение той точки М/ подвижной системы, в которой в данный момент находится движущаяся точка М , являются для данной точки переносной скоростью и переносным ускорением и обозначаются (или ).

Движение точки относительно неподвижной системы отсчета называется абсолютным. Скорость и ускорение точки в этом движении называются абсолютными и обозначаются (или ).

Пусть точка М движется в подвижной системе отсчета оху z . Ее координаты х, у, z являются функциями времени, а координаты х/ , у/ , z / точки М/ подвижной системы, в которой в данный момент находится движущая точка М , являются константами. Но в любой момент времени

х = х/ , у = у/ , z = z / (3.1)

Введем в рассмотрение радиусы-векторы, определяющие положение точек М и М/ в подвижной и неподвижной системах отсчета (рис. 3.1).

- радиус-вектор, определяющий положение начала подвижной системы оху z в неподвижной системе отсчета о1 х1 у1 z 1 .

= - радиус-вектор, определяющий положение движущейся точки М в подвижной системе отсчета. Он описывает относительное движение точки.

- радиус-вектор, определяющий положение точки М/ подвижной системы в этой же системе.

- радиус-вектор, определяющий положение точки М/ подвижной системы в неподвижной системе отсчета. Он описывает переносное движение точки.

- радиус-вектор, определяющий положение движущейся точки М в неподвижной системе отсчета. Он описывает абсолютное движение.

3.2 Теоремы о схождении скоростей и ускорений

Скорости и ускорения точки в различных движениях будем определять как первую и вторую производные по времени от соответствующих радиусов-векторов.

1. Относительную скорость и относительное ускорение находим как первую и вторую производные по времени от радиус-вектора , считая единичные орты константами (в подвижной системе – они постоянны).

(3.3)
(3.2)

2. Переносную скорость и переносное ускорение находим как первую и вторую производные по времени от радиус-вектора , считая координаты х/ , у/ , z / константами, а единичные орты – переменными.

так как дифференцирование проведено, то мы можем воспользоваться равенствами (3.1), т.е. заменить х/ на х , у/ на у , z / на z :

(3.5)
(3.4)

3. Абсолютную скорость и абсолютное ускорение находим как первую и вторую производные по времени от радиус-вектора , считая все величины переменными:

Таким образом доказана теорема сложения скоростей:

Абсолютная скорость равна геометрической сумме переносной и относительной скоростей.

(3.6)

находим абсолютное ускорение:

где введено обозначение:

(3.7)

Величина , определяемая равенством (3.7) называется поворотным ускорением или ускорением Кориолиса, по имени французского ученого, доказавшего теорему сложения ускорений:

Абсолютное ускорение точки равно геометрической сумме переносного, относительного и Кориолисов ускорений.


(3.8)

3.3 Ускорение Кориолиса, его величина направление и физический смысл

Рассмотрим ускорение Кориолиса, определяемое равенством (3.7). Если подвижная система движется относительно неподвижной поступательно (т.е. переносное движение поступательное), то единичные орты будут постоянны и по модулю и по направлению и их производные по времени будут равны нулю, следовательно и ускорение Кориолиса равно нулю.

Теорема о сложении ускорений при поступательном переносном движении будет выражаться равенством:

(3.9)

Рассмотрим переносное вращательное движение. Пусть подвижная система вращается вокруг оси О3 с угловой скоростью (рис. 3.2). единичные орты можно рассматривать как радиус-векторы точек А , В и С соответственно. А производные по времени от радиус-векторов точек дают скорости точек.



Следовательно:

; ; (а )

с другой стороны, скорости точек А, В и С мы можем найти как во вращательном движении по формуле (2.11):

; ; (б )

сравнивая (а ) и (б ) находим, что:

; ; ;(в )

Подставим эти значения в формулу (3.7)

Таким образом ускорение Кориолиса равно удвоенному векторному произведению вектора угловой скорости переносного движения на вектор относительной скорости.

(3.10)

Его величина


(3.11)


В соответствии с правилом векторного произведения ускорения Кориолиса направлено перпендикулярно плоскости, в которой лежат векторы и , в ту сторону, чтобы, глядя навстречу ему, мы видим поворот вектора к вектору на меньший угол происходящим против часовой стрелки.

Другое правило: чтобы найти направление ускорения Кориолиса, надо вектор спроецировать на плоскость, перпендикулярно оси переносного вращения, и полученную проекцию повернуть на 90о в сторону вращения. Эти и будет направление вектора .

Физический смысл ускорения Кориолиса выясним на таком примере. Пусть круглая платформа вращается с постоянной угловой скоростью , а по радиусу платформы двигается точка М с постоянной относительной скоростью V ч (рис. 3.3). В некоторый момент точка занимает положение Мо ,а через промежуток времени положение М1. При этом произошло изменение относительной скорости за счет переносного движения (изменилось направление вектора ) и изменение переносной скорости за счет относительного движения (изменилась величина в результате удаления точки от оси вращения). Эти два изменения и характеризуются ускорением Кориолиса.

Таким образом, ускорение Кориолиса характеризует изменение относительной скорости в результате переносного движения и изменение переносной скорости в результате относительного движения.

В общем случае движения формулы (3.8) удобнее использовать в таком виде:

(3.12)

Задача кинематики плоского движения твердого тела - найти характеристики движения самого тела и отдельных его точек. В данном задании к таким характеристикам относятся векторы угловой скорости и углового ускорения тела.

Рис. 1

Основные формулы кинематики плоского движения твердого тела - векторные формулы, связывающие соответственно скорости и ускорения двух произвольных точек плоской фигуры, например, точек А и В (рис. 1)

B = A + BA = A + ´;(1)

B = A + + = A + × (´) + × ;(2)


где , , - векторы угловой скорости и углового ускорения вращения плоской фигуры вокруг любой оси, например Az' перпендикулярной плоскости движения Oxy относительно системы координат Ax'y'z', оси которой параллельны осям неподвижной системы координат Оxyz.На рис.1 оси Оz. и Аz' не изображены, так как считается, что они перпендикулярны к плоскости рисунка и направлены на наблюдателя, а плоскости Охy и Аx'y' совпадают с плоскостью рисунка.

Левые части выражений

BA = ´; = × (´) = × BA ; = × ;

являются соответственно векторамискорости, нормального и касательного ускорения точки В относительно системы координат Ax'y'z'при вращении отрезка АВ в плоскости рисунка вокруг точки A, называемой в таком случае полюсом, с угловой скоростью и угловым ускорением . Индексы n и t , в выражениях и указывают, что эти векторы направлены соответственно по внутренней нормали и касательной в точке Bк окружности радиуса r = AB с центром в точке А. Модули упомянутых векторов находятся по формулам

½BA ½ = ´AB;½½ = = ´AB;½½ = ´AB;(3)

Векторы BA , , лежат в плоскости движения плоской фигуры тела, причем ненулевые векторы BA , перпендикулярны отрезку AB, а ненулевой вектор направлен от точки В к точке А . Таким образом, для этих векторов всегда известны линии действия.

Поскольку модуль ускорения может быть вычисленпо формуле (3) через угловую скорость тела , обычно известную к этапу нахождения ускорений, целесообразно в формуле (2) вектор записывать вслед за известным векторомА , т.е. перед вектором .

Векторы и параллельны оси Оz и поэтому полностью определяются своими проекциями на эту ось

Модуль проекции равен модулю вектора ;, а знак проекции указывает на направление вектора. Например, если проекции векторов положительны (, то векторы направлены так же, как и , или ось Oz. Таким образом, при плоском движении тела задача нахождения векторов сводится к задаче отыскания их проекций на ось Oz или Az'.

Если (рад) - угол между осью Ax' (Ох) и вектором (рис. 1) и за положительное направление отсчета угла для выбранной системы координат принято направление против хода часовой стрелки, то

рад/с; = = рад/с.(4)

О направлении векторов и судят по круговым стрелкам и согласно правилу: "круговая стрелка, направленная против хода стрелки часов, соответствует вектору, направленному так же, как ось Oz".

Из формул, использующих понятие МЦС (точка Р) на рис.2,

´;B = ;;

;,(5)

следует, что в данный момент времени распределение скоростей точек тела при плоском движении таково, как если бы тело вращалось вокруг оси Рz с угловой скоростью .


Если отсчитывать угол 90 от направления вектора скорости точки A к направлению АР от этой точки до МЦС, то направление отсчета угла совпадает с направлением круговойстрелки . Этот факт можно использовать для определения направления вектора .

Из формул, использующих понятие МЦУ (точка Q на рис. 3),


;;(6)

,

следует, что в данный момент времени распределение ускорений точек тела при плоском движении таково, как если бы тело вращалось вокруг оси Qz с угловой скоростью и угловым ускорением .

Угол отсчитывается от вектора ускорения какой-либоточки в направлении круговой стрелки . При отыскании положения МЦУ по ускорениям двух точек, например по и, под углом к соответствующим ускорениям проводят лучи AQ и BQ. Точка пересечения лучей (точка Q) является МЦУ плоской фигуры в данный момент времени.

Направления векторов и помимо формул (4) могут быть найдены из отдельных векторных формул

;;.(7)

Рис. 4

Чтобы избежать анализа расположения трех взаимно перпендикулярных векторов формул (7) при известных , , направления и находят аналогично случаю вращательного движения тела вокруг неподвижной оси (рис. 4).

Рис. 5

Кинематика плоского движения

катка радиуса R. при отсутствии скольжения по направляющей (в общемслучае криволинейной), имеет некоторые особенности вследствие того,что мгновенный центр скоростей катка (точка Р ) совпадает с точкой окружности касающейся направляющей (рис. 5). Поэтому при движении каткарасстояние от его центра (точкиА) до МЦС является неизменным во времени и равнымR.

AP(t) = const = R(8)

Свойство неизменности расстояния АР позволяет установить дополнительные соотношения, удобные для расчетов кинематических характеристик катка. Представим вектор скорости точки А с помощью:

а) формулы естественного способа задания движения точки

, где - единичный вектор естественного трехгранника, касательный в точке A к кривой ее движения; SA - криволинейная координата точки;

б) формулы (7) плоского движения тела


,

;

- орт оси Оz , перпендикулярной плоскости движения катка Qxy;j - угол, задающий направление какого-либо отрезка плоской фигуры катка. Ввиду произвольности выбора такого отрезка, обычно собственно отрезок, не указывают на рисунках, а изображают лишь круговую стрелку положительного направления отсчета угла j, называя его углом поворота катка.

Приравнивая правые части последних формул, имеем

.

Поскольку вектoр коллинеарен результату векторного произведения

(^, ^), то

.

Откуда, используя свойство (8), получим формулы

, или , (9)

справедливые для любого момента времени t.

В правой части формулы (9) берется знак "+", если при мысленном увеличении угла поворота катка jв направлении против хода стрелки часов наблюдается возрастание координаты SА центра движущегося катка в положительном направлении ее отсчета, иначе берется знак "-".

Так, например, для случая отсчетов SА и j, изображенном на рис.5, в формуле (9) необходимо брать знак "-".

Дифференцируя и интегрируя по времени соотношения (9), придем к выражениям

, или ,(10),

а также ,

где С - некоторая константа, значение которой зависит от выбора начал отсчетов SА и j. Обычно принимают С=0, так как считают, что когда SА =0, j также равно нулю. Из произведения соответствующих частей формул (9), (10),

(11)

следует, что если векторы , сонаправлены, то сонаправлены и векторы , .

Таким образом, с помощью формул (1-4), (8-9) могут быть найдены характеристики векторов скоростей и ускорений точек, векторов угловых скоростей и ускорений звеньев механизма, а с помощью формул (5, 6), (11) осуществлена их проверка.

Нахождение кинематических характеристик движения (, , , ) при помощи векторных формул (1), (2) рекомендуется проводить следующим образом:

1) написать формулу (1) или (2) применительно к конкретным точкам рассматриваемого звена механизма. При этом в качестве полюса следует взять точку с известными кинематическими характеристиками движения;

2) установить, известны или неизвестны на данном этапе решения две независимые характеристики {проекции на две оси или модуль и направляющий угол) для каждого вектора, входящего в уравнение (1) или (2). Найти значения тех независимых характеристик векторов, которые могут быть установлены из условий движения звена без решения рассматриваемого векторного уравнения;

3) решить векторное уравнение графоаналитическим или аналитическим методом (метод проекций).