Скачать .docx |
Реферат: Исследование движения тел в диссипативной среде
Исследования движения тел в диссипативной среде
Приборы и принадлежности: сосуд с исследуемой жидкостью, шарики большой плотности, чем плотность жидкости, секундомер, масштабная линейка.
Цель работы: изучение движения тела в однородном силовом поле при наличии сопротивления среды и определение коэффициента трения (вязкости) среды.
Исследуемые закономерности.
На достаточно маленький твердый шарик, падающий в вязкой жидкости, действуют три силы:
1). Сила тяжести
(1)
Где R - радиус шарика; - плотность шарика;
2). Выталкивающая сила ( сила Архимеда )
(2)
где - плотность жидкости;
3). Сила сопротивления среды ( сила Строкса )
(3)
Где - вязкость жидкости; - скорость падения шарика.
Формула (3) применима к твердому шарику, окруженному однородной жидкостью, при условии, что скорость шарика невелика и расстояние до границ жидкости значительно больше, чем диаметр шарика.
Результирующая сила
(4)
В нашем случае, при , пока скорость невелика, шарик будет падать с ускорением. По достижении определенной скорости , при которой результирующая сила обращается в нуль, движение шарика становится равномерным. Скорость равномерного движения можно определить из условия:
(5)
Время, за которое тело могло бы достичь стационарной скорости , двигаясь с начальным ускорением *, называют временем переходного процесса (или временем релаксации ) (смотри рисунок).
Временная зависимость на всех этапах движения описывается выражением
(6)
Определив установившуюся скорость равномерного падения шарика, можно из соотношения (5) найти коэффициент вязкости жидкости
(7)
или
(8)
Где D - диаметр шарика; - его масса.
Коэффициент численно равен силе трения между соседними слоями при единичной площади соприкосновения слоёв и единичном градиенте скорости в направлении, перпендикулярном слоям. Единицей вязкости служит .
В установившемся режиме движения сила трения и сила тяжести ( с учётом силы Архимеда ) равны друг другу и работа силы тяжести переходит целиком в теплоту. Диссипация энергии за 1 с ( мощность потерь ) находят как , таким образом
(9)
Методика эксперимента
Телом, движение которого наблюдают, служит шарик (D<5мм), а средой - вязкие жидкости. Жидкость наполняет цилиндрический сосуд с двумя поперечными метками на разных уровнях. Измеряя время падения шарика на пути от одной метки до другой, находят его среднюю скорость. Найденное значение можно отождествить с установившейся , если расстояние от верхней метки до уровня жидкости превышает путь релаксации (смотри рисунок). Масса шарика определяется взвешиванием на аналитических весах.
Обработка результатов
№ | 1 | 2 | 3 | 4 | 5 | |
кг | 113* | 114* | 112* | 120* | 117* | 0,5* |
м | 0,2 | 0,2 | 0,2 | 0,2 | 0,2 | 0,5* |
с | 5,86 | 5,87 | 5,55 | 5,37 | 5,45 | 0,5* |
Вычислим скорость прохождения шарика между слоями в сосуде , :
1.
2.
3.
4.
5.
Определим вязкость среды (через диаметр), зная, что кг/м3 , а кг/м3
,
1.
2.
3.
4.
5.
Вычисляем вязкость среды по формуле , :
1.
2.
3.
4.
5.
Определим время релаксации:
, где , ,
м/
1.
2.
3.
4.
5.
Расчет мощности потерь :
[P]=[Вт]
1.
2.
3.
4.
5.
Полученные значения вязкости жидкости образуют выборку в порядке возрастания
данные | 1,068 | 1,086 | 1,11 | 1,14 | 1,15 |
Проверим выборку на наличие грубых погрешностей.
Предположим, что промахи исключены.
R (размах выборки)=׀׀=1.15-1.068=0,082
Для N=5 и Р=95% существует
U=׀׀/R
U=׀1.14-1.11׀/0.082=0.036
U=׀1.15-1.14׀/0.082=0.012
Следовательно, промахов в выборке нет.
Рассчитаем среднее выборочное значение:
= 1,1108
Вычислить выборочное среднее квадратическое отклонение
0,11
Вычисляем случайную погрешность:
Приборная погрешность:
Окончательный результат:
Вывод: при выполнении лабораторной работы мы изучили движение в диссипативной среде и рассчитали коэффициент внутреннего трения среды.