Скачать .docx |
Реферат: Вывод и анализ формул Френеля на основе электромагнитной теории Максвелла
МГТУ им Н.Э.Баумана
гр. ФН2-41
Котов В.Э.
Вывод и анализ формул Френеля на основе электромагнитной теории Максвелла.
(по материалам лекций Толмачева В.В.)
Постановка задачи
Пусть имеются две диэлектрические среды 1 и 2 , с электрической и магнитной проницаемостью и
соответственно. Из среды 1 в 2 падает плоская монохроматическая волна (границу раздела будем считать плоской).При переходе через границу раздела волна разделится на две части : отраженную волну (в среде 1) и преломленную волну (в среде 2) , необходимо выяснить соотношения между углами
и
, а также между интенсивностями падающей и отраженной волн (рис 1).
рис.1
Данная волна должна представлять собой точное решение уравнений Максвелла : и
(1) (учитывая , что среда диэлектрическая , т.е.
)
для плоской монохроматической волны точное решение этих уравнений будет (если оси Х направить в сторону распространения волны):
и
(
=
=0) (2)
где A и B , и
,
- постоянные (не зависят от времени и координаты) ,
и
- характеристики среды , в которой распространяется волна ,
, t - рассматриваемый момент времени
x - рассматриваемая координата на оси Х
V - скорость распространения волны в данной среде
(естественно , в силу линейности уравнений Максвелла любая сумма таких волн будет также их точным решением )
Также она должна удовлетворять условиям на границе раздела : и
не терпят разрыва на поверхности раздела ,
и
также не терпят разрыва , поскольку на границе раздела не течет ток и нет поверхностной плотности заряда:
(3)
(индексом 1 обозначаем все , относящееся к первой среде , индексом 2 - ко второй)
Таким образом , необходимо построить точное решение уравнений (1) , удовлетворяющих условиям (3). Для этого рассмотрим два случая : случай ТМ -волны (р-волны ) - вектор перпендикулярен плоскости падения (трансверсальная магнитная) , и случай ТЕ-волны (s-волны)- вектор
перпендикулярен плоскости падения (трансверсальная электрическая). Любая плоская волна (с любой поляризацией) может быть представлена как линейная комбинация двух таких волн.
Случай ТМ -волны (p - волны )
рис.2
Из рисунка видео , что , запишем условия равенства
на границе раздела :
( учитывая , что волна в среде 1 есть сумма падающей и отраженной волн)
подставляем значения:
подставляем из (2) :
Аналогично , поскольку получаем для вектора
на границе раздела:
( c учетом (2) )
для выполнения равенств для и
потребуем
равенства аргументов косинусов :
потребуем также равенства начальных фаз:
из рисунка видно , что :
,
(4)
(,
и
- соответственно : угол падения , угол отражения и угол преломления ) , тогда имеем :
из равенства аргументов получаем :
(т.к. ,
)
т.е. получены , как и следовало ожидать , законы отражения и преломления света
разделим теперь выражения дляи
на
, получим (c учетом (4) ) следующую систему :
(5)
здесь неизвестными являются и
, а
- заданно.
Умножим первое уравнение на а второе на
и вычтем из первого второе , тогда члены с
сократятся и получим:
поскольку для неферромагнетиков магнитная проницаемость незначительно отличается от единицы , то для сравнительно широкого класса сред можно считать
, тогда:
.
( разделим числитель и знаменатель на , и учтя , что
)
применив закон преломления , получим (6):
из второго уравнения системы (5) получаем для :
(поскольку полагаем
,) , тогда:
(7)
проверим теперь выполнение еще двух условий на границе раздела ,которые мы не учли - и
. Второе равенство выполняется заведомо , поскольку
, проверим первое равенство
:
из рисунка видно , что , а
подставим значения
,
и
( из 2) , сократив сразу на
, и учитывая (4) :
(выражая
через второе уравнение системы (5) )
Таким образом действительно получено точное решение уравнений (2) , удовлетворяющее всем начальным условия. Итак , имеем следующие формулы Френеля для случая s-волны для отражения и преломления (из (6) и (7) ):
и
Случай ТЕ -волны ( s - волны)
рис.3
Из рисунка видно , что
Условия (3) для и
:
подставляя значения и
из (2) получим :
как и в случае ТМ-волны предполагаем равенство аргументов косинусов и совершенно аналогично получаем в этом случае закон отражения и преломления света , сокращая на
и с учетом (4) получим систему :
(8)
умножим первое уравнение на а второе на
и вычтем из первого второе :
поскольку мы полагаем (см. выше) то
(9)
из второго уравнения системы (8) получаем:
(10)
проверим теперь неучтенные условия на границе раздела : и
.
Второе условие выполняется , поскольку , проверим выполнение равенства :
из рисунка видно , что
, а
подставим значения
,
и
( из 2) , сократив сразу на
, и учитывая (4) получим :
подставляем из второго уравнения системы (8) :
таким образом мы действительно нашли точное решение уравнений (2) , удовлетворяющее всем начальным условиям . В случае p-волны имеем следующие формулы Френеля для отражения и преломления (из (9) и (10))
и
Анализ формул Френеля
Исследуем отношения энергий (точнее плотности потока энергий ) падающей и отраженной ТМ и ТЕ волн и падающей и прошедшей волн в зависимости от угла падения . Для этого рассмотрим отношение нормальной составляющей вектора Пойтинга
падающей и отраженной (
и
в случае ТМ и ТЕ волн соответственно) и падающей и прошедшей (
и ) волн. Тогда с из полученных формул Френеля для отражения и преломления , с учетом (2) будем иметь:
А. Отражение
Исследуем сначала поведение и
на границах отрезка
:
при (просто положить
равным нулю нельзя , потому что будет неопределенность ):
для случая падения из воздуха в стекло () :
т.е. это величина порядка нескольких процентов (можно заметить , что если поменять среды местами - т.е. рассматривать падение из воды в воздух , то это значение не изменится)
В случае падения из оптически менее плотной среды в оптически более плотную при:
Действительно, преломленной волны при скользящем падении не образуется и интенсивность падающей волны не меняется.
В случае падения из оптически более плотной среды в оптически менее плотную , необходимо учесть явление полного внутреннего отражения , когда прошедшей волны нет - вся волна отражается от поверхности раздела. Это происходит при значениях больших , чем
, вычисляемого следующим образом:
Для падения из стекла в воздух
Здесь не рассматривается полное внутреннее отражение , поэтому в случае падения из оптически более плотной среды в оптически менее плотную изменяется до
, в этом случае:
Далее исследуем поведение этих функций между крайними точками , для этого исследуем на монотонность функции: и
Нам понадобится производная , найдем ее как производную функции , заданной неявно :
Знак этой производной ( поскольку
,
) зависит только от знака выражения
, это выражение > 0 , когда
(то есть падение из оптически мене плотной среды в оптически более плотную ) и <0 , когда
(из более оптически плотной в менее оптически плотную ) , следовательно в первом случае
монотонно возрастает, а во втором , убывает . Но в случае
, следовательно по модулю это выражение будет возрастать , в случае
оно также будет по модулю возрастать . Таким образом ,
, как квадрат этого выражения , в обоих случаях монотонно возрастает от
при
до 1 при
.или
.
Знак этой производной ,( поскольку ,
есть >0 при и <0 при
.
Знак функции меняется следующим образом :
при если
невелико
>0 , но эта функция проходит через нуль. Поскольку числитель , при рассматриваемых пределах изменения
в 0 обращаться не может[2]
[к2]
это происходит тогда , когда знаменатель обращается в бесконечность т.е.:
Это есть угол Брюстера () , при котором
обращается в 0 , то есть отраженная волна отсутствует . Для случая падения из воздуха в стекло
, для обратного случая (из стекла в воздух)
При переходе через этот угол
меняет знак на минус , следовательно
как квадрат этой функции сначала убывает (до нуля) , а затем возрастает (до 1).
При для небольших
<0 , при переходе через
знак будет меняться на плюс. Переход через
действительно будет иметь место , хотя
изменяется до
,а не до
, поскольку
. Таким образом
снова монотонно убывает до 0 , а затем монотонно возрастает до 1.
Итак , в обоих случаях сначала монотонно убывает от
при
до 0 при
, а затем монотонно возрастает до 1 при
или
.
Полученные зависимости иллюстрируются следующими графиками :
на первом показана зависимость (сплошная линия) и
(пунктирная линия) от
для случая падения волны из воздуха в стекло (n=1.51)
на втором -для случая падения волны из стекла в воздух
В. Преломление
Для анализа поведения и
воспользуемся следующим соображением - падающая волна на границе раздела разделяется на две - прошедшую и отраженную , причем энергия падающей волны (энергия , переносимая волной через границу раздела сред) уходит в энергию отраженной и преломленной волн (поскольку никаких других источников нет). Поэтому , поскольку коэффициент
показывает отношение энергии прошедшей волны к энергии падающей ,
- отношение энергии отраженной волны к энергии падающей в p-волне , а
и
- аналогичные отношения в s-волне , должны выполнятся соотношения :
и
Действительно , проверим это :
рассмотрим отдельно числитель:
таким образом действительно
, аналогично
Таким образом , используя предыдущее исследование ,
можно сказать , что :
Для случая падения из воздуха в стекло (а можно заметить , что если среды поменять местами , то это значение не изменится )
Между этими точками и
ведут себя противоположно
и
.
Окончательно , монотонно возрастает от
(
)до
, а затем монотонно убывает до 0 ( при
) ,
монотонно убывает от
до 0 (при тех же пределах изменения
).
Причем как для случая падения из менее оптически плотной среды , так и из более оптически плотной. Ниже на рисунке представлены графически зависимости для обоих этих случаев.
С. Набег фаз при отражении и преломлении
Из формул Френеля следует , что отношения ,
,
и
могут в принципе получится и отрицательными . Поскольку амплитуда есть существенно положительная величина , в этом случае имеет место сдвиг фазы волны на
. Далее выясним , когда такой сдвиг имеет место.
В случае отраженной p-волны , как установлено в п. А , эта функция
при n>1 больше 0 при и меньше 0 при
, при n<0 промежутки знакопостоянства меняются местами . Таким образом , в случае падения из менее оптически плотной среды в более плотную сдвиг фаз на
в отраженной
p-волне наблюдается при
, а в случае падения из более плотной в менее плотную - при
.
В случае отраженной s-волны , эта функция меньше 0 при
и больше 0 в противном случае. Таким образом , сдвиг фаз на
в отраженной
s-волне наблюдается при падении из менее оптически плотной среды в более плотную , и не наблюдается при падении из более плотной среды в менее плотную
.
В случае произвольно падающей линейно поляризованной волны , которая представляется в виде суммы p и s-волн , в отраженной волне , таким образом , можно получить , в общем случае волну произвольной (эллиптической) поляризации .
Для исследования сдвига фаз в прошедшей волне , воспользуемся соотношениями , возникшими как промежуточные результаты при выводе (7) и (10) :
и
из этих соотношений видно , что , поскольку и
, то всегда
и
. То есть , в прошедшей волне изменения фазы не происходит (причем это верно для волн произвольной поляризации).
Дополнительная литература :
Cивухин Д.В. “Общий курс физики. Оптика” , Москва , “Наука”,1985г.
Савельев И.В. “Курс общей физики” , том 2 , Москва , “Наука” , 1979г.
[1]
-здесь под n понимается показатель преломления той среды , куда падает луч относительно той , откуда он падает , в оптике в этом случае под n понимают показатель преломления оптически более плотной среды относительно оптически менее плотной , т.е. в этом случае в этой формуле стоит
[2]
-- числитель также не может обращаться в бесконечность , поскольку это возможно только в случае , но в этом случае
, а это невозможно т.к.
и
[к1]
-здесь под n понимается показатель преломления той среды , куда падает луч относительно той , откуда он падает , в оптике в этом случае под n понимают показатель преломления оптически более плотной среды относительно оптически менее плотной , т.е. в этом случае в этой формуле стоит