Скачать .pdf |
Реферат: Единая геометрическая теория классических полей
. .
(dimstein@list.ru)
, .
, 2007 .
.
- ,
- . -
! !
! ! . "
! ! ,
# $$#
!. %
& ,
! , ! & .
1.
!
" # # . $ # -
, – # .
% , # # & & –
’ . ( ( # &# & & ) # . )
# , ’ # .
& # #
, ’ # &. * ’
’ # # ,
- ,
. *
& #&# # # & & –
& & – # !" # "
(# ) . +# # #
& #, #
’ # # # .
( #
(’ # - , # ). ( & # & #
# & & – ’ . ,# , & , ’ # #. ) # , #
’ ,
# #.
* # #
( ! ( ’ # ), #
’ . $ ’
# & #
.
2.
# &#
( ! , & ’ . )
– - -%
"& - [14]. * ’
&# # # & & & & , # &:
# #, # # ( , #).
, - -%
, 24 .
# # &# , # # . * # # |
||
& . % ( ! # |
||
- ( ). |
" |
|
. # , |
# |
|
, ’ , (−,+,+,+). |
, # # |
|
% # & ! # . |
# # |
|
A) * - ’ . |
||
B) / # - ’ # . |
# |
|
C) * # - # #. |
#, # |
|
* A ’ |
- |
|
, & |
, B |
|
# ’ . ) |
, $ |
|
( ! , |
! |
# , - -% . ( #" ,
# ’ . * . # # ,
# .
. 0 - ,
’ , , & , # # #
(Ωα⋅µν=Ωα⋅[µν]):
(1) Ωα ⋅ µν=∆α µ ν−∆α ν µ
# ∆α µ ν – . * ’ . .
∆α µ ν # :
(2)
# K – , # #
(K α µν= K [ αµ] ν), Γµ α ν – % ( , . 1-3).
$ # #
" $. # & ( ) ’ ( ’ # ) #:
(3) dds 2x 2µ µ dxds α dxds β= 0
+∆(αβ)
d 2x µ
(4) ds 2 +Γαµβ dxds α dxds β= 0
(3) #, (4) ’ .
. $ (3) (4) # #, #,
# :
(5) ∆µ(αβ) =Γαµβ
$ (2) ’ # !:
(6) ∆µ [ αβ] = K µ ⋅ αβ
, # #
#. , # (K α µν= K [ αµν] ). . (1) (6) ’
!
(7)
, #, |
(Ωαµν=Ω[αµν] ). 1 |
, |
|||||
$ # |
. |
||||||
% , # |
(7) |
. |
* ’ .
3. !" " !"# !- " $ % ! && #
, & -
- -% , #, ( ),
’ #, ,
# .
1) . ( # -
# :
(8) ds 2 = g µν dx µ dx ν
g µ ν # ∇α g µ ν= 0,
# ∇α – # # x α ( ,
. 4-5).
2) . . 0 ,
, ",
# & . ,
A , # # (2)
#:
(9) ∆α µ ν=Γµ α ν + iA α ⋅ µν
# A α µν=−A µ αν=−A α νµ=−A ν µα= A [ αµν] . . % #
:
(10)
$ # A
# #:
(11) A αµν=−εαµνσA σ
# A µ – # , εα βµν – 2 3 .
A µ # # :
(12) A µ=−εµαβγA αβγ
( # ’ , # # ’ a µ :
(13) a µ = q ˆA µ
# q ˆ – ’ #. . ! (13)
’ . % q ˆ #
# ! # , , &
( A ~ A µ ~ 1/q ˆ ).
1 " (9) # :
(14) Ωα ⋅ µν= 2∆α [ µν] = 2iA α ⋅ µν
$ # "
. * # ,
#
∆α µ ν #
# , # Γµ α ν ( , . 6).
3) % . 1 - # # ( , . 7): (15) R α⋅µβν=∂β∆αµν−∂ν∆αµβ+∆ατβ∆τµν−∆ατν∆τµβ |
∆α µ ν |
1 - &# " - R :
(16) R µν=∂σ∆σµν−∂ν∆σµσ+∆στσ∆τµν−∆στν∆τµσ |
|||
. " (9) - # ( , . 8): (17) R µν= R ~µν+ R ˆµν ~ (18) R µν=∂σΓµσν−∂νΓµσσ+ΓτσσΓµτν−ΓτσνΓµτσ (19) R ˆ µ ν= i ∇ ~ σA σ ⋅ µν− A τ ⋅ σµA σ ⋅ τν |
# # |
||
~ 4# R µ ν – - ; R ˆ µ ν – |
- , |
||
( ). . |
∇~ α |
||
# (# Γµ α ν ). (11) , (20) A τ⋅σµA σ⋅τν=−2(A µA ν− g µνA αA α) |
! |
||
. (17), (18), (19) (20) - , #: ~ (21) R (µν) = R µν+ 2(A µA ν− g µνA αA α) (22) R [ µν] = i ∇~ σA σ ⋅ µν |
|||
% # (21) (22), - |
|||
# , |
. |
||
, - F µ ν, # - # : (23) R µ ν= R ( µν) + iF µ ν (24) F µ ν=∇~ σA σ ⋅ µν |
1 F µ ν , #
F µν :
(25) F µ ν= 1 εµ ναβF αβ
2
* (24) (11), & &#, # - (25) :
(26) F µν =∂µ A ν −∂ν A µ
, # " ’ .
. (13) (26) " ’ f µ ν
# # #
- :
(27) f µν =∂µ a ν −∂ν a µ = q ˆF µν
. - (21)
# :
(28) R = g µνR (µν) = R ~ − 6 A αA α
# R ~ = R ~ µ ⋅µ – .
1 , # ’ , # #
& ’ . * ’ ’
( ), "
’ – - .
A µ # -
F µ ν & ’ a µ
" f µ ν, & & ’ .
4. ’ $ !"( %’ #$"# #
4 , # -
, ,
:
(29) δ LG − g d 4 x = 0
# LG – # . 2 , - , # ,
(29). 2 LG , ( ! ,
- .
* & ’- ( , . 9-10)
- :
(30.1) Rc
(30.2) Rc R µν R αβ
(30.3) Rc
(30.4) Rc (4) ≡δα⋅β⋅γ⋅λ⋅µνστR µνR αβR στR γλ
* " & - #
#, , " & #
. & "& & - (30) # # . * Rc (1) (30.1) # R . (28) (13)
:
(31) Rc (1) = R = R ~ −6A αA α= R ~ − q ˆ62 a αa α
$ Rc (2) (30.2) δα ⋅ β ⋅ µν &
# - ,
(22) |
(24) |
’ ! |
R [ µν] = iF µν. |
’ |
!, (25) (27), &# : |
(32) Rc (2) f αβ f α β q ˆ
& (31) (32) #, |
- Rc (1) |
|||
Rc (2) # &# |
# |
# |
||
. $ |
R ~ , # |
&# |
||
( ! , # |
" f αβ f α β, |
|||
’ |
. 1 |
# & # & & - Rc (1) Rc (2) , " !
# .
3 LG
. (§ 2). . ’ #
# L 2 (R ) , # :
(33) L 2 = (R − R 0 )2 = R 2 − 2R 0 R + R 0 2
# R 0 – . 2 LG L 2
&
- :
(34) L G = L 2 (R n →Rc (n ) )=Rc (2) −2R 0Rc (1) + R 02
$ (34) # # & " #
(33). * R 0 , &# LG ,
# ,
. . " (31) (32) #
#:
(35) L G =− R 0 1q ˆ2 f αβf αβ+ R ~ − q ˆ62 a αa α− R 20
. ’ ,
&#:
(36) q ˆ = 8 π
κR 0
(37) Λ= R 0
4
# Λ – (Λ ~ 10−56 −2 ), κ – ( ! . .
" ! (36) # LG ! #:
(38) LG =−(f αβ f αβ + 6R 0 a α a α )+ R ~ − 1 R 0
2
, # # ’ |
||||
R 0 . ,# |
, ! (37), R 0 |
|||
# |
(38) .
5. )"#
|
|||
(29) |
(34) |
, |
||
# |
- |
, |
||
’ , |
& |
& |
||
. |
. " (38) |
|||
(29) #: |
||||
( # #
(39) δ −(f αβf αβ + 6R 0 a αa α)+ R ~ − 1 R 0 − g d 4 x = 0
2
~ = g
# R
(40)
(41)
#
(42)
(43)
G µ ν –
.
’
1
’
’
# µν R ~ µν. $ g µν , Γµ α ν a α ( ) ( (10)):
G µ
∇~σf µσ+3R 0a µ= 0
# :
≡ R ~µ ν − 1 g µ νR ~
G µ ν
2
T ˆµν ≡ 41π f a µa a αa α
( ! , T ˆ µ ν – " ’ - ’ . (40) (41), & , # #
’ # .
#
’ # (41)
- ’ (43), (40) # ( ! , #
. ’ (41) - ,
& .
, |
, |
, |
|||
’ . * |
’ |
||||
. $ |
R 0 |
||||
& |
(40) |
(41) |
& , |
||
& |
& |
||||
’ |
. |
(41) |
|||
# |
a µ " |
f µν |
|||
. $ |
, # |
a µ , |
|||
, # f µ ν, |
’ |
. |
|||||
- |
T ˆµν (43), |
&# |
(40) |
|||
’ - : |
’ |
. % |
# |
’ |
(44) µ a µ
. * # |
(41) (41) |
& # |
&#, |
. ~ ∇µ a µ = 0. |
1 T ˆ µ ν # # ’ #
&, ’ - :
(45) ∇µ T ˆµν = ∇~ µ T ˆµν = 0
$ & (45) (40) #
" # 5 , & .
#
R 0 . . (40) :
(46) − R ~ + R 0 = − 3κ4πR 0 a αa α = −6A αA α
, # " (28) &#,
(47) R 0 = R ~ −6A α A α = R
1 , R 0 . *
(40) ! (47) !.
(40) (41) # ,
, & ( ),
& #. 3 ,
, . $ :
(48) G µ
(49) ∇~ σ f µσ +3R 0 a µ =ξj µ
# T µ ν = T ˆ µ ν +T ~ µν, T ~ µν – ’ - , T µ ν – ’ - , j µ – , ξ – (ξ= 4π/ ).
& & #
, & # :
(50) ∇µ πµ = ∇~ µ πµ = 0
(51) ∇µ j µ = ∇~ µ j µ = 0
# πµ = µu µ ( ), j µ = ρu µ ( #), µ –
, ρ – # , u µ –
# (dx µ d τ ). $ µ ρ # ,
" . $ & µ, ρ u µ , # .
- #
. * # (49) #
& # (51) 2 #
’ :
(52) ∇µ a µ = ∇~ µ a µ = 0
(
. ( ’ (49), # a µ #.
* # # (48)
& # ’ - :
(53) ∇µ T µν = ∇~ µ T µν = 0
. ’ ’ -
:
(54) ∇~µT ~µν = −∇~µT ˆµν
. " (44) (49) (52) T ~ µν (54)
! #:
(55) j µ
(55) #
& .
1 # , #
# . 1 ’ - # ! #,
~ = µu µ u ν =πµ u ν ,
# & # & , T µ ν
# µ – #, u µ – #
# #. # (55) # ’ #
" & (50) #:
(56) j µ
+ # # # , # #
# ’- . $ ’ πµ =µu µ = m δ(x − x 0 )u µ j µ =ρu µ = q δ(x − x 0 )u µ , # m q – # . $
(56) " , u β ∇~ β u ν = du ν d τ+ Γα ν β u α u β , :
du ν
(57) +Γα νβ u αu β= q f u β
d τ mc
( # # . , # , (57) & # . $ # # 2 , & & # &. 1 , # ! # ( ) # |
|
# # , # # .
6. *++%!
|
, |
. ! & ! |
|
# & # &. $ |
’ |
# # # |
|
’ . |
(48) |
# (55) (57) # |
, |
& |
& |
# |
. , |
& ’ |
(49), |
’ - (43). |
,# , # |
R 0 ’ , |
(49), # |
. (49) |
& |
& |
’ |
. 1 , ’ # #, . |
# (49) # |
$ - |
# # |
( g 00 = −1, g 11 = g 22 = g 33 =1) ’ (58) ∂2 a µ −3R 0 a µ = 0 |
(49) #: |
# ∂2 =∆− − 2 ∂t 2 ( ’0 ). ( |
# # |
# - |
, # & |
# # .
(58) # !, & # & . $
# & # & ’ ! # #:
(59) a µ = a 0 µ sin(kx −ωt )
# x – # # # & . *
’ ω k !:
(60) ω2 = 2 (k 2 +3R 0 )
# c – # # &
#. . ! (60) ’ & ! # #,
, # ’ ’ ,
# # :
(61) v =ω k = c 1+ 3 k R 2 0 > c
(62) v = d dk ω = c 1− 3R 0 ωc 2 2 < c
1 , ’ # , & (58), ’ # # ! # c (62). % # (61) (62)
( # ). &
# c . , c
# & , ’ ! # .
$ - ! (58)
#. . (58) ’
’ & # & # :
(64) ϕ = q e −αr
r
# ϕ= a 0 (’ ), q – ’ #, α= 3R 0 = m γ c / , r – # # #. - α
(64) « » ’ .
. , &
’ (58) , ,
! ’ & , m γ :
3R 0
(63) m γ =
c
* ’ # # (62). .
(63)
. (63) ’ .
* ! (37) , &
’ :
(64) 3R 0 ~10−55 −2
(65) m γ ~ 10−65
* # # #
’ . . ’
# # # # :
(66) m γ < 3⋅10−60
1 (65) # ’ . ( ,
# ’ , # " # # ’ , # ’ .
7. ,#%-(
. &
’ , ’ ’ & # . *
#&#,
# ’ . $ - -% ( ). * ’ -
.
. # #
, ’ – ( ),
# & -
. / # ’ # & & ’
. ( #
, " ’ –
# - . * ’ #
# &
’ .
$ & & & (
) # & & # # &
# #, # #.
, # ’
, #"
. 3 ’ &
# , ( ’ - ). ) &
’ # , "
’ # ’ - ’ . $ & &
. * , # " & &
’ , # !
2 . $ &, # , , ( ! ( ).
. ’ , " ’ ,
. * ’
, . * # &#
’ .
$ , #
, # & &
& ! .
_____________________
"
1. 0 - -% :
∆αµν = Γµαν + K α⋅µν
K αµν = −K µαν
2. ." % :
σ =∂µ g , # g = det g µ ν
Γµσ
2g
3. $ # :
Ωαµν = ∆αµν − ∆ανµ = K αµν − K ανµ
K αµν = 1 (Ωαµν − Ωµαν − Ωναµ)
2
4. :
δu µ = −∆µαβu αdx β, δu µ = ∆αµβu αdx β
5. % # :
∇µu ν = ∂µu ν + ∆νσµu σ, ∇~µu ν = ∂µu ν + Γσνµu σ
∇µu ν = ∂µu ν − ∆σνµu σ, ∇~µu ν = ∂µu ν − Γνσµu σ
6. % # # ∆α µ ν = Γµ α ν + iA α ⋅ µν:
A α⋅µα = A α⋅(µν) = 0, ∆αµα = Γµαα , ∆α(µν) = Γµαν
∇µu µ = ∂µu µ+ ∆µσµu σ = ∂µu µ+ Γσµµu σ
∇µ T (µν) = ∂µ T (µν) +∆µσµ T (σν) + ∆ν( σµ ) T (µσ) = ∂µ T µν + Γσ µµ T (σν) + Γσ νµ T (µσ)
7. 1 - :
(∇µ∇ν −∇ν∇µ)u λ = R λ⋅σµνu σ + Ωσ⋅µν∇σu λ
R α⋅βµν = ∂µ∆αβν − ∂ν∆αβµ+ ∆ατµ∆τβν − ∆ατν∆τβµ
Ωα ⋅ µν = ∆α µ ν − ∆α ν µ
8. - - :
R
+∇~ α −∇~νK α⋅βµ+ K α⋅τµK τ⋅βν− K α⋅τνK τ⋅βµ
µK ⋅βν
9. 1 2 3 :
εαβγλ = g [αβγλ], εαβγλ =− 1 [αβγλ]
+1, αβγλ - " 0123
[αβγλ ]= −1, αβγλ - " 0123
0, αβγλ #
10. * ’- :
δα⋅β⋅γ⋅ λ⋅µνστ ≡ −εαβγλεµνστ δα⋅β⋅γ⋅µνσ ≡ −εαβγτεµνστ
!"#!&"#
1. Einstein A., The Meaning of Relativity, Princeton Univ. Press, Princeton, N.Y, 1950
(* #: (!& ! )., . , 2, ., 1955).
2. ). (!& ! , . & #, 1. 1-2, #- «) », ., 1966.
3. E. Schrodinger, Space-Time Structure, Cambridge University Press, 1960 (* #:
(. 6#, * - , , )7 ,
2000).
4. * *. "., * & +. ,., 1 , #- «) », ., 1973.
5. C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation, Freeman, San Francisco,
1973 (* #: -. , , . . , " . / , / , #- « », .,
1977).
6. 0. ). " $ , . 1. % , ). .. 2 , . : #
, #- «) », ., 1986.
7. E. Cartan, Lecons sur la Geometrie des Espaces de Riemann, Gauthier-Villars, Paris, 1928 and 1946 (* #: % (., -
, #- /, ., 1960).
8. +. Cartan, On Manifolds with an Affine Connection and the Theory of General Relativity, translated by A. Magnon and A. Ashtekar (Bibliopolis, Naples, 1986).
9. %. %. 1 , ) # -
, #- «+# -..», 2002 .
10. 3. . - $ , 0 & # , 7),
1 119. . 3, 1976.
11. Alberto Saa, Einstein-Cartan theory of gravity revisited, gr-qc/9309027 (1993).
12. Hong-jun Xie and Takeshi Shirafuji, Dynamical torsion and torsion potential, gr-qc/9603006 (1996).
13. V.C. de Andrade and J.G. Pereira, Torsion and the Electromagnetic Field, gr-qc/9708051 (1999).
14. Yuyiu Lam , Totally Asymmetric Torsion on Riemann-Cartan Manifold, gr-qc/0211009 (2002).