Скачать .docx  

Реферат: Интегрирование уравнений движения материальной точки, находящейся под действием переменных сил

«Интегрирование уравнений движения материальной точки, находящейся под действием переменных сил»


Задание: На наклонном участке АВ трубы на груз D, массой m действуют сила тяжести и сила сопротивления R, расстояние от точки А, где V=V0 , до точки В, равно L. На горизонтальном участке ВС на груз действует сила тяжести и переменная сила F = F(t).

Дано:

m = 4, кг

V0 = 12, м/с

Q = 12, Н

R = 0,8V2 , Н

L = 2.5, м

Fx = -8cos(4t), Н

Определить:

Закон движения груза на участке ВС ( x = f(t) ).

Решение:

1. Пусть груз – материальная точка. Изобразим и . Проведем ось Ax и составим дифференциальное уравнение в проекции на эту ось:

Далее находим:

Учитывая, что Vx = V:

или


Выведем:

где g = 10 м/с.

Тогда:

Разделяя переменные и интегрируя:

По Н.У. при x = 0: V = V0 , откуда:

;

Получим:

;

Откуда:

и

В результате:

Полагая, что x=L=2.5 и заменяя k и n определим VB :

2. Рассмотрим движение на BC.

Рассмотрим движение ВС (V0 = V). Изобразим , , и .

или , где

При t=0; V = V0 = VB = 8.29 м/с:

С2 = VB = 8.29 м/с.


К-3 Вариант 18

авр

А

aA Cv

авр

ac

ацс

Eoa aцс C

aB

Woa


aB О В

Y

aB


X


Дано: ОА=10 АВ=10 АС=5 Woa =2 EOA =6

Найти: Ускорения во всех точках

Va=Woa*OA=20

Va=Wao*Acv=Wab*AB*sin45

Wab=Va/Cva=4/21/2

Vb=Wab*BCv=Wab*AB*cos45=20

Vc=Wab*CCv=21/2 2*BC/2ctg45=521/2 /2

aA bp = Eoa *OA=60

aA цс =WOA 2 *OA=40

aB цс = WOA 2 *AB=80

aB= aA bp +aA цс +aAB ЦС +aAB bp

X: 21/2 /2*aB= aA цс +aAB BP

Y: 21/2 /2*aB= aA BP +aAB ЦС

aAB BP =========== ==MOI===\KOI0-U=140-40=100

EAB =100/10=10

aB= aA вp +aA цс +aAC ЦС +aAC вp

aAC вp = EAB *АВ=50

aAC ЦС = W 2 *АС=40

X: 21/2 /2*ac= aA цс +aAB BP

Y: 21/2 /2*ac= aA BP +aAB ЦС

aC =( acx 2 +acy 2 )1/2

«Определение скорости и ускорения точки по заданным уравнениям ее движения».

Задание: По заданным уравнениям движения точки М установить вид ее траектории и

для момента времени t = t1 (c) найти положение точки на траектории, ее скорость, полное, касательное и нормальное ускорения, а так же радиус кривизны траектории.

Исходные данные:


Решение:

Для нахождения траектории точки, возведем в квадрат и приравняем левые части уравнений движения, предварительно выделив из них cos и sin соответственно, в результате получим:

- траектория точки в координатной форме.

Траектория представляет из себя окружность радиуса r=3 см.

Найдем проекции скорости и ускорения на оси координат дифференцируя по времени уравнения движения:

По найденным проекциям определяются модуль скорости и модуль ускорения точки:

Найдем модуль касательного ускорения точки по формуле:

-выражает проекцию ускорения точки на направление ее скорости. Знак «+» при означает, что движение точки ускоренное, направления и совпадают, знак «-» значит, что движение замедленное.

Модуль нормального ускорения точки: ; Т.к. радиус кривизны известен, но в качестве проверки применим другую формулу для нахождения модуля нормального ускорения:

Когда найдено нормальное ускорение, радиус кривизны траектории в рассматриваемой точке определяется из выражения:

Результаты вычислений занесем в таблицу (для момента времени t = t1 = 1 c):

Координаты (см) Скорость (см/с) Ускорение (см/с2 ) кривизны (см)
x y Vx Vy V Wx Wy W Wn
2.5 5.6 -5.4 3.2 6.3 -12 -8.3 14.6 5.5 13.5 2.922

Найденный радиус кривизны совпадает с определенным из уравнения траектории точки.

На рисунке показано положение точки М в заданный момент времени

Дополнительное задание. Определение скорости и ускорения точки при ее движении по пространственной траектории. Для этого к двум уравнениям движения добавляется 3-е уравнение.

Исходные данные:


Решение:

Определим пространственную траекторию точки в координатной форме:

- траектория точки в координатной форме.

Найдем проекции скорости и ускорения на оси координат дифференцируя по времени уравнения движения:

По найденным проекциям определяются модуль скорости и модуль ускорения точки:

Найдем модуль касательного ускорения точки по формуле:

-выражает проекцию ускорения точки на направление ее скорости. Знак «+» при означает, что движение точки ускоренное, направления и совпадают, знак «-» значит, что движение замедленное.

Модуль нормального ускорения точки: ; Т.к. радиус кривизны не известен, применим другую формулу для нахождения модуля нормального ускорения:

Когда найдено нормальное ускорение, радиус кривизны траектории в рассматриваемой точке определяется из выражения:

Результаты вычислений занесем в таблицу (для момента времени t = t1 = 1 c):

Координаты (см) Скорость (см/с) Ускорение (см/с2 ) кривизны (см)
x y z Vx Vy Vz V Wx Wy Wz W Wn
2.5 5.6 3.5 -5.4 3.2 3.5 7.2 -12 -8.3 0 14.6 5.3 15.5 3.6

«Определение реакций опор твердого тела».

Задание: Найти реакции опор конструкции.


Дано:

Q = 6, кН

G = 2, кН

a = 60, см

b = 40, см

c = 60, см

Определить:

Реакции опор конструкции.

Решение:

К раме ABCD приложены сила тяжести , сила , реакция стержня DC и реакции опор A и B. Реакция шарового шарнира А определяется тремя составляющими: , а реакция петли В двумя: .

Из этих сил – шесть неизвестных. Для их определения можно составить 6 уравнений равновесия.

Уравнения моментов сил относительно координатных осей:

Уравнения проекций сил на оси координат:

Из этих уравнений находим: решая уравнения, находим неизвестные реакции.

Результаты вычислений заносим в таблицу:

Силы, кН
S XA YA ZA XB ZB
1.15 -6.57 0.57 -1 -12.57 2

Проверка:

Проверка показала, что реакции опор твердого тела найдены правильно.

В 18. Д – 1.

Дано: VA = 0, a = 30°, f = 0,1, ℓ = 2 м, d = 3 м. Найти: h и t.

Решение: Рассмотрим движение камня на участке АВ. На него действуют силы тяжести G, нормальная реакция N и сила трения F.Составляем дифференциальное уравнение движения в проекции на ось X1 : = G×sina - F , (F = f×N = fG×cosa) Þ= g×sina - fg×cosa,

Дважды интегрируя уравнение, получаем:

= g×(sina - f×cosa)×t + C1 , x1 = g×(sina - f×cosa)×t2 /2 + C1 t + C2 ,

По начальным условиям (при t = 0 x10 = 0 и = VA = 0) находим С1 и С2 : C1 = 0 , C2 = 0,

Для определения VB и t используем условия: в т.B (при t = t) , x1 = ℓ , = VB . Решая систему уравнений находим:

x1 = ℓ = g×(sina - f×cosa)×t2 /2 Þ 2 = 9,81×(sin30° - 0,1×cos30°)×t2 /2 , Þt = 0,99 c ,

= VB = g×(sina - f×cosa)×t VB = 9,81×(sin30° - 0,1×cos30°)×0,99 = 4,03 м/с ,

Рассмотрим движение камня на участке ВС.На него действует только сила тяжести G. Составляем дифференциальные уравнения движения

в проекции на оси X , Y : = 0 , = G ,

Дважды интегрируем уравнения: = С3 , = gt + C4 ,

x = C3 t + C5 , y = gt2 /2 + C4 t + C6 ,

Для определения С3 , C4 , C5 , C6 , используем начальные условия (при t = 0): x0 = 0 , y0 = 0 , = VB ×cosa , = VB ×sina ,

Отсюда находим : = С3 , ÞC3 = VB ×cosa , = C4 , ÞC4 = VB ×sina

x0 = C5 , ÞC5 = 0 , y0 = C6 , ÞC6 = 0

Получаем уравнения : = VB ×cosa , = gt + VB ×sina

x = VB ×cosa×t , y = gt2 /2 + VB ×sina×t

Исключаем параметр t : y = gx2 + x×tga ,

2V2 B ×cos2 a

В точке С x = d = 3 м , у = h. Подставляя в уравнение VB и d , находим h: h = 9,81×32 + 3×tg30° = 5,36 м ,

2×4,032 ×cos2 30°