Скачать .docx |
Курсовая работа: Разработка технологии полимеризационного наполнения ПКА дисперсными наполнителями
Федеральное агентство по образованию РФ
Министерство образования и науки РФ
технологический институт
Кафедра «Химическая технология»
Курсовая работа
по дисциплине
«Химия и технология полимерных композиционных материалов»
на тему
«Разработка технологии полимеризационного наполнения ПКА дисперсными наполнителями»
2007
Введение
В настоящее время рынок потребления высоконаполненных композиционных магнитотвёрдых материалов, к которым относятся так называемые магнитопласты, является одним из самых динамичных в промышленно развитых странах мира (рост 12,5% в год). Согласно результатам научно-исследовательских и опытно-конструкторских работ магнитопласты (МП) по своей энергоёмкости почти вплотную приблизились к металлокерамическим магнитам, а за счёт своей высокой технологичности стали более эффективными. Это обусловлено относительно простой технологией готовых изделий из магнитопластов в сравнении со спеченными материалами, что связано, прежде всего, с отсутствием в процессе изготовления таких дорогих и сложных операций, как спекание, длительная термическая обработка, шлифование с удалением значительного количества материала.
Отлитые под давлением заготовки из магнитопластов выпускаются с малыми допусками и, как правило, не нуждаются в доводочных операциях.
Магнитопласты используют в шаговых двигателях принтеров и факсимильных аппаратов, офисной электроники, аудио- и видеооборудовании, в особо компактных двигателях постоянного тока мощностью до 1 кВт.
В России промышленное производство высоконаполненных магнитотвердых материалов практически отсутствует, и в этой области страна значительно отстает от передовых промышленно развитых стран. Широкое масштабное освоение эффективной технологии магнитопластов в значительной степени сдерживается недостаточной разработанностью теоретической базы, определяющей закономерности формирования эксплуатационных и технологических свойств высоконаполненных магнитных композиционных материалов и отсутствием необходимого для реализации технологии оборудования и дешевой сырьевой базы.
В качестве связующего в магнитопластах могут быть использованы Различные реакто- и термопласты. Использование реактопластов в качестве связующих для МП оправдано только в тех случаях, когда другие полимеры не обеспечивают необходимые требования к технологии их изготовления и эксплуатации. Основной недостаток реактопластов – длительная стадия высокотемпературного отверждения. Поэтому в производстве МП наиболее широко используются полимеры, перерабатываемые высокопроизводительными методами: литьем под давлением, экструзией и прессованием.
Особый интерес представляет разработка технологии микрокапсулирования частиц наполнителя в полимерной матрице. Микрокапсулирование может быть выполнено различными способами, в частности методом осаждения полимера на поверхность наполнителя из раствора, методом полимеризационного и поликонденсационного наполнения, т.е. синтезом полимера непосредственно на поверхности наполнителя. Метод полимеризационного наполнения является наиболее перспективным по сравнению с традиционным (смешение) и методом поликонденсационного наполнения ПКМ, так как эти методы имеют ряд недостатков.
Поэтому целью дипломного проекта является разработка технологии полимеризационного наполнения ПКА дисперсными наполнителями.
1. Цель и задачи работы, объекты исследования
Цель: Разработка технологии полимеризационного наполнения ПКА дисперсными наполнителями.
Задачей является изучение влияния продолжительности синтеза на свойства полученного ПКА.
Сырьем для получения магнитопласта является:
· ε - капролактам,
· вода,
· уксусная кислота,
· фосфорная кислота
· сплав Nd-Fe-B.
Выбор данных компонентов обусловлен доступностью и низкой стоимостью сырья, а также требованиями предъявляемыми к магнитопластам.
Капролактам
Капролактам - ГОСТ 7850-86
NH (CH2 )5 CO
Таблица 1
Свойства капролактама
Показатели свойств |
Значения |
Внешний вид |
Кристаллы белого цвета |
Молекулярная масса, г/моль |
113 |
Температура плавления, ° С |
68-70 |
Температура кипения, ° С |
262 |
Плотность, кг/м3 |
1476 |
ε -капролактам хорошо растворим в воде (525 г в 100 г Н2 О), спирте, эфире, бензоле, плохо - в алифатических углеводородах.
Уксусная кислота
CH3 COOH
· Температура плавления, °С 16,6
· Температура кипения, °С / мм рт. ст. 118,1
· Плотность при 20 °С, г/см3 1,0492
· Константа диссоциации в водных растворах при 25 °С 1,76·10-5
Уксусная кислота растворяется в воде.
Фосфорная кислота
Фосфорная кислота-Н3 РО4
Таблица 2
Показатели свойств |
Фосфорная кислота |
Внешний вид |
Бесцветные кристаллы |
Молекулярная масса, г/моль |
98 |
Температура плавления, 0 С |
42,35 |
Температура кипения, 0 С |
864 |
Плотность, кг/м3 |
1,87 |
Вода дистиллированная
Вода дистиллированная (H2 O) – ГОСТ 6709 – 72.
Сплав Nd-Fe-B
В качестве магнитного наполнителя используется сплав Nd-Fe-B производимый ГУП НТЦ «ВНИИНМ имени академика А.А. Бочвара» (г.Москва). Основные характеристики сплава Nd-Fe-B приведены в табл.2.
Таблица 2. Свойства магнитных наполнителей
Характеристика |
Значение свойств |
Плотность, кг/м3 |
7600 |
Остаточная магнитная индукция (Br ), Тл |
0,81 |
Коэрцитивная сила по намагниченности (Нсм ), кА/м |
1048 |
Коэрцитивная сила по индукции (Нсв ), кА/м |
504 |
Максимальное энергетическое произведение (ВН)max , кДж/м3 |
101 |
Размер частиц, мм |
0,05-0,2 |
Готовым изделием являются кольцевые магниты с наружным диаметром 6 см, внутренним диаметром 5 см и высотой 5 мм.
Магнитопласт, получаемый на основе сплава Nd-Fe-B и полиамидного связующего имеет следующие основные характеристики:
Содержание полимера, % 15-20
Содержание НМС, % не более 2
Остаточная магнитная индукция, Тл не менее 0,3
Коэрцитивная сила, кА/м не менее 320-350
Прочность при межслоевом сдвиге, МПа не менее 5
2. Методы и методики эксперимента
Целью данной работы являлась оценка основных качественных характеристик полимеризационнонаполненного поликапроамида сплавом Nd-Fe-B.
В основу метода получения ПКМ заложен принцип синтеза поликапроамида путем полимеризации капролактама, осуществляемый в промышленном масштабе.
2.1. Синтез ПКА
ε-Капролактам растирают в фарфоровой ступке. В предварительно взвешенную сухую ампулу берут навеску капролактама с точностью до 0,0002 г. С помощью микропипетки вводят в ампулу расчетное количество активатора. Ампулу быстро запаивают. Затем ампулу помещают в песчаную баню с температурой 260°С для полимеризации капролактама; время полимеризации 6 часов.
2.2. Определение НМС
Для определения содержания НМС полученный полимер измельчают и кипятят со 100 мл воды в течение 2-х часов в круглодонной колбе с обратным холодильником для удаления мономера и низкомолекулярных примесей. Фильтруют, промывают и сушат. Выход полимера рассчитывают по формуле:
,
где m0 – навеска полимера до кипячения, г,
m1 – навеска полимера после кипячения, сушки, г.
2.3. Определение вязкости растворов ПКА
Экспериментальные методы определения сводятся к измерению значений для ряда концентраций раствора. Рассчитанные значения ηуд /С=f(С) и экстраполируют полученные данные к С=0.
Измерение значений ηо и η проводят в капиллярных вискозиметрах типа ВПЖ-4. Определенное с помощью экстраполяции значение характеристической вязкости [η] позволяет рассчитать молекулярную массу (Мn ) полимера по формуле Марка – Куна – Хаувинка:
[η]=Кh ×Мn 2
Константа Хаггинса определяется из соотношения:
2.4. Определение температуры плавления
Температура плавления полученного волокнонаполненного поликапроамида определяется на песчаной бане. Полученный полимер помещают в пробирку, туда же опускается термометр на 500°С, и нагревается до полного расплавления. Записывают две температуры: одну, при которой появляется жидкая фаза; а другая при которой все вещество превратилось в расплав. Интервал температур между началом плавления и его окончанием называется температурой плавления.
2.5. Метод инфракрасной спектроскопии (ИКС)
Для изучения взаимодействия модифицирующих добавок с полимерным связующим применялся метод ИК-спектроскопии. ИК-спектры регистрировались на спектрофотометре «Specord» М-80 в области 400 ¸ 4000 см-1 . Исследуемые образцы наполнителя, связующего и композиционных материалов измельчались в вибрационной шаровой мельнице до тонкодисперсного состояния, добавлялось несколько капель иммерсионной жидкости, тщательно растирались в агатовой ступке и далее полученную пасту помещали между двумя пластинами (одна - из NaCl, другая из KBr). Для записи высококачественных спектров поглощения в качестве иммерсионной жидкости в области 4000 ¸ 2000 и 1500 ¸ 1300 см-1 использовали гексахлорбутадиен; в области 2000 ¸ 1500 и 1300 ¸ 400 см-1 - вазелиновое масло.
2.6. Метод термогравиметрического анализа (ТГА)
[Рабек Я. Экспериментальные методы в химии полимеров. В 2-х.:Пер. с англ. - М.: Мир, 1983. - 480 с.].
Термостабильность образцов оценивали по температурному интервалу области интенсивных потерь массы методом термогравиметрического анализа на дериватографе «Паулик - Паулик - Эрдей» фирмы МОМ марки Q-1500D в соответствии с инструкцией к прибору.
Условия эксперимента:
навеска - 200 мг;
среда - воздух;
интервал нагрева - до 600°С;
скорость нагрева (Vм ) - 10°С/мин.;
чувствительность - 200.
Относительная ошибка не превышает 1%.
Энергию активации термодеструкции материалов определяли методом Пилояна по кривой ДТА по формуле:
(1)
где Е - энергия активации, ккал/моль; R - универсальная газовая постоянная, кал/град*моль; D t - разность температур образца и эталона, °С;
С’ - константа.
Уравнение (1) можно представить в виде:
,
где 2,3 -коэффициент перевода натурального логарифма в десятичный.
Это уравнение можно представить в виде: ,
где а - угловой коэффициент, который равен тангенсу угла наклона прямой к оси абсцисс.
Графически энергию активации определяли по тангенсу угла наклона прямой, построенной в координатах lgDl = ¦(1/T*10-3 ), где Dl - длина отрезка между нулевой линией и кривой ДТА.
Отсюда .
2.7. Определение показателя текучести расплава (ПТР)
Показатель текучести расплава определяют как массу полимера, проходящую через капилляр стандартных размеров при заданных температуре и давлении за 10 минут.
ПТР полимеров зависит от их влажности, с повышением содержания влаги ПТР возрастает.
Последовательно проводят два определения ПТР. Результаты испытания используют для расчёта ПТР, если расхождения по массе между срезанными образцами не превышает 5%.
Расчёт ПТР, г/10 мин., проводят по формуле:
ПТР (Т, F) = (m / t) ×tc ,
где Т – температура испытания, К;
F – нагрузка, Н;
tc – стандартное время определения ПТР (600 с);
t – интервалы времени между двумя последовательными отсечениями отрезков, с;
m – средняя масса экструдированного образца за время t, г.
За результат испытаний принимают среднее арифметическое значение двух измерений. Скорость сдвига, напряжение и вязкость
2.8. Прочность при межслоевом сдвиге (ОСТ 190032-71)
Для испытания изготавливают образец размером 20´10´4. Устанавливают образец в форму для испытаний, устанавливают выбранную скорость сближения опорных площадок (5 мм/мин).
Машину приводят в действие и записывают значение нагрузок (кгс).
Прочность при межслоевом сдвиге рассчитывают по формуле:
dсдв =F/S,
где F – нагрузка;
S - площадь образца.
За результаты измерений принимают среднее значение всех параллельных испытаний.
3. Результаты эксперимента и их обсуждение
В настоящее время известны несколько механизмов полимеризации поликапроамида (ПКА): гидролитическая, катионная и анионная.
Наибольшее распространение для синтеза поликапроамида получила гидролитическая полимеризация, которая является очень продолжительной. Поэтому с целью уменьшения продолжительности процесса синтеза представляет интерес осуществление полимеризации по катионному механизму (табл.4).
Таблица 4
Зависимость свойств ПКА от вида катализатора
Полимер |
Продолжительность синтеза, ч |
ηотн. |
ηуд. |
ηпр. |
[η] |
Мn |
Кн |
Стандартный* |
28 |
2,48 |
1,48 |
2,96 |
- |
22000 (n=195) |
0,25 |
Синтезируемый в присутствии H2 O |
3 |
1,09 |
- |
- |
- |
19200 |
- |
Синтезируемый в присутствии H3 PO4 |
3 |
2,23 |
1,23 |
1,24 |
0,72 |
14012 |
1,003 |
Как видно из табл.4 наиболее перспективным катализатором для синтеза ПКА является фосфорная кислота
Основным преимуществом полимеризации капролактама в присутствии фосфорной кислоты является протекание процесса при нормальном давлении в течение непродолжительного времени (3-4 часа). Наличие фосфорной кислоты, взаимодействующей с конечными аминогруппами макромолекул полиамида, стабилизирует молекулярный вес полиамида при последующем его плавлении.
Поэтому в работе синтез поликапроамида проводили в присутствии фосфорной кислоты в течение 3-6 часов.
Таблица 5
Зависимость вязкости растворов от продолжительности полимеризации
Продолжи-тельность полимеризации, ч. |
Относительная вязкость |
Удель-ная вязкость |
Приведен-ная вязкость |
Характеристи-ческая вязкость |
1 |
2,78 |
1,78 |
1,78 |
- |
2 |
2,17 |
1,17 |
1,17 |
0,18 |
3 |
2,23 |
1,23 |
1,24 |
0,72 |
4 |
2,07 |
1,07 |
1,07 |
0,58 |
5 |
2,10 |
1,10 |
1,23 |
0,53 |
6 |
1,72 |
0,72 |
0,72 |
0,55 |
Как следует из экспериментальных данных (табл.5) с увеличением продолжительности процесса синтеза ПКА относительная вязкость снижается, а характеристическая увеличивается, что приводит к увеличению молекулярной массы полимера (табл.6).
ПКА, полученный по механизму катионной полимеризации, характеризуется низкой молекулярной массой и повышенной константой Хаггинса, что свидетельствует о неполной полимеризации и возможном окислении полимера в присутствии кислорода воздуха.
Результаты исследования образцов ПКА, полученного при различной продолжительности процесса показывают, что при продолжительности синтеза 3 часа происходит более полное превращение мономера в полимер с получением ПКА с молекулярной массой ~ 14000.
Таблица 6
Зависимость молекулярной массы и константы Хагинса от продолжительности полимеризации
Продолжительность полимеризации,ч. |
Содержание НМС,% |
Молекулярная масса |
Константа Хагинса |
1 |
21,9 |
- |
- |
2 |
12,3 |
1769 |
14,390 |
3 |
7,9 |
14012 |
1,003 |
4 |
8,0 |
10145 |
1,337 |
5 |
12,4 |
8867 |
1,110 |
6 |
13,0 |
9374 |
0,959 |
Прочность при межслоевом сдвиге
Продолжительность синтеза, ч |
1 |
2 |
3 |
4 |
5 |
6 |
ПТР |
6,5 |
4,8 |
26,8 |
18,6 |
7,6 |
3,9 |
Вязкость |
||||||
Прочность при межслоевом сдвиге, σсдв. , МПа |
16,3 |
14,1 |
17,1 |
9,7 |
14,3 |
14,6 |
Как следует из экспериментальных данных, образец, полученный гидролитической полимеризацией, характеризуется пониженной молекулярной массой и повышенной константой Хаггинса, что свидетельствует о неполной полимеризации и возможном окислении полимера в присутствии кислорода воздуха. В связи с этим рекомендуется провести синтез ПКА в среде инертного газа (азота или аргона) и увеличить продолжительность полимеризации.
Второй образец получали в присутствии фосфорной кислоты. Синтез проводили в течение трех часов. В присутствии небольших количеств этой кислоты капролактам полимеризуется достаточно быстро при нормальном давлении. Получена молекулярная масса 26734, которая приблизительно равна молекулярной массе стандартного поликапроамида. Константа Хаггинса больше стандартной, сто свидетельствует о сшивке ПКА в присутствии кислорода воздуха.
4. Выводы и практические рекомендации
1. Проведен синтез ПКА с использованием в качестве катализатора воды и фосфорной кислоты.
2. ПКА, полученный гидролитической полимеризацией, характеризуется пониженной молекулярной массой и повышенной константой Хаггинса, что свидетельствует о неполной полимеризации и возможном окислении полимера в присутствии кислорода воздуха.
3. Использование в качестве полимеризации катализатора фосфорной кислоты позволяет снизить продолжительность процесса синтеза до 3 часов. При этом молекулярная масса синтезируемого ПКА равна 26734, что соответствует требованиям к полиамидам.
4. Методом ИКС проведено исследование синтезированного ПКА. Установлено, что полученный полимер можно идентифицировать как полиамид-6.
5. Установлена возможность полимеризационного наполнения ПКА ферритом стронция.
2. Технологическая часть
2.1. Характеристика сырья, материалов и готовой продукции
2.1.1.Характеристика исходного сырья
Сырьем для получения магнитопласта являются: -капролактам, вода, уксусная кислота, фосфорная кислота и сплав Nd-Fe-B.
Капролактам − ГОСТ 7850-86
Сплав Nd-Fe B – ТУ 14-123-97-92
Вода дистиллированная (H2 O) – ГОСТ 6709 – 72.
Уксусная кислота
CH3 COOH
· Температура плавления, °С 16,6
· Температура кипения, °С / мм рт. ст. 118,1
· Плотность при 20 °С, г/см3 1,0492
· Константа диссоциации в водных растворах при 25 °С 1,76·10-5
Уксусная кислота растворяется в воде.
Фосфорная кислота
2.1.2. Характеристика готовой продукции
Готовым изделием являются кольцевые магниты с наружным диаметром 6 см, внутренним диаметром 5 см и высотой 5 мм.
Магнитопласт, получаемый на основе сплава Nd-Fe-B и полиамидного связующего имеет следующие основные характеристики:
Содержание полимера, % 15-20
Содержание НМС, % не более 2
Остаточная магнитная индукция, Тл не менее 0,3
Коэрцитивная сила, кА/м не менее 320-350
Прочность при межслоевом сдвиге, МПа не менее 5
Готовым изделием являются кольцевые магниты с наружным диаметром 6 см, внутренним диаметром 5 см и высотой 5 мм.
Магнитопласт, получаемый на основе сплава Nd-Fe-B и полиамидного связующего имеет следующие основные характеристики:
Содержание полимера, % 15-20
Содержание НМС, % не более 2
Остаточная магнитная индукция, Тл не менее 0,3
Коэрцитивная сила, кА/м не менее 320-350
Прочность при межслоевом сдвиге, МПа не менее 5
2.2. Описание технологического процесса
При получении магнитопластов методом полимеризационного наполнения предложена следующая схема производства.
Капролактам в виде кристаллов, размером 2 мм из емкости для хранения поз.1 поступает в смеситель поз.5. Туда же из бункера поз.2 подается фосфорная кислота. Компоненты поступают в смеситель с помощью весовых дозаторов. Смешение проводится в среде инертного газа – азота для предотвращения окисления смеси. Смеситель обогревается горячей водой, температура в смесителе 90°С. Капролактам расплавляется, смешивается с добавками и с помощью насоса поз.7 подается в следующий смеситель поз.6. Из герметичной емкости для хранения поз.4 в смеситель поз.6 с помощью весового дозатора подается феррит Ba. Смешение происходит также в инертной среде, при той же температуре. Затем подготовленная смесь поступает в автоклав поз.11, где происходит полимеризация капролактама на поверхности и в объеме наполнителя при температуре 250°С. После завершения процесса полимеризации из полученного материала формуется жилка, диаметром 2 мм, при продавливании через фильеру, которая проходит через ванну поз.17 с холодной умягченной водой. С помощью тянущих валков поз.15 и направляющих поз.14 жилка направляется на резательный станок поз.18.
Синтезированный ПКА – полимерная основа магнитопласта – содержит большое количество НМС. Поэтому полученный после резки гранулят поступает в промежуточный бункер поз.20, а затем – в промыватель-экстрактор поз.25 для удаления НМС. Экстракция проводится горячей водой (температура воды 80°С) не менее 4-5 раз. Остаточное содержание НМС составляет около 2%. Промывные воды далее после экстракции направляются насосом поз.10 на регенерацию: вначале на установку для улавливания феррита Ba поз.9, снабженную магнитом, а затем – на фильтр поз.8 для удаления несполимеризовавшегося капролактама. В качестве материала фильтра можно использовать композиционные ионообменные волокнистые массы. Затем насосом поз.12 чистая вода возвращается в цикл.
Отмытый гранулят транспортером поз.24 направляется в промежуточную емкость с дозатором поз.13, а затем – в барабанную сушилку поз.16 для удаления избыточной влаги, поглощенной на стадии экстракции. Сушка проводится при температуре 105°С с помощью горячего воздуха. После завершения сушки материал собирается в бункере для хранения с весовым дозатором поз.23.
Изготовление изделий из магнитопласта осуществляется методом литья под давлением при температуре пластикации до 300°С, удельном давлении литья 1400 кгс/см2 на термопластавтомате поз.19 с последующим намагничиванием на установке поз.21 с применением импульсных магнитных полей. На термопластавтомат материал также поступает с помощью транспортирующего устройства поз.22.
2.3. Основные параметры технологического процесса
Параметры полимеризации
· Соотношение компонентов:
Капролактам |
20% |
Вода |
1% от М капролактама |
Уксусная кислота |
1% от М капролактама |
Феррит бария |
80% |
· Температура полимеризации: Т = 250 ± 5°С
· Время полимеризации: t = 6 часов
Параметры изготовления изделий
· Температура литья: Т = 230 ± 5°
· Давление литья: Р = 140 МПа
Время выдержки под давлением: t выд = 14 сек
2.4. Материальные расчеты
Материальный баланс получения магнитов из поликапроамида.
Для получения 1 кг изделия расходуется следующее количество компонентов:
· капролактам – 0,2185 кг,
· феррит бария – 0,8234 кг,
· уксусная кислота – 0,0021 кг,
· вода – 0,021 кг.
Общая масса – 1,0461 кг.
Найдем расход каждого из компонентов на одну тонну продукта с учетом потерь:
1. Расход капролактама:
1,0461 кг – 0,2185 кг
Х 1 = 208,87 кг
1000 кг – Х 1 кг
С учетом 4,95% потерь: 208,87*0,0495 = 10,34 кг.
2. Расход феррита бария:
1,0461 кг – 0,8234 кг
Х 2 = 787,11 кг
1000 кг – Х 2 кг
С учетом 1,7% потерь: 787,11*0,017 = 13,38 кг.
3. Расход уксусной кислоты:
1,0461 кг – 0,0021 кг
Х 3 = 20,07 кг
1000 кг – Х 3 кг
С учетом 0,85% потерь: 20,07*0,0085 = 0,17 кг.
4. Расход воды:
1,0461 кг – 0,021 кг
Х 4 = 20,07 кг
1000 кг – Х 4 кг
С учетом 0,85% потерь: 20,07*0,0085 = 0,17 кг
Составляем материальный баланс:
Приход на тонну продукта: |
Расход на тонну продукта: |
Магнитопласт - 1000 кг |
|
1. Капролактам – 208,87 кг |
1. Потери капролактама – 10,34 кг |
2. Феррит бария – 787,11 кг |
2. Потери феррита бария – 13,38 кг |
3. Уксусная кислота – 20,07 кг |
3. Потери уксусной кислоты – 0,17 кг |
4. Вода – 20,07 кг |
4. Потери воды – 0,17 кг |
Итого: 1036,12 кг |
Итого: 1024,06 кг |
Невязка = (приход - расход)/приход*100%
= (1036,12 – 1024,06)/1036,12*100% = 1,16%
Заключение
Для уменьшения продолжительности процесса синтеза ПКА целесообразно использовать катионную полимеризацию, когда в качестве катализатора используется минеральная кислота. Получение композиционного материала с равномерным распределением наполнителя в полимерной матрице возможно методом полимеризационного наполнения. Этот фактор является особенно важным, так как обеспечивает воспроизводимость эксплуатационных свойств полимерных магнитов.
Проведен синтез ПКА с использованием в качестве катализатора воды и фосфорной кислоты. Исследованы основные характеристики ПКА.
Установлено, что использование в качестве полимеризации катализатора фосфорной кислоты позволяет снизить продолжительность процесса синтеза. При этом молекулярная масса синтезируемого ПКА равна 26734, что соответствует требованиям к полиамидам.
Проведена идентификация синтезированного ПКА методом ИКС. Установлено, что полученный полимер можно идентифицировать как полиамид-6.
Установлена возможность полимеризационного наполнения ПКА ферритом стронция.
Разработана технологическая схема получения магнитопластов полимеризационного наполнения методом литья под давлением. Сделаны основные материальные расчеты.
Рассмотрены безопасность и экологичность проекта, предусмогтрены меры по защите окружающей природной среды.
Список используемых источников
1. Устинова Т.П. Структура и свойства полимеризационно-наполненного поликапроамида / Т.П. Устинова, С.Е. Артеменко, М.Ю. Морозова // Химические волокна. – 1998. – № 4. – С.17-19.
2. Исследование эффективности модификации магнитопластов, сформированных способом поликонденсационного наполнения / Н.Л. Зайцева, С.Е.Артеменко, С.Г. Кононенко, А.А. Артеменко // Пластические массы. – 2001. – №1. – С. 11-14.
3. Мизеровский Т.Н. Действие системы H3 PO4 –H2 O–полиэтиленгликоль при синтезе поликапроамида / Т.Н. Мизеровский, В.Г. Силантьева // Химические волокна. – 1983. – №3. – С. 22-23.
4. Силантьева В.Г. Полимеризация капролактама в присутствии активирующих систем на основе фосфорной кислоты / В.Г. Силантьева, Л.Н. Мизеровский, А.Н. Быков // Химические волокна. – 1987. – №2. – С.19.
5. Исследование процесса получения поликапроамида из продукта олигомеризации ε-капролактама / Д.Г. Запольский, Л.В. Кутьина, Т.Н. Биличенко, А.А. Конкин // Химические волокна. – 1974. – №2. – С. 8-9.
6. Никонов Н.Т. Зависимость качества поликапроамида от состава реакционной смеси при гидролитической полимеризации / Н.Т. Никонов, Е.И. Смирнова // Химические волокна. – 1981. – №6. – С. 27-29.
7. Реакции в полимерных системах / Под ред. Иванчева. – Л.: Химия, 1987. – 304 с.
8. Электропроводящие ПЭ-композиции, полученные полимеризационным наполнением / А.А. Баулин, А.И. Краснощеков, А.С. Деянова, Ю.И. Василенок // Пластические массы. – 1982. – №7. – С.6-7.
9. Переработка пластических масс. – Труды Свердловского научно-технического совещания по переработке и применению пластических масс в народном хозяйстве. – М.: Химия, 1966. – 254 с.
10. Физико-химические основы альтернативной технологии магнитопластов и рациональные области их применения. Обзор./ С.Е. Артеменко, С.Г. Кононенко, А.А. Артеменко, Л.Л. Семенов // Химические волокна. – 1998. – №3. – С.45-50.
11. Роговин З.А. Основы химии и технологии химических волокон. – В 2-х томах. – М.: Химия, 1974. – Т. 2. –344 с.
12. Альтернативные технологии магнитопластов на основе феррита бария и интерсплава неодим-железо-бор / С.Е. Артеменко, Л.Л.Семенов, С.Г. Кононенко, А.А. Артеменко // Электротехника. – 1966. –№12. – С.59-60.
13. Пат. 2084033 Россия, МКИ5 H01 F 1/133. Способ получения магнитопластов / Артеменко С.Е., Кардаш М.М., Кононенко С.Г. – №95106266/02; Заявл. 20.04.95; Опубл. 10.07.97.
14. Артеменко С.Е. Технологические принципы создания высокоэффективных магнитопластов / С.Е.Артеменко, Л.Л.Семенов, С.Г.Кононенко // Приводная техника. – 1997. – №5. – С.30-34.
15. Ким В.С. Диспергирование и смешение в процессах производства и переработки пластмасс / В.С. Ким, В.В. Скачков. – М.: Химия, 1988. – 240 с.
16. Технология высокоэффективных магнитопластов поликонденсационного способа наполнения / А.А. Артеменко, С.Г. Кононенко, С.Е. Артеменко, Н.Л. Зайцева // Пласт. массы. – 1999. – №9. – С.21-26.
17. Технологические свойства магнитопластов на основе оксидных ферритов и интерметаллического сплава Nd-Fe-B / Т.Ю. Хомутова, С.Е. Артеменко, С.Г. Кононенко, Н.Л. Зайцева, А.А. Артеменко // Пласт. массы. – 2000. – №5. – С. 16-18.
18. Технология магнитопластов с повышенными характеристиками / А.А. Артеменко, С.Е. Артеменко, А.В. Калатин, С.Г. Кононенко, Н.Л. Зайцева // Перспективные материалы. – 2002. – №5. – С. 54-58.
19. Галашина Н.М. Полимеризационное наполнение как метод получения новых композиционных материалов // ВМС. – 1994. – №4, Т. 36. – С. 640-650.
20. Исследование взаимодействия дисперсных частиц в процессе полимеризационного наполнения / В.В. Смирнов, Л.А. Ткаченко, Н.С. Когарко, Л.Н. Григоров, Т.Ф. Дорофеева, Л.А. Новокшонова, Н.С. Ениколопян //
21. Модификация магнитопластов на основе промышленного сплава Nd-Fe-B / А.А. Артеменко, Н.Л. Зайцева, С.Е. Артеменко, С.Г. Кононенко, О.М. Сладков, Ю.В. Щелоков // Пласт массы. – 2003. – №2. – С. 26-27.
22. Полимеризационное наполнение полиамида 6 /В.Г. Фролов, С.Г. Куличихин, Л.А. Гордеева, А.Я. Малкин // Пласт. массы. – 1985. – №6. – С.8-10.
23. Полимеризационно-поликонденсационный метод получения сетчатых полимеров и армированных пластиков/ /Пласт, массы. - 1983. - № 2. - С. 59.
24. Дьячковский Ф.С, Новокшонова Л.А. Синтез и свойства полимеризационнонаполненных полиолефинов/ /Успехи химии. - 1984. - № 2. - С. 200 - 223.
25. Липатов Ю.С. Физическая химия наполненных полимеров. - М.: Химия, 1977.-304 с.
26. Ефимова Е.П., Фролов O.K. Магнитные композиционные материалы - новые возможности и перспективы развития/ /Пласт, массы. - 1998. - № 5. - С. 6-7.
27. Вольфсон СА Новые пути создания композиционных материалов//Журн. Всесоюзн. хим. общества. - 1989. №5. - С.5310-536
28. Кардаш М.М. Новая технология поликонденсационного наполнения полимерных композиционных материалов/ /Автореф. дис. канд. техн. наук. - Саратов, 1995. - 18 с.
29. Охрана труда в химической промышленности/ Г.В. Макаров, А.Я. Васин, Л.К. Маринина, П.И. Софийский, В.А. Старобинский, Н.И. Торопов. - М.: Химия 1989. 496 с; ил.
30. Рабинович В.А., Хавин З.Я. Краткий химический справочник. - Л. : Химия, 1991.-432 с.