Скачать .docx |
Реферат: Лекции по химии
Самарский Государственный
Аэрокосмический Университет
им. ак. С.П. Королева
Факультет Производства двигателей летательных аппаратов
Лектор доц.
Расщупкина И.Ю.
Самара 2001г
Химическая т/д.
1) Основные понятия.
Соврем хим т/д разрабатывает наиболее рациональные методы рассчета тепловых балансов при протекании хим и физ-хим процессов. Раскрывает закономерности наблюдаемые при равновесии, определяет наиболее благоприятные условия для т/д-ски возможного процесса, поясняет направление и пределы протекания процессов.
Система т/д – совокупность макротел, взаимод и обменивающ энергией как друг с другом так и с внеш средой.
По характеру взаимод с окр средой делятся на:
- изолированные (без обмена с внеш средой V=const)
- закрытые (обмен энергией с окр средой m=const)
- открытые (m,V<>const)
Система может быть гомогенной и гетерогенной (однородной и неоднородной)
Совокупность физ и хим свойств системы наз состоянием.
Физ величины, характеризующие состояние системы наз т/д параметрами . Они не зависят от массы системы, их можно измерить напрямую. Их также называют интенсивными свойствами: р, Т, μ – хим потенциал. Экстенсивные св-ва системы зависят от массы системы, их нельзя измерить напрямую, они рассматр как ф-ия параметра состояния и поэтому наз ф-ями состояния: U(вн энер), Н (энтальпия), S (энтропия).
Изменение св-в системы во времени наз процессом .
- сомопроизвольные (протекает без затрат энергии из вне)
- несамопроизвольные(наоборот)
- обратимые (при котором система проходит ряд обращений без изменений в окр среде)
- необратимые (наоборот)
Внутр энерг характеризует общий запас энергии системы и включает все виды энергии движения и взаимод частиц, но не включает кинет энергию вцелом и пот энергию.
Т/д пользуется понятием изменения внутр энергии.
ΔU=Uкон -Uнач dU
Энтальпия характеризует запас энергии системы при р=const она числено равна: H=U+pV
ΔH=ΔU+pΔV dH
ΔH=Hкон -Hнач
Энергия передается от одной системы к другой в виде теплоты и работы. Теплота (Q) не явл ф-ией состояния системы, т.к. ее вел-на зависит от пути перехода системы из нач положения в кон.
Q→δQ, A→δA
Передача теплоты осущ засчет хаотич движения мол-л, а при совершении работы передача энергии идет путем упорядоченного движения мол-л под действием внеш сил
2) 1нач т/д:
В любом процессе приращение внутр энергии системы = кол-ву теплоты, сообщаемой системе за вычетом работы, совершаемой системой.
dU=δQ-δA
δA – сумма всех видов работ, совершаемых системой
δA=pdV+δA’
pdV – работа против внешних сил; δA’ – полезная работа, соверш сист при протекании какого либо процесса
рdV(работу расширения) можно вычислить, если знать у-ия состояния системы
Теплоту процесса подсчитывают, зная истинную теплоемкость системы.
c=δQ/dT
Теплоемкость – отношение б/м кол-ва теплоты, переданного системе к б/м изменению тем-ры им вызываемой.
Следствие 1 нач т/д при p=const
δA=pdV A=pΔV
Q=ΔU+pΔV δQ=dU+pdV=dU+d(pV)=d(U+pV)=dH
Qp = const =ΔH
3)Термохимия – раздел химии, в к-ом изучают тепловые эффекты хим реакции.
При хим реакции происходит изменение внутр энергии путем выделения или поглощения теплоты. В хим процессах работа очень часто незначительна и ей можно пренебречь.
Закон Гесса:
Тепловой эффект х.р. зависит только от вида и состояния исходных в-в и кон продуктов. При термохим рассчетах использ термохим у-ия. Т.х. у-ия обязательно должны содержать молярные кол-ва в-в, в правой части должен быть приведен тепловой эффект, должны быть указаны агрегатные состояния в-в, с т.х. у-иями можно производить все алгебраические действия.
З-н Гесса применим как к хим реакциям так и к физ-хим превращениям (процессам плавления, кристаллизации, испарения, сублимации, конденсации, растворения и т.д.)
При записи з-на Гесса используется два вида тепл эффектов:
1) Энтальпия образования в-в – ΔfH˚ - (тепл эффект реакции образования одного моля данного соединения из простых в-в, взятых в устойчивых стандартных состояниях)
ΔrH˚=Σкон ΔfH˚*ni - Σисх ΔfH˚*ni
ΔrH˚ - тепл эффект реакции
ni – стехиометрический коэф
2) Энтальпия сгорания - ΔHсгор - (тепл эффект реакции окисления одного моля данного соединения с кислородом с образованием высших оксидов соответствующих элементов)
ΔrH˚=Σисх ΔHсгор *ni - Σкон ΔHсгор *ni
Рассмотрим зависимость теплового эффекта реакции от температуры
Пусть реакция А→В происходит при p=constТепл эффект реакции по з-ну Гесса: ΔrH=HB -HA
Продифференцируем данное у-ие по тем-ре
(dΔrH/dT)p = (dHB /dT)p -(dHA /dT)p
ΔH=Qp
(dΔrH/dT)p =Cp , B -Cp , A – диффер ур-е Кирхгоффа.
Изменение тепл эффекта процесса с температурой = изменению теплоемкости системы, происходящее в результате процесса.
В небольшом интервале температур теплоемкость системы можно считать не зависящей от тем-ры, тогда при p=const, интегрируя дифференциальную формулу (от Т1 до Т2 ):
ΔHT 2 =ΔHT 1 +ΔCP (T2 -T1 ) - интегральное ур-е Кирхгоффа
Т1 =298˚К
ΔHT 2 =ΔH298 +ΔCP (T2 -298)
По следствию из закона Гесса, изменение теплоемкости находится по следующему соотношению
ΔCP =Σкон CP *ni - Σисх CP *ni
4) (2) нач т/д устанавливает направление и условие протекания естественных процессов, для рассчетов наиболее удобной явл формулировка (2) нач т/д, связанная с ростом энтропии.
Вывод (2) нач т/д сделано на основе анализа работы идеальной тепловой машины
η=A/Q1 =(Q1 -Q2 )/Q1 =(T1 -T2 )/T1
Q1 /T1 -Q2 /T2 =<0
δQ1 /T1 -δQ2 /T2 =<0
dS=δQ/T - приведенная теплота, отражает измен некот фун-ии состояния
(2) нач т/д:
существует некоторое экстенсивное св-во системы S, называемое энтропией, к-ое связано с поглощаемой теплотой и тем-рой системы следующим образом
а) обр dS=δQ/T
б) необр dS>δQ/T
Все самопроизвольные процессы протекают с увеличением энтропии.
Изменение энтропии (ΔS) не зависит от пути перехода из нач состояния в кон, следовательно не зависит от того какой процесс обратимый или необратимый.
При расчетах реальных систем необр процессы можно представл как совокупность множества обратимых.
ΔS=1 ∫2 (δQ/T)обр
Изотермические процессы Т=const
К ним относится фазовое превращение (испарение, конд и т.д.)
ΔS=S2 -S1 =∫δQ/T=1/T*∫δQ=Q/T
ΔSфаз перех = Qфп /Tфп
Изобарные процессы p=const
Cp = δQ/dT
ΔS=S2 -S1 =T 1 ∫T 2 δQ/T=T 1 ∫T 2 Cp *dT/T=Cp *ln(T2 /T1 )
ΔSфаз перех = Qфп /Tфп
Энтропия и ее изменение зависят от тем-ры. Нернст пришел к выводу, что вблизи абс 0 изменение энтропии (ΔS) пренебрежимо мало.
Планк сформулировал (3) нач т/д – Постулат Планка :
Энтропия индивидуального кристаллического в-ва при абс 0 = 0
Модель идеального кристалла
Предположим, что тем-ра 1 моля в-ва при p=const увелич от абс 0, где в-во находится в состоянии идеального кристалла, до некоторой тем-ры Т, где в-во находится в состоянии идеального газа. При этом превращение:
0˚К |
нагрев |
плавл |
Нагрев |
кипение |
Нагрев |
Т |
→ |
T пл |
→ |
T кипен |
→ |
||
p=const |
T=const |
p=const |
T=const |
p=const |
||
ΔS1 |
ΔS2 |
ΔS3 |
ΔS4 |
ΔS5 |
ΔS=ΔST -ΔS0 =0˚K ∫T пл (Сp, тв /T)dT+Qпл /Tпл +T пл ∫T кип (Сp, жид /T)dT+Qкип /Tкип + T кип ∫T (Сp, газ /T)dT
Величина энтропии Sт , найденное по этому у-ию назыв абс энтропией чистого в-ва при тем-ре Т и атм давлении.
T=298˚К, p=1 атм (стандартные условия) S˚298 из справочника
В хим процессах изменение энтропии подчиняется следствию из з-на Гесса:
ΔrS˚=Σкон S˚*ni -Σисх S˚*ni
На практике в качестве критерия направленности процесса более удобно использовать другие ф-ии, к-ые назыв т/д потенциалами:
1) изобарно-изотерм пот-л: свободная энергия Гиббса G=H-TS; dG=dH-TdS
2) изохорно-изотрм пот-л: свободная энергия Гельмгольца F=U-TS; dF=dU-TdS
Рассмотрим закрытую систему, в к-ой процесс осущ при T=const.
Согласно (2) нач т/д в такой системе разрешено протекание 2 видов процесса (обр и необр)
T=const
Обратимый
ΔS=Qобр/T
Qобр-TΔS=0; p=const
ΔH-TΔS=0;
ΔG=0 критерий равновесного состояния системы
Необратимый
ΔS>Qнеобр/T
Qнеобр-TΔS=0;
ΔH-TΔS<0;
ΔG<0 критерий самопроизвольности необратимого процесса
Для хим реакций ΔrG˚ рассчитывается по следствию из закона Гесса
ΔrG˚=Σкон Δf*G˚*ni - Σнач Δf*G˚*ni
T=const
Обратимый
V=const; Qv=ΔU
Qобр-TΔS=0
ΔU-TΔS=0 ΔF=0
Необратимый
V=const; Qv=ΔU
Qобр-TΔS=0
ΔU-TΔS<0 ΔF<0
Для процессов, протек при T, р=const, условием самопроизвольного течения явл уменьшение энергии Гиббса. Причем условием их равновесия явл достижение минимального значения для данного условия ф-ии G.
—1 dp=0 dT=0 dG=<0
—2 dV=0 dT=0 dF=<0
В хим т/д большее значение имеет ф-ия, наз хим пот-лом (μi ).
μ i – ф-ия характеризует состояние к-либо i-компонента в фазе данного состава при опр местных условиях.
Хим пот-л – приращение изобарно-изотермичесокго пот-ла данной фазы при введении дополнит кол-ва i-компонента, при T,р=const и постоянных кол-вах др компонентов, содержащихся в данной фазе.
μi =(д Gi /д ni )p,T,j=i
G=Σμi *dni
Хим пот-л зависит от концентрации данного компонента и его вида, а также от вида и концентрации др компонентов в этой фазе.
Только в случае идеальн газа хим пот-л опр видом и концентрацией i-компонента и не зависит от концентрации др компонентов.
μi =μi ˚+RTln(pi ni )
pi - парциальное давление i-компонента данной смеси
μi ˚- хим потенциал, при парциал давлении =1
ni - кол-во вещества
Общим условием возможности самопроизвольного процесса будет равенство
Σμi *dni =0
Рассмотрим гомоген газ реакцию, к-ая протекает по заданному у-ию
υ1 A1 + υ2 A2 ↔ υ3 A3 + υ4 A4 n=υ
Эта обр хим реакция протекает до тех пор пока не установится равновесие между реагир в-вами. Кол-венно хим равновесие описывается з-ном действия масс.
V1 =k1 *p A1 υ1 *pA2 υ2
V2 =k2 *p A 3 υ 3 *pA 4 υ 4 V1 =V2 условие равновесия
Закон действия масс
Выражение для хим потенц участников данной реакции
µ1
=μ1
˚+RTln(p1
n
1
) исх в-ве
μ2
=μ2
˚+RTln(p2
n
2
) ∆G=μ1
+μ2
μ3
=… кон в-ве
μ4
=… ∆G=μ3
+μ4
∆r G=∆кон G-∆исх G=(μ3 +μ4 )-(μ1 +μ2 )=∆r G˚+RTln((p3 υ 3 *p4 υ 4 )/(p1 υ 1 *p1 υ 1 ))
∆r G=∆r G˚+RTlnKP
в усл равнов ∆r G˚=-RTlnKp ˚ ∆r G=0
условие нормального сродства или изотерма хим реакции в стандарт условиях. Задавая произвольное значение pi≠1, получаем
∆r G=-RTlnKP + RTlnПpi где Пpi =(Пpi кон )/(Пpi исх )
↑ уравнение изотермы химич реакции
хим т/д позволяет определить константу равновесия какой-либо реакции при другой температуре, не ставя дополнительного эксперимента. Для этого существует ур-е изобары.
Ур-е изобары получается при дифференцировании уравнения изотермы химич реакции по температуре, и комбинировании полученного ур-я с ур-ем Гиббса-Гельмгольца
ΔG=-RTln(K˚)+RТln(Пpi )
ΔG=ΔH-T(д ΔG/д Т)
dln(Kp )/dT=ΔH/(RT2 ) изобара
dln(Kс )/dT=ΔU/(RT2 ) изохора
Чтобы получить удобное для расчета мат выражение для ур-я изобары следует проинтегрировать дифференцированную форм; предполагая, что в небольшом интервале температур Т1 –Т2 тепловой эффект реакции от температуры не зависит. Тогда получаем интегральную форму
ln(K1 /K2 )=ΔH(T1 -T2 )/(R*T1 *T2 ) интегральная форма изобары
Следствия:
1) Можно рассчитать константу равновесия при Т2 , отличающуюся от Т1 если известна К1 и тепловой эффект реакции в этом интервале темпер
2) Можно рассчитать тепловой эффект реакции если известны константы равновесия хотя бы при двух температурах
3) С помощью уравнения подтверждается вывод и- принципа смещения равновесия Ле-Шателье (влияние на константу равновесия температуры )
Если на систему, находящуюся в равновесии оказывать внешнее воздействие, то равновесие сместится в сторону реакции, противодействующей внешнему влиянию
3H2 +N2 =2NH3 -ΔH
(г) (г) (г)
- увеличение P → прямая
- увеличение Т → обратная
ln(K1 /K2 )=(ΔH/R)*(T1 -T2 )/(T1 *T2 )
Химическая кинетика
Кинетика хим реакций– учение о скорости их протекания и зависимости ее от различных факторов. Такие факторы: строение молекулы, концентрация участников реакции, температура, свойства среды, наличие катализатора, внешние воздействия.
По правилам ИЮПАК скорость химической реакции определяется как возрастание степени завершенности реакции V=dξ/dτ
Более удобно понятие скорости образованя или преварщения некоторого компонента в системе Vi =±dCi /dτ
Влияние концентрации на скорость описывается законом действующих масс
Скорость реакции пропорционально произведению концентраций веществ, взятых в степенях, равных стехиометрическим коэффициентам
V=K*C1 n1 *C2 n2 *…*Ci ni
Вид уравнения зависит от того, как протекает реакция
А+2В=С V=K*CА 1 *CВ 2
N2 +3H2 =2NH3
V=K*CN2 *CH2 3
К– коэффициент пропорциональности химических реакций
Физический смысл константы скорости – скорость химической реакции при единичной концентрации компонента. Сумма показателей степеней ΣNi =n: общий порядок реакции
Показатель ni называется порядком реакции по i-тому компоненту
В простых реакциях в одну стадию ni – целое число и его значение совпадает с молекулярностью реакции
Молекулярность определяется числом молекул в элементарном хим акте (целое положительное число (1,2,3)); элементарных актов с учатием 4-х молекул не бывает
Влияние темперауры
При повышении Т процесса на каждые 10˚ скорость реакции в области умеренных температур увеличивается 2-4 (Вант-Гофф)
V2 /V1 =K2 /K1 =γ — отношение констант скорости (γ=2–4) реакций при 2-х температурах, отличающихся на 10˚ V2=V1*γ( T 2- T 1)/10
А+В=С
Т1 →V1 =K1 *CA *CB
Т2 →V2 =K2 *CA *CB
Аррениус показал, что К зависит от температуры и эта зависимость описывается: dln(K)/dT=Еакт /(RT2 ) Еакт – энергия активации
Предполагая, что Еакт не зависит от природы веществ проинтегрируем данное уравнение К=Ае-(Еакт/ RT ) A– предэкспотенциальый множитель
Для расчета Еакт и А проводят экспериментальное определение констант скоростей, при некоторых температурах и строят график зависимости lnK=f(1/T)
Графический способ определения энергии активации.
Энергетический способ определения энергии активации.
Записывая ур-е Аррениуса для 2-х температур, но для одной реакции; делят ур-е почленно при этом сокращается А; частное ,полученное от деления логарифмируем и преобразуем в формулу с выделением Еакт .
Физический смысл энергии активации
Аррениус высказал, что молекулы вступают во взаимодействие при столкновении друг с другом (разлетаются, сцепляются). Не все столкновения результативны, эффективны только столкновения между молекулами, обладающими некоторым избытком внутренней энергии по сравнению со средним значением для данной температуры. Этот избыток энергии Аррениус назвал энергией активации.
Гипотеза Аррениуса легла в основу теории активных соударений. Согласно этой теории в равнении Аррениуса А= общему числу столкновений за единицу времени. Ае-(Еакт/ RT ) – число активных соударений. Теория активных соударений хорошо описывает уравнения в газовой фазе. Для реакций в жидкой фазе была разработана теория переходного состояния. Основное положение теориии: при элементарном акте химической реакции образуется промежуточный активный комплекс с неустойчивыми связями и существующий очень короткое время. В результате акта комплекса с другими молекулами происходит разрушение валентных связей и комплекс распадается с образованием продуктов реакций (А+В)↔(А…В) (А…В)↔(А+В)
Кинетические уравнения
-dc/dt=k*Cn –порядок реакции ®кинетическое уравнение в дифференц форме
Реакции (1) порядка (n=1)
Со – нач концентрация реагир в-ва
С - текущая концентрация
-dc/dt=k*C
Со ∫С -dC/C=0 ∫t kdt
ln(C0 /C)=k*t кин ур-е I порядка в интегр форме
Определение константы скорости реакции (1) порядка:
1) метод подстановок
В разные моменты времени опр концентрация реагир в-ва, подставляют эту концентрацию в у-ие и соответственно рассчитывают константу скорости
2) графический метод
3) по времени полупревращения
Временем полупревращения реакции (t1/2 ) наз время, за к-ое концентрация реагирующего в-ва, равная вначале Со , уменьшается вдвое, т.е. до1/2* Со
K=(2.303/ t1/2 )*lg(Со /(1/2* Со ))= (2.303/ t1/2 )*lg2=0.693/t1/2
t1/2 =0.693/k
Для любой конкретной реакции (1) порядка время полупревращения явл константой и не зависит от нач концентрации.
Реакции (2) порядка (n=2)
Кинетич у-ию (2) порядка подчиняется реакция следующего типа:
1)- 2A→прод реакц
2)- A+B→прод реакц CA =CB
-dc/dt=k*C2
Со ∫С -dC/ C2 =0 ∫t kdt
-1/C0 +1/C=kt 1/C=1/C0 +kt кин ур-е II порядка в интегр форме
k=1/t*((C0 -C)/(C0 *C))
Определение константы скорости реакции (2) порядка:
1) метод подстановок
В разные моменты времени находим текущую концентрацию, подставляют эту концентрацию в у-ие и соответственно рассчитывают константу скорости
2) графический метод
3) по времени полупревращения
Для реакции (2) порядка время полупревращения обр-пропорц нач концентрации
k=1/t1/2 *((C0 -(1/2)*C)/(C0 *(1/2)*C))
k=1/t1/2 *(1/C0 ) → t1/2 =1/(k*C0 )
Для реакций II порядка время t1/2 обратно пропор начальной концентр (C0 )1 и (C0 )2
(t1/2 )1 /(t1/2 )2 =(C0 )2 /(C0 )1 реакция II порядка
Катализ и катализаторы
Катализ – явление селективного изменения скорости хим реакции по средствам катализатора.
Катализатор – в-во, изменяющ скорость хим реакции, участвующее в ней , но к моменту образования продуктов реакции кол-во и состав катализатора остается неизменным.
Особым видом явл автокатализ – скорость хим реакции изменяется под действием продуктов реакции.
Различ катализаторы:
- гомогенные (находятся с реагир в-вами в одной фазе)
- гетерогенные (находятся в другой фазе, чем реагир в-ва)
Они также бывают:
- положительные (увелич скорости хим реакции)
- отрицательные – ингибиторы (уменьш скорости хим реакции)
Хар-ки кат-ра:
а) активность или производительность A-активность
А=mпрод /(t*mкат ) А=mпрод /(t*Sкат ) А=mпрод /(t*Vкат )
б) селективность или избирательность
HC≡CH→(H2 )→ H2 C=C H2 →(H2 )→ H3 C-CH3
C2 H5 OH →Al2 O3 → C2 H4 +H2 O
C2 H5 OH →Ag, Cu→ CH3 CHO+H2
S(селективность) =mцелевого продукта /mвсех продуктов
Общие закономерности катализа:
1) применение кат-ра не изменяет т/д кинетич реакции, т.е. вел-ны ∆H и ∆G
- кат-р ускоряет только те хим реакции, для к-ых ∆G<0
- кат-р ускоряет достижение состояния равновесия в случае обратимых хим реакций, но не смещает равновесие и не изменяет величины константы
- применение кат-ра не изменяет тепл эффект хим реакции, т.е. ∆H
2) Кат-р уменьшает полную энергию активации реакции, т.к. каталитическая реакция идет по др пути.
А+В→АВ
А+В→А … В→АВ – без катализатора
А+В+катал→А …кат-ор … В→АВ – с катализатором
Растворы
Коллегативные свойства растворов
Коллегативные свойства растворов - свойства раствора связанные друг с другом и обусловленные общими причинами, главным из которых является число растворенных частиц в растворе.
К таким свойствам относятся: понижение давления насыщенного пара растворителя над раствором, увеличение температуры кипения, уменьшение температуры кристаллизации, осмотическое давление
I закон Рауля
Относительное понижение давления насыщенного пара растворителя над раствором равно мольной доле растворимого вещества
А – растворитель
В – растворенное вещество
pA
°–давление насыщ пара с растворителем над растворителем
pA
–давление насыщ пара с растворителем над раствором
Следствие
понижение давления насыщенного пара растворителя над раствором является понижением температур кристаллизации и повышения температур кипения
II закон Рауля
Депрессия кипения или кристаллизации (ΔTкр , ΔTкип ) прямо пропорциональна концентрации растворенного вещества
моляльная масса
Е (эбуллиоскопическая константа) характеризует свойства растворителя и численно равна депрессии кипения одномолярного раствора
EH 2 O =0,520
К (клиоскопическая константа) характеризует свойства растворителя и численно равна понижению температуры кристаллизации одномолярного раствора.
KH 2 O =1,860
Депрессия кипения и кристаллизации величины положительные
Е и К связаны с температурой кипения и кристаллизации растворителя, а также с их удельной теплотой парообразования и плавления соответственно
Измеряя температуру кипения и температуру кристаллизации можно определить молекулярную массу растворенного вещества
Осмос. Осмотическое давление.
Если привести в соприкосновение два раствора различной концентрации или раствор и растворитель, то движение частиц растворенного вещества станет направленным.
Осмометр
Молекулы растворителя проникают через полупроницаемую мембрану, что сопровождается повышением уровня жидкости во внутреннем сосуде осмометра. При этом создается препятствующее осмосу гидростатическое давление столба жидкости; на некоторой высоте h гидростатическое давление становиться таким, что осмос прекращается – наступает осмотическое равновесие.
Осмотическое давление – это давление численно равное минимальному гидростатическому давлению, которое нужно приложить к жидкости, чтобы осмос прекратился
Комбинируя две последних формулы, получим формулу для расчета молекулярной массы растворенного вещества.
Растворы электролитов
Количественный процесс диссоциации характеризуется степенью диссоциации и константой диссоциации
Степень диссоциации (ионизации) [a] – отношение числа молекул распавшихся на ионы к общему числу молекул.
Константа диссоциации описывает равновесие процессов диссоциации и определяется законом действующих масс
CH3 COOH«CH3 COO– +H+
Используя a можно записать:
[CH3 COO– ]=[H+ ]=a*C0, кисл
[CH3 COOH]=C0, к-ты -a* C0, к-ты =(1-a)*C0, к-ты
Если заменить концентрацию через разведение С=1/V
Если a<3%Þ1-a@1
С разведением раствора слабого электролита степень его диссоциации возрастает. Сильные электролиты этому закону не подчиняются. Было установлено, что вычисляемая по этому уравнению константа диссоциации зависит от концентрации раствора; увеличение концентрации ионов в растворе вызывает увеличение интенсивности их взаимодействия между собой и с растворителем.
Отклонение от идеальных растворов учитывают с помощью коэффициента активности γ.
Коэффициент активности (γ) показывает во сколько раз активность раствора или его эффективная концентрация отличается от общей концентрации вещества.
Классическая константа диссоциации записывается с учетом коэффициента активности
Произведение растворимости
В технике часто используют системы, состоящие из труднорастворимого электролита в виде осадка и раствора над ним. В таких системах устанавливается равновесие.
AgCl(тв) ®Ag(р-р) + +Cl(р-р) –
Активность чистой твердой фазы, при каждой данной температуре является константой
, где (ПР) – произведение растворимостей
Постоянство произведения растворимости не означает, что активность ионов электролита в растворе должна быть неизменной
При добавлении к раствору хлорида серебра нитрата серебра, которые содержат одноименные ионы, увеличивается скорость обратной реакции, и часть ионов серебра выпадает в виде осадка.
AgNO3 ®Ag+ +NO3 –
При этом соблюдается следующее условие: Произведение концентрации ионов в растворе больше произведения растворимостей
Общее условие равновесия. Правило Гиббса. Однокомпонентные системы диаграмм состояния воды
Кристаллизация растворов. Термический анализ.
Фаза – совокупность гомогенных частей системы одинаковых по составу химическому составу и физическим свойствам и отделенных от других частей системы поверхностью раздела.
Равновесие между фазами в гетерогенной системе называется гетерогенным или фазовым равновесием, особенностью многофазовых систем является равенство химических потенциалов веществ, температур и давлений во всех фазах
парообразование
конденсация
Компонент – индивидуальное химическое вещество, которое является составной частью системы, может быть выделенным из нее и может существовать самостоятельно
Число компонентов – наименьшее число индивидуальных химических веществ, необходимых для образования всех фаз в гетерогенной системе и для математического описания любой фазы.
Состояние системы характеризуется числом свободы или вариантностью системы
Пусть n-фаз содержит k-компонентов, а состояние каждой фазы определяется числом компонентов
С=К-Ф+2 (закон фазового равновесия, правило Гиббса)
Число степеней свободы равновесной термодинамической системы, на которую влияют только температура и давление равно числу независимых компонентов минус число фаз плюс 2
Число степеней свободы характеризует число независимых переменных, которые можно произвольно менять в определенных пределах без изменения числа и агрегатного состояния фаз в системе
Для конденсированных систем закон Гиббса имеет вид С=К-Ф+1
Построение Диаграмм
Графическое построение зависимостей p=f(T), p=f(C), T=f(C) позволяет определить число фаз, границы их существования, характер взаимодействия без выделения самих индивидуальных компонентов.
Исследование диаграмм построено на двух принципах:
1. Принцип непрерывности
2. Принцип соответствия
1) При непрерывном изменении параметров определяющих состояние системы, свойства ее отдельных фаз меняются непрерывно до тех пор, пока не изменится число или характер фаз. При появлении новых фаз или исчезновении старых свойства меняются скачком
2) Каждой фазе на диаграмме соответствует определенный геометрический образ: точка, линия или плоскость.
Рассмотрим
Часть плоскости, где фаза существует в определенном агрегатном состоянии, называется полем фазы. Линия пересечения плоскостей характеризует гетерогенное равновесие
OB ® Ж®Г
СО ® Т®Г
АО ® Ж®Т
Точка Фигуративная на диаграмме показывает значение параметров, характеризующих данное состояние системы.
Применим правило Гиббса к данной однокомпонентной системе во всех образах
Т.M ® Ф=1 С=2
Система бивариантна (М)
В пределах поля фазы можно произвольно менять температуру и давление, число и агрегатное состояние не изменяется
Т.N ® Ф=2 С=1
Система моновариантна (N)
Для системы с указанной точкой на любой прямой произвольно можно менять только один параметр (p или T)
Второй меняется в соответствии с первым
Точка О при пересечении линий диаграммы характеризует одновременное существование всех трех фаз системы
Т.О. Ф=3, С=0
Система нон- или инвариантна ® все фазы данной системы могут находиться в равновесии только при единственном сочетании Т и р.
О – тройная точка
Термич анализ
Позволяет по харрактеру изменения тем-ры во времени делать выводы об изменении состояния системы при ее охлаждении. В основе лежит наблюдение за скоростью охлаждения расплавленных чистых в-в и смеси различного состава и построении кривых охлаждения в координатах тем-ра и время.
Растворимость в-в в расплавленном и твердом состоянии различна. Существуют системы:
1) с неограниченной взаимной растворимостью компонентов в жидком состоянии и нерастворимостью в твердом.
2) с неограниченной взаимной растворимостью компонентов в жидком состоянии и непрерывно рядом в твердых р-рах
3) с неограниченной взаимной растворимостью компонентов в жидком состоянии и с ограниченной в твердом
Рассмотрим 1):
№1 А-100%
[ab] – охлаждение жидкого расплава
b – начало кристаллизации
[bc] - кристаллизация
[cd] – охлаждение тв фазы
№2 A-80% B-20%
[ab] – охлаждение жидкого расплава
b – начало кристаллизации компоненты А
[bc] – охлаждение гетерогенной системы, состоящей из 2 компонент расплава и тв фазы, представленной компонентой А, на протяжении [bc] масса А увеличивается
c начало кристаллизации компоненты В
[cd] – характеризует одновременную кристаллизацию 2 компонентов из расплава
d – тем-ра конца кристаллизации данной системы
[de] - охлаждение тв системы
№3 A-60% B-40%
Системы, имеющие наиболее низкую тем-ру нач кристаллизации для данной смеси компонентов, назыв эвтектическим.
№4 A-30% B-70%
№5 B-100%
Линия, отвечающая постоянному составу, наз изоклетой.
Линия (t(A)-E-t(B)), соединяющая точки нач тем-ры кристаллизации, наз ликвидус
Линия (L-E-N), соединяющая точки конца кристаллизации, наз солидус.
Рассмотрим точки, к-ые принадлежат изоклете №2
Т.1 – Ф=1 с=к-Ф+1=3-Ф=2
Оба компонента в жидком состоянии.
Т.2 – отвечает началу кристаллизации заданного состава.
Ф=2 с=1 (какой компонент кристаллизуется первым?) через Т2 проводим конноду в поле существования гетерогенной системы. Т2 и Т2’ отвечает составу фаз, находящихся в равновесии при данной температуре
Т2 – А-80%, В – 20%
Т2’ – А-100%
[от 60% до 100% комп. А]
комп А кристаллизуется быстрее чем В
Т3 – охлаждение твёрдого тела Ф=2, с=1
Состав равновесных фаз определяется точками 3’ и 3’’
Т. 3’ – А-100%
Т. 3’’ – А-65%, В-35%
Правило рычага:
Отношени масс равновесных фаз обр. проп. Отношению длин отрезков ,на которые коннода делится точкой общего состава системы.
mж /mтв =(3’-3)/(3”-3)
Т4 – при температуре кон кристаллизации характеризует одновременно кристаллизацию обоих компанентов. В конце крист каннода совпадает с солидусом. Ф=3, с=0
Состав равновесных фаз определяется точками L,N,E
Т-ки L,N отвечают за составы тв фаз, т-ка Е за состав жид фазы
Т.L – 1-ая тв фаза – 100%А
Т.N – 2-ая тв фаза – 100%В
Т.E – 40%В и 60% А
Т5 – характеризует гетерогеное состояние ф=2 с=1
Т.К – 1-ая тв фаза – 100% А
Т.Р – 2-ая тв фаза – 100%В
Диаграммы состояния бинарной системы с неограниченной взаимной растворимостью компонентов в жид состоянии и непрерывном рядом тв растворах
Для опр состава равновесных фаз через т-ку О (в гетерогенной области) проводим конноду.
Т.К – отвечает за состав тв фазы 15%В и 85%А
Т.L - отвечает за состав жид фазы 45%В и 55%А
mтв /mж =OL/OK
Т.Р – нач кристал
Т.N – кон кристал
Определение состава жид фазы в кон кристал?
Ответ: через Т.М проведем конноду до пересечения с ликвидусом
Q – 32%A, 68%B
Неограниченно растворимыми называются жидкости, которые могут растворяться друг в друге в любых соотношениях, образуя одну жидкую фазу.
От состава образующегося раствора зависит температура кипения, давление насыщенного пара, состав паровой фазы.
По характеру зависимости давления насыщенного пара от состава раствора различают:
· Идеальные растворы (подчиняются закону Рауля)
· С положительным или отрицательным отклонением от закона Рауля, но без экстремальных точек
· С положительным или отрицательным отклонением от закона Рауля и наличием экстремальных точек
1) Идеальные растворы образуются из веществ, молекулы которых сходны по химическому составу, строению и полярности.
Порциальное давление насыщенного пара компонента в растворе линейно подчиняется закону Рауля
pA =pA 0 NA
pA =pB 0 NB =PB 0 (1-NA )
Суммарное давление подчиняется закону Дальтона
pобщ =pA +pB
Изучая соотношения между равновесными составами жидкости и пара, Коновалов сформулировал 2 закона, описывающих равновесие жидкость – пар.
I) В паре содержится больше того компонента, добавление которого в исходный раствор понижает его температуру кипения или повышает общее давление пара над раствором.
Вывод: содержание в равновесных компонентов в паре и жидкости не одинаково.
Реальные растворы отличаются от идеальных, их образование сопровождается ненулевым тепловым эффектом и для них не соблюдается закон Рауля.
Отклонение давления насыщенного пара от линейной зависимости в сторону большего значения называется положительным, а в сторону меньшего – отрицательным.
Растворы с положительным отклонением образуются:
· С поглощением тепла (ph+)
· Химический потенциал компонентов больше, чем в случае простейшего идеального раствора и образуется с увеличением объема
Причина: уменьшение величины частиц вследствие полной или частичной диссоциации комплексов, которые могли быть в одном из чистых компонентов, что вызывает поглощение тепла, облегчает испарение и приводит к положительному отклонению
Растворы с отрицательным отклонением образуются:
· с выделением тепла
· потенциал меньше чем в чистой жидкости с уменьшением объема
Причина: увеличение размера частиц вследствие соединения.
II) Закон Коновалова
Для некоторых систем отклонение от закона Рауля так велики, что на кривой общего давления пара появляются точки, в которых давление пара смеси больше, чем давление чистого более летучего компонента в случаях положительных отклонений или меньше в случаях отрицательных отклонений (менее летучие компоненты)
Максимум на кривой общего давления соответствует минимуму на кривой температур кипения и отвечает такому равновесию раствора и его насыщенного пара, при котором составы обеих фаз одинаковы – это азеотропные точки
Электрохимия
Электрод-гетерогенная эл-хим система состоящая из электронно-проводящей фазы (металл или полупроводник), к-ая находится в контакте с ионным проводником. На границе раздела фаз происходит электродный процесс
Электродный процесс - реакция между компонентами фаз, в результате к-ой происходит переход электрических зарядов из одной фазы в др. Каждая фаза при этом приобретает заряд и на границе их раздела двойной электрический слой, к-ому соответствует электродный пот-л.
Пот-л определяющий процессы – окис-вос реакции, протекающие на электродах Ох+ne=Red
Различают обратимые и необратимые элеткроды
Обратимые – на поверхности к-х происходит одна и та же реакция, но в различных направлениях при пропуске тока в различных направлениях.
Необратимые – на поверх-сти к-х при пропускании тока в различных направлениях происходят процессы, не являющиеся обратными друг другу.
Из обратимых электродов составляются обратимые эл-хим пары, к-ые наз гальваническими элементами. Несколько гальвонич элементов, соединенных последовательно наз цепью (электрохимической).
В-ва, находящ в р-ре, указываются слева от вертикальной черты, справа указыв в-ва, образующ др фазу или электрический пот-л.
Если в р-ре находится несколько ионов, участвующих в процессе, их символы разделяются запятой
У-ия электродных реакций записываются таким образом, чтобы слева располагались в-ва в окислительн форме и электроны, справа в восстановит форме. Для эл-хим элементов
Слева – эелемент, имеющий больший отриц пот-л
Справа – элемент, имеющ больший полож пот-л
Растворы двух электродов разделяются 2 вертикальными чертами, если при создании гальванического элемента используют солевой мостик.
Электрической характеристикой электрода является электродный пот-л, а эл-хим цепи ЭДС
Уравнение Нернста
Рассмотрим обратимый электрод, работающий при постоянной температуре и давлении.
Для обратимого изотермического процесса справедливо уравнение изотермы реакции – ΔG=-RT·lnK+RT·lnK
Изменение изобарно-изотермического пот-ла=максимальной положительной работе.
При Т=const активность твёрдой фазы величина=const близкая к 1
Уравнение Нернста из расчёта пот-ла электрода меньше обратимого относ катиона.
Уравнение расчёта пот-ла электрода обратимого относ аниона.
ЭДС гальванического элемента опр предельное значение разности пот-лов, когда ток через него стремится к 0
Классификация электродов(2 типа)
1 рода:
~ металл или неметалл, погруженные в раствор, содержащий его ионы
к ним относятся:
- электроды обратимые относительно катиона(металлы, погруженные в раствор собственных солей)
- электорды обратимые относительно аниона (неметалл, погруженные в раствор собственных солей)
- амальгамные электроды(раствор металла ртути)
амальгамы металла, которые находятся в контакте с растворами с ионами данного металла
- газовые электроды н/р водородный
стандартный пот-л водородного электрода при любой температуре = 0
2 рода:
~ сложные системы, состоящие из металлов, покрытые слоем его труднорастворимого соединения и погружённого в раствор электролита, содержащего тот же анион, что и труднорастворимое соединение
к ним относятся:
– калонейные
– ионоселективные электроды (н/р стеклянные)
для приготовления хлорсеребряного электрода обычно используют одно-молярный раствор хлорида калия
т.к. пот-л таких электродов не зависит от концентрации измеряемых ионов, то он хорошо воспроизводится в различных растворах, поэтому ф-ия данного электрода – служить электродом сравнения.
Для электродов с водородозависимой ф-ией, н/р для водородного, назначение – индикаторный или измерительный электрод.
Для практических целей используют условные вел-ны, характеризующие пот-лы различных электродов относительно пот-ла электрода, выбранного за стандартный. Таким эталоном явл стандартный водородный электрод. Из стандартного водородного электрода и электрода, пот-л к-ого нужно опр составляют гальвонич элемент так, чтобы водородный электрод был левым. Тогда ЭДС такого гальвонич элемента будет = пот-лу исследуемого электрода.
®0
Если при работе такого гальвонич элемента электрод заряжается отриц по отношению к водородному электроду, то его пот-л будет иметь знак «-» и металл переходит в р-р ввиде ионов. Полож пот-л означает, что ионы металла при работе гальвонич элемента из р-ра переходят на электрод и он заряжается полож относит стандартного.
Располагая металлы в ряд по возраст их стандартн пот-лов получен ряд напряжения металлов.
Классификация эл-хим цепей
Два основных вида:
1) химические
2) концентрационные
1) химические состоят из электродов, пот-лы, определяющие реакции к-х различны
а) простые : в них оба эл-да погружены в р-р одного и того же электролита и в них отсутствует диффузионный пот-л.
Н/р водородный и хлорсеребряный электроды погружены в р-р соляно кислоты (Pt)H2 ½H+ ½Ag, AgCl
(Pt)H2 ½HCl½Ag, AgCl
б) сложные : имеют границу раздела между двумя растворами , в которые погружаются электроды. На границе раздела растворов возникает диффузионный пот-л. Н/р цинковый и медный электроды погружены в растворы своих солей. Zn½Zn2+ ½½Cu2+ ½Cu
Zn½ZnCl2 ½½CuSO4 ½Cu
ЭДС всех перечисленных элементов определяется как разность пот-лов правого и левого электродов Хим цепи используются при создании хим источников тока
2) концентрационные состоят из электродов с одинаковыми пот-лами определяющими реакциями, которые отличаются друг от друга активностью участвующих в них вещ-в
а) 1 рода: состоят из 2 одинаковых по природе электродов, которые различаются активностью, но погруженных в один и тот же раствор электролита. Н/р концентрационные амальгамные цепи
(Hg)Zn½ZnSO4 ½Zn(Hg)
(Hg)Zn½Zn2+ ½Zn(Hg)
a1 > a2
в электродах такого типа, чем больше активность металла в амальгаме тем отрицательнее пт-л.
суммарный процесс вводится к переносу металла из амальгама более концен-ой в менее конц-ую
б) 2 рода: состоят из двух одинаковых электродов, но погруженных в 2 раствора одного и того же электролита с различной активностью ионов. Н/р серебряная концентрационная цепь
Ag½AgNO3 ½½AgNO3 ½Ag
чем больше активность ионов, тем больше пот-л
суммарный процесс сводится к переносу ионов из более конц растворов в менее.
Преимущества химические источников тока
· Портативность
· Бесшумность работы
· Процессы идут при температуре окружающей среды
· Без выделения веществ
В случаях, когда требуется получение большого количества энергии за короткое время, используют аккумуляторы, когда требуется ток малой величины и малое время, используют батарейки.
Химические источники тока подразделяются:
-- По назначению:
- Первичные (1 раз)® батарейки
- Вторичные (много)® аккумуляторы
-- По конструкции
- Элементы с загущенным электролитом (непролив.)
- Элементы с жидким электролитом (наливные)
-- По особенностям работы
- С твердыми окислителями
- Элементы воздушных систем
- Смешанные
Сухой элемент предложен Леклонше (1876г.) марганцево-цинковый элемент. Используется электролит в загущенном виде (загуститель крахмал вещества). Применяется для питания аппаратуры связи и бытовых приборов.
Анод – цинк
Катод – графитовый стержень с оксидом 4-х валентного марганца MnO2.
Электролитом является паста (хлорид аммония с добавлением муки или крахмала)
ZnúNH4 ClúMnO2
A: Zn®Zn2+ +2e
2Zn2+ +NH4 Cl®[Zn(NH3 )4 ]Cl2 +ZnCl2 +4H+
K: Восстановление Mn4+ к Mn3+
MnO2 +H+ +e®MnOOH
Суммарное уравнение токообразующей реакции
2Zn0 +4MnO2 +4NH4 Cl®4MnOOH+ZnCl+[Zn(NH2 )]Cl2
A K E=1,5B
Сухой кислородно-цинковый элемент
ZnúNH4 ClúO2
Катодным деполяризатором является кислород воздуха, током отвода – активированный уголь, пропитанный водоотталкивающим веществом.
Катод – полый угольный цилиндр, внутренняя полость которого обеспечивает доступ кислорода. Снаружи он соприкасается с загущенным электролитом.
O2 +2Zn+4NH4 Cl®ZnCl2 +[Zn(NH3 )4 ]Cl2 +2H2 O
E=1,4B
Ртутно-цинковый
Катод – оксид ртути с графитом и запрессованный в отдельный корпус
Анод – цинковый порошок с добавкой 1% ртути, который запрессовывается в крошку электролита
Электролит – 40% гидроксид калия с добавкой 5% оксида цинка. Им пропитывают фильтрованную бумагу, которую помещают между электродами.
HgO+2KOH+Zn®K2 ZnO2 +H2 O+Hg
E=1,34B
Элементы хранятся много лет и работают при температуре до 1300 и используется в приемниках, слуховых аппаратах и кардиостимуляторах.
Наливные
Можно увеличивать напряжение так как на аноде металл с более электроотрицательным потенциалом (Mg). Однако такие аноды в водных растворах окисляются, выделяя водород, что ведет к саморазряду аккумулятора при хранении. Поэтому разработаны элементы, которые хранятся в сухом виде и электролит заливают перед началом работы.
Свинцово-кадмиевый
CdúH2 SO4 úPbO2
PbO2 +H2 SO4 +Cd®PbSO4 +CdSO4 +2H2 O
E=2,2B
Аккумулятор – устройство, в котором происходит взаимные превращения электрической энергии в химическую и наоборот.
В них под действием внешнего источника тока накапливается химическая энергия, которая затем переходит в электрическую. Процесс накопления химической энергии называется зарядкой аккумулятора, процесс превращения химической энергии в электрическую – разрядкой.
При зарядке он работает как электролизер, при разрядке – гальванический элемент
Свинцовый
Электроды создаются заполнением решеток свинцовой решетки пастой из оксида 2-х валентного свинца. Электролит – 32% H2 SO4 при погружении электродов в раствор H2 SO4 происходит реакция
PbO+H2 SO4 ®PbSO4 ¯+H2 O
В этом состоянии оба электрода имеют один состав, окислительно-восстановительное взаимодействие невозможно, значит аккумулятор разряжен.
При зарядке через аккумулятор пропускают постоянный ток, и при этом протекает процессы электролиза. На катоде идет процесс восстановления свинца от +2 до 0
K: PbSO4 +2H2+ +2e®Pb+H2 SO4
Pb2+ +2e®Pb0
A: PbSO4 +SO4 2+ ®Pb(SO4 )2 +2e
Pb2+ ®Pb4+ +2e
Pb(SO4 )2 +2H2 O®PbO2 +H2 SO4
Таким образом, после разрядки один электрод представляет собой губчатый свинец (PbO2 ).
При работе аккумулятора (разрядке) процесс протекает в другом направлении
K: Pb4+ O2 +H2 SO4 ®Pb(SO4 )2 +H2 O
Pb4+ (SO4 )2 +2H+ +2e®Pb2+ SO4 +H2 SO4
Pb4+ +2e®Pb2+
A: Pb+SO4 2– ®PbSO4 +2e
Pb0 ®Pb2+ +2e
Pb+PbO2 +2H2 SO4 «2PbSO4 +2H2 O
E=2,04B
В конце заряда напряжение достигает значения диссоциации воды
K: 2H+ +2e®H2 0
A: 2H2 O®O2 +4H+ +4e
Разряжать аккумулятор следует до 1,7В, так как при этом на электродах образуется сульфат свинца (PbSO4 ) особой кристаллической структуры, которая изолирует активную массу электрода от электролита.