Скачать .docx |
Реферат: Амінокислоти: одержання, властивості, роль у біології
Національний Університет «Києво-Могилянська Академія»
Реферат
Амінокислоти: одержання, властивості, роль у біології
виконав студент ФПН-1
Шестопал Руслан
Київ
АМІНОКИСЛОТИ
Органічні сполуки, що містять в молекулі карбоксильну та аміно групи, називають амінокислотами. Амінокислоти мають надзвичайно велике значення в органічному світі, тому що з них побудовані білкові речовини клітині, що виконують ряд інших важливих функцій в живому організмі: структурні білки, ферменти, гормони, транспортні білки, захисні, запасаючі, скорочувальні, токсини.
ІЗОМЕРІЯ. НОМЕНКЛАТУРА .
Амінокислоти називають звичайно як замісники відповідних карбонових кислот, позначаючи положення аміно групи буквами латинського алфавіта. Застосовується також систематична номенклатура, а для найпростіших- імпіричні назви:
CN2 NH2 -COOH амінооцтова кислота, аміноетанова кислота, глікол, гліцин.
CH3 -CHNH2 -COOHa-амінопропіонова кислота, 2-амінопропіонова кислота, аланін.
CH3 -CH2 -CH-CHNH2 -COOH 2-аміно-3-метилпентанова кислота
/ ізолейцин.
CH3
CH3 -CHOH-CHNH2 -COOHa-аміно-b-оксимасляна, 2-амино-3-оксибутанова кислота, треонін.
Ізомерія амінокислот аналогічна ізомерії оксикислот.Вона може бути пов’язана з положенням функціональних груп та будовою вуглицевого скелета. Молекула амінокислоти може вміщувати як одну так і декілька карбоксильних груп і відповідно до цього амінокислоти відрізняються по основності.В молекулі амінокислоти може вміщувати також декілька аміногруп.
Гомологічний ряд одноосновних амінокислот необхідно б було починати з аміномурашиниї кислоти H2 N-COOH. Проте ця кислота одночасно є неповним амідом карбонової кислоти.
Оцтова кислота має одну похідну амінокислоту H2 N-CH2 -COOH. Пролінова -дві: CH3 -CHNH2 -COOHa-амінопропіонова кислота, (a-аланін), CH2 NH2 -CH2 -COOHb-амінопропіонова кислота (b-аланін)
Від масляної- три , від ізомасляної- дві:
CH3 -CH2 -CHNH2 -COOHa-аміномасляна кислота
CH3 -CHNH2 -CH2 -COOHb-аміномаслянакислота
CH2 NH2 -CH2 -CH2 -COOHg-аміномасляна кислота
Від ізомасляної:
a-аміноізомасляна кислота
b-аміноізомасляна кислота H2 N-CH2- CH-COOH
/
CH 3
ШЛЯХИ ОТРИМАННЯ АМІНОКИСЛОТ .
Розроблено багато шляхів отримання a-амінокислот. Найважливіші з них три:
1.Дія аміака на солі хлорзамісних кислот:
NH2 -H+CL-CH2 -COONH4 ------HCL ---®NH2 -CH2 COOHNH4
2. Дією аміака та ціанової кислоти на альдегіди(реакція Штрекера). Ціановодень приєднується до аміду що утворюється спершу, утворений нітрил a-амінокислоти омилюють та отримують a-амінокислоту:
CH3 -C=O ----+HN3 -----H2O --®CH3 -CH=NH--+HCN -®CH3 -CH-CºN--+HOH: [ H 2 ] ---NH3 ®
/ /
H NH2
®CH3 -CH-COOH
/
NH 2
3.a-Амінокислоти також можна синтезувати з аміномалинового ефіра за наступною схемою:
NO-CH(COOR)2
CH2 (COOR)2 —R*ONO ---R*OH ®¯ --+H 2 -[ Ni ] ®NH2 -CH(COOR)2 —C 6 H 5 OCL --HCL ®
HON=C(COOR)2
ÞC6H5CO-NH-CH(COOHR)2--+RONa ---ROH -®[C6H5CO-NH-C(COOR)2 ]Na+ --R*I ---NaI --®C6 H5 CONH-CR*(COOR)2 —H+, HOH —C6H5COOH -®NH-CR*(COOH)2 ----CO2 -®NH2 -CHR*-COOH
4. При гідролізі білків отримано близько 25 різноманітних амінокислот. Розділення такої суміші являє собою вкрай складну операцію.Проте звичайно одна або дві амінокислоти отримуються в більших кількостях і ці кислоти вдається виділити досить просто. Останнім часом навчились так порушувати життєдіяльність деяких мікроорранізмів, що вони замість накопичення білка починають продукувати одну яку-небудь задану амінокислоту. Таким хляхом в промисловості отримують харчовий лізин. Із субстракта лізин виділяють з допомогою йоннообмінних смол.
Шляхи отримання b -амінокислот. Найбільш важливими є наступні два способи отримання цих кислот:
1. Приєднання аміака до відповідних кислот. Аміак до олефінів без каталізаторів не приєднується. Приєднання тут проходить так як і інші реакції a,b-ненасичених кислот, ане заправилом Марковникова:
CH2=CH-COOH--+2NH 3 ®NH2 -CH2 -CH2 -COONH4
2.Велика кількість амінокіслот була синтезована В.М.Родіоновим з малинової кислоти: CH2 -CHO+CH2 (COOH)2 --+NH 3 ®CH3 -CH-NH2 -CH2 COOH+H2 O+CO2
Ця реакція схожа з реакцією отримання b-оксикислот з альдегидів. Можливо, що проміжними продуктами тут є оксисполуки, проте механізм цієї реакції до кінця ще не з’ясовано.
Шляхи отримання інших амінокислот. Амінокислоти з більш віддаленими одна від одної функціональними групами отримують дією аміака на галогенпохідні кислот, відновленням неповних нітрилів двохосновних кислот з допомогою бекмановского перегрупування наприклад:
H2 C CH2 H2 C CH2
H2 C C=O –H 2 N-OH --HOH ® H2 C C=N-OH--[ H 2 SO 4 ] ®
H2 C CH2 H2 C CH2
циклогексанон циклогексаноноксим
H2 C CH2 OH H2 C CH2
CO
H2 C С=N ® ¬ H2 C NH
H2 C CH2 H2 C CH2
капролактам
Капролактам при гідролізі утворює w- або e-амінокапронову кислоту, а при нітруванні з подальшим відновленням- лактам 2,6-диамінокапронову кислотую(лізин).
Фізичні властивості .
Амінокислоти-безбарвні кристалічні речовини з високими температурами плавлення, які мало відрізняються для цих кислот і тому не характерні. Плавлення супроводжується розкладом речовини. У воді амінокислоти є добрерозчинними. Водні розчини одноосновних амінокислот майже завжди мають майже нейтральну реакцію.
Високі температури плавлення, відсутність в спектрі ліній, характерних для карбоксильної та аміно групи, та деякі інші властивості амінокислот пояснюються їх будовою. Амінокислоти являють собою внутрішні солі (біполярні іони):+ NH3 -CH2 -CO-O- Такий іон в кислому середовищі поводить себе як катіон, так як пригнічується дисоціація карбоксильної групи; а в лужній - як аніон: + NH3 -CH2 -COOH® ¬ + H OH - +NH3 -CH2 -COO® ¬ HO - H + NH2 -CH2 -COO-
В ізоелектричній точці, коли концентрація катіонів та аніонів рівні, конценотрація біполярного іона максимальна і рух його в електричному полі не відбувається. Положення рівноваги залежить від pHсередовища.
Більшість природніх амінокислот оптичноактивні вналлідок наявності асемитричного атома карбону. В пироді розповсюджені кислоти L-ряду.
ХІМІЧНІ ВЛАСТИВОСТІ .
Подібно до інших сполук із змішаними функціональними групами амінокислоти проявляють властивості як кислот так і амінів. Проте в ланцюзі перетворень сильно впливає наявність двох груп.
1. Амінокислоти утворюють солі з лугами. Солі a-амінокислот з тяжкими металами можуть мати комплексний характер. Таку будову мають наприклад інтенсивно сині солі міді: CH2 -NH2 OCO
Cu
COONH2 -CH2
2.Подібно до інших кислот амінокислоти утворюють складні ефіри, хлорангідриди, аміди і т. д.
3.Амінокислоти утворюють солі з неорганічними кислотами наприклад(H3 N+ -CH2 -COOH)- CL.Ці солі звичайно добре кристалізуються.
4.При дії азотистої кислоти амінокислоти утворюють оксикослоти:
H2 N-CH2COOH—HNO 2 ®N2 +H2 O+HOCH2- COOH
Ефіри амінокислот утворюють при цьому досить стійкі діазосполуки:
CH2 -CH2 -COOC2 H5 —HNO 2 ---2H2O ®N2 CH-COOC2 H5
Діазооцтовий (етиловий) ефір має наступну будову:
NºN+ -- CH-COOC2 H5 «- N=N+ =CH-COOC2 H5
Він використовується при органічному синтезі.
5.Аміногрупа в амінокислотах легко ацілюється при дії ангідридів або галогенангідридів кислот:
CH2 NH2 CH2 -NH-COCH3
/ +(CH3 CO)O2 ® / +CH3 COOH
COOH COOH
6.При алкіруванні аміногрупи утворюються вторинні, третинні амінокислоти та зрештою чотирьохзамісні амонійні луги. Внутрішні солі таких лугів називають бетаінами.
7. В залежності від положення аміногрупи по відношенню до карбоксилу амінокислоти поводять себе порізному:
1) a-амінокислоти утворюють дикетопіперазини:
CH3 -CH-CO---OHCH3 -HC-CO
|
H-NH+NH—H ® NH NH+2H2 O
|
НO—CO-CH-CH3 OC-CH-CH3
2) b-амінокислоти відщеплюють аміак і дають амонійну сіль ненасиченої кислоти. Причиною такої реакції є рухливість водневих атомів в сусідстві з карбоксильною групою:
CH2 -CH-COOH
І | ® CH2 =CH-COOONH4
NH2 H
3)g-,d-амінокислоти уворюють при нагріванні внутрішні аміди -лактами:
H2 C CH2 H2 C CH2
H2 C CO -H2O ® H2 C CO
HN---HOHNH
Цим корис
туються при визначенні будови амінокислот: визначають в якому положені знаходиться аміногрупа відносно карбоксильної.
8. В реакціях заміщенняa-амінокислот, повязаних із зміною до асимме-тричного атома карбону, частопроходить вальденівське обертання. Прикладом може бути взаємоперетворення d- таl-бромпропіонових кислот та d- іl-аланіна по наступній схемі:
d-бромпропіонова кислота---NH 3 ®d-Аланін
NOBr¯NOBr
l-Аланін ¬NH 3 - l-Бромпропіонова кислота
Інверсія або збереження конфігурації під час реакції заміщення залежить від механізма по якому дана реакція проходить.
9. В сучасній хімії та біології амінокислот та білків важливу роль відіграє реакція зі зміною кольору(зміна забарвлення на синє).
Комплексони. Комплексонами називають групу a-амінокислот, що вміщують два або три залишки, звязаних з азотом. Найбільш простими з цих амінополікарбонових кислот є імінодиоцтова та нитрилтриоцтова кислоти:
CH2 -COOHCH2 -COOHнітрилтриоцтоав
H-NHOCO-CH2 -Nкислота
CH2 -COOHCH2 -COON
імінодиоцтова кислота
ТАБЛИЦЯ. L - амінокислоти знайдені в білках
(CH3 )2 CH-CH2 -CH-COOH | NH2 |
Leu |
(CH3 )2 CH-CH-COOH | NH2 |
Val |
CH3 -CH-COOH | NH2 |
Ala |
H2 N-CH2 -COOH | Gly |
CH3 -CH2 -CH-CH-COOH | | CH3 NH2 |
Ile |
-CH2 -CH-COOH | NH2 |
Phe |
H2 N-CO-CH2 -CH-COOH | NH2 |
Asn |
H2 NCOCH2 CH2 CH-COOH | NH2 |
Gin |
CH2 -CH-COOH | NH NH2 |
Trp |
-COOH NH |
Pro |
HO-CH2 -CH-COOH | NH2 |
Ser |
CH3 -CH-CH-COOH | | OH NH2 |
Thr |
HO- -CH2 -CH-COOH | NH2 |
Tyr |
HO -COOH NH |
Opr |
NH2 | NS-CH2 -CH-COOH |
Cys |
NH2 | S-CH2 -CH-COOH | S-CH2 -CH-COOH | NH2 |
Cys-Cys |
CH3 -S-CH2 -CH-COOH | NH2 HOOC-CH2 -CH-COOH | NH2 |
Met |
HOOC-CH2 -CH2 -CH-COOH | NH2 |
Glu |
H2 N-CH2 CH2 CH2 CH2 CH-COOH | NH2 |
Lys |
H2N-C-NH-CH2CH2CH2-CH-COOH || | NH NH2 |
Arg |
N -CH2 -CH-COOH NH | NH2 |
His |
ЗВ ’ ЯЗКИ
Амінокислоти здатні утворювати ряд хімічних звязків з різними реакційноздатними групами.
Пептидний звязок . Цей звязок утворюється в результаті виділення води при взаємодії аміногрупи однієї амінокислота з карбоксильною іншої. Сполука що утворилась внаслідок такої реакції називається дипептид.
Іонний звязок. При схожому значенні pH іонізована аміногрупа може взаємодіяти з іонізованою карбоксильною .в результаті чого утворюється іонний звязок. У водному розчині іонні звязки значно слабкіші ковалентних; івони можуть розриватися при зміні pH середовища.
Дисульфідний звязок . Коли дві молекули цистеїна, їх сульфгідрильні (-SH) групи, знаходяться поруч, вони окислюються утворюючи дисульфідний звязок. Дисульфідні звязки можуть виникати при також між різними поліпептидними ланцюгами. Цей факт грає важливу роль в білковій структурі.
Водневий звязок. Електропозитивні водневі атоми, сполучені з азотом чи киснем в групах -OHабо -NH , намагаються узагальнити електрони з найближчими електронегативними атоиами кисню, наприклад з киснем в групі =СО. Утворений таким чином водневий звязок є слабим, але такі звязки виникають досить часто і сумарний вплив на на стабільність в молекулі значний( наприклад структура шовку).
Біосинтез амінокислот - це процес утворення амінокислот в організмі. Він може здійснюватись кількома шляхами: прямим амінуванням ненасичених кислот, відновним амінуваням кетокислотпереамвнування амінокислот зкетокислотами, завдяки реакціям за місцем радикалів амінокислот(процеси ферментативного взаємоперетворення).
В організмі людини здійснюється синтез лише замінних протеїногенних амінокислот, а в тканинах рослин синтезуються також незамінні амінокислоти. Синтез замінних амінокислот в організмі може здійснюватися із метаболів циклу Кребса, проміжних продуктів розщеплення вуглеводів та з незамінних амінокис-лот. Серед метаболітів циклу Кребса джерилом утворення амвнокислот є оксалоацетат і 2-оксоглутарат. З оксалоацетату утворюється аспарагінова кислота, а з неї -аспарагін:
Оксалоацетат+Глутамат®Аспарагінова кислота+2-Оксоглутарат;
Аспарагінова кислота+NH3 +АТФ®Аспарагін+H3 PO4 .
Із 2-оксоглутарату утворюється глутамінова кислота, глутамін, пролін, оксипролін. З промвжних продуктів обміну вуглеводів джерилом утворення амінокислот є піруват, 3-фосфогліцерат і рибозо-5*-фосфат.
Аланін з пірувату утворюється двома шляхами: переамінуванням і відновним амінуванням. Із 3-фосфогліцерату синтезується серин, а з серину -гліцин, з рибозо-5*-фосфату можливе утворення гістидину. Важливим шляхом синтезу замінних амінокислот є процеси взаємоперетворень їх за місцем радикалів та синтез замінних амінокислот з незамінних: фенілаланін®тирозин; метіонін® серин; серин ® гліцин; орнітин ® аргінін; метіонін ® цистеїн.
Синтез незамінних амінокислот здійснюється в тканинах рослин і бактеріальних клітинах. В організмі людини цей процес не здійснюється, оскільки там не утворюються кетокислоти, які могли б бути використані для їх синтезу. Синтез метіоніну та треоніну здійснюється з аспарагінової кислоти за участю АТФ та деяких ферментів - НАД-залежних дегідрогеназ, піридоксалевих, кобамідних, фоланових. Процес синтезу амінокислот відбувається однаково до утворення гомосерину, а далі він проходить з використанням ферментів, специфічних для кожної амінокислоти. Синтез лізину в бактеріальних клітинах здійснюється з пірувату та аспарагінової кислоти шляхом їх конденсації через циклічні проміжні продукти і діамінопімелінову кислоту. Фенілаланін і триптофан синтезуються з еритрозо-4*-фосфату і фосфоенолпірувату через шикімову, хоризмову та антранілову (триптофан) або префенову (фенілаланін) кислоти. Гістидин синтезується з АТФ, 5-фосфорибозил-1-пірофосфату і глутаміну під час багатоетапних перетворень. Валін, лейцин, ізолейцин синтезуються з пірувату внаслідок складних ферментативних перетворень, у результаті яких утворюється кетокислота з розгалуженим бічним радикалом; далі вона вступає в реакцію переамвнування з глутаміновою кислотою.
ВИКОРИСТАНА ЛІТЕРАТУРА:
1. Ф.Ф.Боєчко, Л.О.Боєчко. Основні Біохімічні поняття, визначення і терміни
2. А.А.Петров, Х.В. Бальян, А.Г. Трощенко. Органічна Хімія.
3. Н.Грін, У.Стаут, Д.Тейлор. Биология. Москва: Мир. 1996 рік.