Скачать .docx |
Реферат: Понятие и биологическая роль ферментов
Содержания
Введение
1. Ферменты
1.1 Термин «ферменты», биологическая роль ферментов
1.2 Особенности строения простых и сложных ферментов. Преимущества перед химическими катализаторами
1.3 Методы выделение ферментов
1.4 Классификация иноменклатура ферментов по типу катализируемой реакции
1.5 Область применения
2. Биокатализ
2.1 Принцип действия ферментов
2.2 Факторы, влияющие на реакции ферментации
3. Особенности биомиметики
Заключение
Список использованных источников
фермент катализатор реакция
Введение
Я выбрала тему «Ферменты. Биокатализ. Возможности биомиметики», потому что в последнее время в качестве лекарственных средств стали широко применять препараты, оказывающие направленное влияние на ферментные процессы организма. Как известно в нашем организме действует много ферментов, которые способствуют осуществлению обменных процессов (дыхание, пищеварение, мышечное сокращение, фотосинтез), которые и определяют сам процесс жизни. Поэтому препараты стали широко применяться при лечении заболеваний, сопровождающихся гнойно-некротическими процессами, при тромбозах и тромбоэмболиях, нарушениях процессов пищеварения. Ферментные препараты стали находить также применение при лечении онкологических заболеваний.
Ферменты играют немаловажную роль и в проведении многих технологических процессов. Ферменты высокого качества позволяют улучшить технологию, сократить затраты и даже получить новые продукты.
В настоящее время ферменты применяются более чем в 25 отраслях промышленности: это и пищевая промышленность, и фармацевтическая, целлюлозно-бумажная, лёгкая, а так же в сельском хозяйстве.
Целью моего реферата является: подробное исследование понятий фермента и ферментативного катализа (биокатализа).
В этой связи мне стало интересно узнать историю появления первых ферментов, особенности строения, их свойства, классификацию, принцип действия, методы выделения ферментов.
1. Ферменты
1.1 Термин «ферменты», биологическая роль ферментов
В течение всей своей истории существования человек пользовался ферментами, зачастую не подразумевая об этом.
Термин фермент предложен в XVII веке химиком Ван Гельмонтом при обсуждении механизмов пищеварения. В кон. ХVIII — нач. XIX вв. уже было известно, что мясо переваривается желудочным соком, а крахмал превращается в сахар под действием слюны. Однако механизм этих явлений был неизвестен. В XIX в. Луи Пастер, изучая превращение углеводов в этиловый спирт под действием дрожжей, пришел к выводу, что этот процесс (брожение) катализируется некой жизненной силой, находящейся в дрожжевых клетках. Термин энзим (от греч. ἐν- — в- и ζύμη — дрожжи, закваска) был предложен в 1876 году.
Первый кристаллический фермент (уреаза) выделен американским биохимиком Д. Самнером в 1926 г.
Итак, что же такое ферменты? Ферменты (от лат. fermentum - брожение, закваска) или энзимы - органические вещества белковой природы, которые синтезируются в клетках и во много раз ускоряют протекающие в них реакции, не подвергаясь при этом химическим превращениям.
На сегодняшний день известно свыше 3000 ферментов. Все они обладают рядом специфических свойств, отличающих их от неорганических катализаторов. Только в человеческом организме ежесекундно происходят тысячи ферментативных реакций. Ферменты играют важнейшую роль во всех процессах жизнедеятельности, направляя и регулируя обмен веществ организма.
Нужно также отметить, что вся живая природа существует исключительно благодаря биокатализу. Недаром великий русский физиолог, нобелевский лауреат И.П. Павлов назвал ферменты носителями жизни.
1.2 Особенности строения простых и сложных ферментов. Преимущества перед химическими катализаторами
По строению ферменты могут быть однокомпонентными, простыми белками, и двухкомпонентными, сложными белками. Во втором случае в составе фермента обнаруживается не только белковый компонент – апофермент (apoenzyme), но и добавочная группа небелковой природы – кофермент (coenzyme). Последние вещества, в отличие от белкового компонента фермента (апофермента), имеют сравнительно небольшую молекулярную массу и, как правило, термостабильны.
Химическая природа важнейших коферментов была выяснена в 30-е годы нашего столетия благодаря трудам О. Варбурга, Р. Куна, П. Каррера и др. Оказалось, что роль коферментов в двухкомпонентных ферментах играют большинство витаминов (Е, К, Q, В1, В2, В6 В12, С, Н и др.) или соединений, построенных с участием витаминов, именно поэтому они должны поступать в организм с пищей. Многие ферменты с большой молекулярной массой проявляют каталитическую активность только в присутствии специфических низкомолекулярных веществ, называемых коферментами (или кофакторами).
Характерной особенностью двухкомпонентных ферментов является то, что ни белковая часть, ни добавочная группа в отдельности не обладают заметной каталитической активностью. Только их комплекс проявляет ферментативные свойства. При этом белок резко повышает каталитическую активность добавочной группы, присущую ей в свободном состоянии в очень малой степени; добавочная же группа стабилизирует белковую часть и делает ее менее уязвимой к денатурирующим агентам.
Однокомпонентные ферменты представляют собой простые белки.У однокомпонентных ферментов, не имеющих добавочной группы, которая могла бы входить в непосредственный контакт с преобразуемым соединением. Эту функцию выполняет часть белковой молекулы, называемая каталитическим центром. Предполагают, что каталитический центр однокомпонентного фермента представляет собой уникальное сочетание нескольких аминокислотных остатков, располагающихся в определенной части белковой молекулы. Аминокислотные остатки, образующие каталитический центр однокомпонентного фермента, расположены в различных точках единой полипептидной цепи. Поэтому каталитический центр возникает в тот момент, когда белковая молекула приобретает присущую ей третичную структуру. Следовательно, изменение третичной структуры фермента под влиянием тех или иных факторов может привести к деформации каталитического центра и изменению ферментативной активности.
Кроме каталитического центра, образованного сочетанием аминокислотных радикалов или присоединением кофермента, у ферментов различают еще два центра: субстратный и аллостерический. Под субстратным центром понимают участок молекулы фермента, ответственный за присоединение вещества (субстрата), подвергающегося ферментативному превращению. Часто этот участок называют “якорной площадкой” фермента, где, как судно на якорь, становится субстрат. Понятие о каталитическом и субстратном центре не следует абсолютизировать. В реальных ферментах субстратный центр может совпадать (или перекрываться) с каталитическим центром. Более того, каталитический центр может окончательно формироваться в момент присоединения субстрата. Поэтому часто говорят об активном центре фермента, представляющем сочетание первого и второго.
Аллостерический центр представляет собой участок молекулы фермента, в результате присоединения к которому определенного низкомолекулярного (а иногда - и высокомолекулярного) вещества изменяется третичная структура белковой молекулы. Вследствие этого изменяется конфигурация активного центра, сопровождающаяся либо увеличением, либо снижением каталитической активности фермента.
Ферменты как биологические катализаторы имеют ряд особенностей, которые отличаются их от катализаторов неорганической природы:
· ферментативные реакции протекают в физиологически нормальных для живого организма условиях и не требуют жестких условий - повышенной температуры, высокой кислотности среды, избыточного давления;
· ферменты как катализаторы строго специфичны, они катализируют только определённые биохимические реакции, действуя лишь на определённый субстрат;
· ферментативные реакции в живых организмах идут последовательно, таким образом, что субстратом для каждого последующего фермента является конечный продукт предшествующий ему ферментативной реакции;
· скорость ферментативных реакций высока, но она зависит от определённых факторов. Ускоряют реакцию в 108 -1020 раз. Ферментативные реакции идут со 100%-ным выходом и не дают побочным продуктов. Для выражения каталитической активности согласно рекомендациям Международного биохимического союза используется катал. Катал (кат) – это каталитическая активность, способная осуществить реакцию со скоростью, равной 1 моль в секунду;
· все ферменты являются белками. Молекулярная масса ферментов колеблется в широких пределах от 12*103 до 10*106 Да.
1.3 Методы выделения ферментов
Процесс выделения какого-либо белка начинается с переведения белков ткани в раствор. Для этого ткань (материал), из которой получают фермент, тщательно измельчают в гомогенизаторе в присутствии буферного раствора. Для лучшего разрушения клеток к материалу добавляют кварцевый песок, если материал растирают в ступке. В результате получают кашицу - гомогенат. Если не проводилось предварительное фракционирование органоидов клетки, гомогенат содержит обрывки клеток, ядра, хлоропласты и другие органоиды клеток, растворимые пигменты и белки.
При выделении ферментов из тканей живых организмов, в том числе растительных, необходимо соблюдать условия, не вызывающие денатурацию белка. Все работы проводят при пониженной температуре (40 С) и при оптимальных для данного фермента значениях pH среды буферного раствора.
После перевода ферментов из ткани в растворенное состояние гомогенат подвергают центрифугированию для отделения нерастворимой части материала, а затем в отдельных фракциях экстрата-центрифугата выделяют следуемые ферменты.
Так как все ферменты являются белками, то для получения очищенных препаратов ферментов применяются те же способы выделения, что и при работе с белками.
Методы выделения:
· осаждение белка органическими растворителями;
· высаливание;
· метод электрофореза;
· метод ионообменной хроматографии;
· метод центрифугирования;
· метод гельфильтрации;
· метод аффинной хроматографии, или метод хроматографии по сродству;
· избирательная денатурация.
1.4 Классификация и номенклатура ферментов по типу катализируемой реакции
Классификация и номенклатура ферментов основана на типе реакции, которую они катализируют, так как катализируемая реакция – это тот специфический признак, по которому один фермент отличается от другого.
В 1961 г. специальной комиссией Международного биохимического союза была предложена систематическая номенклатура ферментов. Ферменты были подразделены на 6 групп или классов в соответствии с общим типом реакции, которую они катализируют: оксидоредуктазы, трансферазы, гидролазы, лиазы, изомеразы, лигазы. [1]
Каждый фермент при этом получил систематическое название, точно описывающее катализируемую им реакцию. Однако поскольку многие из этих систематических названий оказались очень длинными и сложными, каждому ферменту было также присвоено и тривиальное, рабочее название, предназначенное для повседневного употребления. В большинстве случаев оно состоит из названия вещества, на которое действует фермент, указания на тип катализируемой реакции и окончания –аза.
Международная комиссия по ферментам разработала систему присвоения кодовых чисел (шифров) индивидуальным ферментам. Шифр каждого фермента содержит четыре числа, разделенные точками. Он составляется по следующему принципу:
А. Первое число показывает, к какому классу принадлежит данный фермент.
Б. Второе число, которое присваивается ферменту по классификации, обозначает подкласс. У оксидоредуктаз оно указывает на природу той группы в молекуле донора, которая подвергается окислению (1- обозначает спиртовую группу –CH-OH; 2-альдегидную или кетонную группу и т.д.); у трансфераз – природу транспортируемой группы; у гидролаз - тип гидролизуемой связи; у лиаз – тип связи, подвергающийся разрыву; у изомераз – тип катализируемой реакции изомеризации; у лигаз – тип вновь образуемой связи.
В. третье число обозначает подподкласс. У оксидоредуктаз оно указывает для каждой группы доноров тип участвующего акцептора (1 обозначает кофермент NAD+ или NASP+ ; 2- цитохром; 3- молекулярный кислород и т.д.); у трансфераз третье число обозначает тип транспортируемой группы; у гидролаз это число уточняет тип гидролизуемой связи, а у лиаз – тип отщепляемой группы; у изомераз оно уточняет характер превращения субстрата, а у лигаз – природу образующего соединения.
Г. Четвёртое число обозначает порядковый номер ферменты в данном подклассе.
Шифровая классификация имеет очень важное преимущество – она позволяет исключить необходимость при включении в список вновь открытых ферментов менять номера всех последующих. Новый фермент может быть помещен в конце соответствующего подкласса без нарушения всей остальной нумерации.
1.5 Область применения [2]
Ферменты нашли широкое применение в таких отраслях промышленности, как хлебопечение, пивоварение, виноделие, чайное, кожевенное и меховое производства, сыроварение, натуральных соков, кофе, кулинария (для обработки мяса) и т.д. В последние годы ферменты стали применять в тонкой химической индустрии для осуществления таких реакций органической химии, как окисление, восстановление, дезаминирование, декарбоксилирование, дегидратация, конденсация, а также для разделения и выделения изомеров аминокислот L-ряда (при химическом синтезе образуются рацемические смеси L- и D-изомеров), которые используют в промышленности, сельском хозяйстве, медицине. Овладение тонкими механизмами действия ферментов, несомненно, предоставит неограниченные возможности получения в огромных количествах и с большой скоростью полезных веществ в лабораторных условиях почти со 100% выходом.
Ферменты используются в производстве моющих средств и бумаги, а также в технологических процессах по производству кожи и текстилей, фармацевтической промышленности (фестал, мезимфорте). В настоящее время стало возможным их применение в кормах животных.
Используемые в пищевой промышленности ферменты имеют широкий спектр применения, включающий функции синтеза и разложения (деградации). При выборе фермента для конкретного пищевого процесса следует принимать во внимание его источник и биохимические характеристики, что важно при сертификации.
Подобно другим пищевым добавкам использование ферментов в пищевых продуктах нормируется законом.
2. Биокатализ
Биокатализ (ферментативный катализ), ускорение химических реакций под влиянием ферментов. В основе жизнедеятельности лежат многочисленные химические реакции расщепления питательных веществ, синтеза необходимых организму химических соединений и трансформации их энергии в энергию физиологических процессов (работа мышц, почек, нервная деятельность и т.п.). Все эти реакции не могли бы происходить с необходимой для живых организмов скоростью, если бы в ходе эволюции не возникли механизмы их ускорения с помощью биокатализа.
2.1 Принцип действия ферментов
Вещество, подвергающееся превращению в присутствии фермента, называют субстратом. Субстрат присоединяется к ферменту, который ускоряет разрыв одних химических связей в его молекуле и создание других; образующийся в результате продукт отсоединяется от фермента.
Ферменты не подвергаются износу во время реакции. Они высвобождаются по завершению реакции и сразу же готовы начать следующую реакцию. Теоретически это может продолжаться бесконечно, по крайней мере, до тех пор, пока они не израсходуют весь субстрат. На практике вследствие их восприимчивости и органического состава, продолжительность существования ферментов ограничена.
По образному выражению, употребляемому в биохимической литературе, фермент подходит к субстрату, как «ключ к замку». Это правило было сформулировано Э. Фишером в 1894 г. исходя из того, что специфичность действия фермента предопределяется строгим соответствием геометрической структуры субстрата и активного центра фермента. Фермент соединяется с субстратом с образованием короткоживущего фермент-субстратного комплекса (образования промежуточного комплекса). Однако, хотя эта модель объясняет высокую специфичность ферментов, она не объясняет явления стабилизации переходного состояния, которое наблюдается на практике. В 50-е годы нашего столетия это статическое представление было заменено гипотезой Д. Кошланда об индуцированном соответствии субстрата и фермента. Сущность ее сводится к тому, что пространственное соответствие структуры субстрата и активного центра фермента создается в момент их взаимодействия друг с другом, что может быть выряжено формулой “перчатка-рука”. Ферменты, в основном, — не жесткие, а гибкие молекулы. Активный центр фермента может изменить конформацию после связывания субстрата. Боковые группы аминокислот активного центра принимают такое положение, которое позволяет ферменту выполнить свою каталитическую функцию. В некоторых случаях молекула субстрата также меняет конформацию после связывания в активном центре. В отличие от модели «ключ-замок», модель индуцированного соответствия объясняет не только специфичность ферментов, но и стабилизацию переходного состояния.
Но в процессе всё большего развития науки гипотеза Кошланда постепенно вытесняется гипотезой топохимического соответствия. Сохраняя основные положения гипотезы взаимоиндуцированной настройки субстрата и фермента, она фиксирует внимание на том, что специфичность действия ферментов объясняется в первую очередь узнаванием той части субстрата, которая не изменяется при катализе. Между этой частью субстрата и субстратным центром фермента возникают многочисленные точечные гидрофобные взаимодействия и водородные связи.
2.2 Факторы, влияющие на реакции фермента
На активность ферментов, а следовательно и на скорость реакций ферментативного катализа оказывают влияние различные факторы: :
· Концентрация и доступность субстрата . При постоянном количестве фермента скорость возрастает с увеличением концентрации субстрата. Эта реакция подчинена закону действующих масс и рассматривается в свете теории Михаэлиса – Ментона.
· Концентрация фермента . Концентрация ферментов всегда относительно невелика. Скорость любого ферментативного процесса в значительной степени зависит от концентрации фермента. Для большинства пищевых применений скорость реакций пропорциональна концентрации ферментов. Исключение составляют те случаи, когда реакции доводят до очень низких уровней субстрата.
· Температура реакции . До некоторого значения температуры (в среднем до 5О°С) каталитическая активность растет, причем на каждые 10°С примерно в 2 раза повышается скорость преобразования субстрата. В общем для ферментов животного происхождения он лежит между 40 и 50°С, а растительного - между 50 и 60°С. Самой оптимальной температурой является 37 o С, при которой в живом организме процессы протекают быстро, сберегая большое количество энергии. Однако есть ферменты с более высоким температурным оптимумом, например, у папаина оптимум находится при 8О°С. В то же время у каталазы оптимальная температура действия находится между 0 и -10°С.
· рН реакции . Для каждого фермента характерна определённая область значения рН, при которых фермент проявляет максимальную активность. Однако наилучшими условиями их функционирования являются близкое к нейтральному значение величины рН. В резко кислой или резко щелочной среде хорошо работают лишь некоторые ферменты. Влияние рН среды на действия ферментов основано на том, что происходит изменение заряда различных групп белка в активном центре фермента, вызывающее существенное изменение конформации полипептидной цепи.
· Продолжительность процесса . Для реакции ферментативного катализа первого порядка скорость реакции со временем уменьшается, так как уменьшается доступность субстрата. Такие реакции ферментативного катализа требуют достаточно много времени для её завершения.
· Наличие ингибиторов или активаторов . Химические вещества, способные оказывать вредное воздействие на реакцию ферментации, получили названия «ингибиторы». В качестве таких веществ могут выступать металлы (медь, железо, кальций) или соединения из субстратов. Некоторые вещества способны активировать или стабилизировать ферменты. Присутствие в реакционной среде некоторых ионов может активировать образование активного субстрат ферментного комплекса, и в этом случае скорость ферментативной реакции будет увеличивается. Такие вещества получили название активаторов.
3. Особенности биомиметики
Знания, получаемые людьми из природы, используются в современном мире повсюду, начиная от строительства и кончая медициной. Сегодня эти знания уже составили новую область науки: биомиметику. Этот термин, впервые ввел американский писатель-натуралист Джанин Бениус.
Биомиметика - область химии, которая моделирует процессы, происходящие в живой природе. Открытия в области биомиметических систем готовят революционный переворот в области синтеза новых материалов. Различают:
· биологическую, изучающую процессы, происходящие в биологических системах;
· теоретическую, строящей математические модели этих процессов;
· техническую, применяющую модели теоретической биомиметики для решения инженерных задач.
В Институте проблем химической физики РАН в Черноголовке уже найдены биомиметические подходы к ферментативной фиксации азота, анаэробного окислениюя алканов (метана в метанол) и фотоокислению воды с получением кислорода (именно это делают растения в процессе фотосинтеза).
Лакокрасочное изделие Lotosan выпускаемое в Германии отличается высокой стойкостью к загрязнениям. Идея была почерпнута у цветков лотоса, растущих в болотистых районах, и, несмотря на это, сохраняющих свою белизну. Оказалось – дело в микроскопических шипах, покрывающих поверхность цветка. Они не дают частицам задерживаться на лепестках и позволяют дождевой воде легко их смывать. В настоящее время разработчики бьются над создания легких, эластичных и прочных(в 5 раз прочнее стали) материалов на основе паутины. Идеология биомиметики прочно заняла свое место в различных дисциплинах - инженерном деле, химической технологии, нанотехнологии и многих других. Учёные попытаются найти химические аналоги ферментов и на их основе создать новые промышленные процессы. И это процесс со временем будет только набирать силу.
Заключение
В данной работе рассмотрено одно из биологически активных веществ, а именно - ферменты. Ферменты являются биологическим катализатором белковой природы, ускоряющим химические реакции в живых организмов и вне их. Ферменты обладают уникальными свойствами, которые отличают их от обычных органических катализаторов. Это, прежде всего, необычно высокая каталитическая активность. Другое важнейшее свойство ферментов - это избирательность их действия.
Важным свойством ферментов, которое необходимо учитывать при их практическом пользовании, является стабильность, т.е. их способность сохранять каталитическую активность.
Благодаря высокой специфичности ферментов в организме не воцаряется хаос: каждый фермент выполняет строго отведённые ему функции, не влияя на течение многих десятков и сотен других реакций, происходящих в его окружении. Роль ферментов в жизнедеятельности организмов велика.
Будущее ферментов очень интересно. Технология обнаружения и производства новых ферментов развивается с большой скоростью. Прежде применение и производство ферментов развивалось большей частью за счет попыток и ошибок. Так как детали, влияющие на химию и действие ферментов, были известны плохо, то в препаратах использовались смеси наиболее универсальных ферментов. Благодаря новым исследованиям при производстве сбываемой продукции возможно использование более специфичных ферментов.
Сегодня развивающиеся технологии с каждым днем раскрывают все новые чудеса сотворения жизни, и "биомиметика" как наука избирает примерами превосходные системы в организмах живых существ, создавая по их образу и подобию изобретения для пользы и блага людей. Учёные попытаются найти химические аналоги ферментов и на их основе создать новые промышленные процессы.
Список литературы
1. http://www.krugosvet.ru/articles/03/1000310/1000310a1.htm
2. Габриелян О.С, Маскаев Ф.Н., Пономарев С.Ю, Теренин В.И. Учебник химия 10 класс. - М., 2005.
3. Нечаев А.П., Кочеткова А.А, Зайцев А.Н. Пищевые добавки.- М., 2001.
4. Биохимия растительного сырья/ Под ред. Щербакова В.Г. М., 1999.
5. http://www.gazeta.ru/science/2007/10/15_a_2241957.shtml?incut2
6. http://www.cleandex.ru/articles/2008/07/07/biomimetic-1
Приложение 1
Классификация ферментов[3]
Таблица 1
Классы ферментов | Катализируемая реакция | Примеры ферментов или их групп (даны тривиальные названия) |
Оксидоредуктазы | Перенос атомов водорода или электронов от одного вещества к другому | Дегидрогеназа, оксидаза |
Трансферазы | Перенос определённой группы атомов - метильной, ацильной, фосфатной или аминогруппы – от одного вещества к другому | Трансаминаза, киназа |
Гидролазы | Реакции гидролиза | Липаза, амилаза, пептидаза |
Лиазы | Негидролитическое присоединение к субстрату | Декарбоксилаза, фумараза, альдолаза |
Изомеразы | Внутримолекулярная перестройка | Изомераза, мутаза |
Лигазы | Соединение двух молекул в результате образования новых связей С-С, С-N, С-О или С-S, сопряженное с распадом АТФ | Синтетаза |
Приложение 2
Некоторые примеры использования ферментов в промышленности [4]
Таблица 2
Фермент | Промышленность | Использование | |
Амилазы (расщепляют крахмал) | пивоваренная | Осахаривание содержащегося в солоде крахмала | |
текстильная | Удаление крахмала, наносимого на нити во время шлихтования | ||
хлебопекарная |
Крахмал Глюкоза. Дрожжевые клетки, сбраживая глюкозу, образуют углекислый газ, пузырьки которого разрыхляют тесто и придают хлебу пористую структуру. Хлеб лучше подрумянивается и дольше не черствеет | ||
Протеазы (расщепляют белки) |
папаин | пивоваренная | Этапы процесса пивоварения, регулирующие качество пены |
мясная | Умягчение мяса. Этот фермент довольно устойчив к повышению температуры и при нагревании мяса какое-то время продолжает действовать. Потом он, конечно, инактивируется | ||
фармацевтическая | Добавки к зубным пастам для удаления зубного налёта | ||
фицин | фотография | Смывание желатина с использованной плёнки для того, чтобы извлечь находящееся в нём серебро | |
пепсин | пищевая | Производство «готовых» каш | |
фармацевтическая | Препараты, способствующие пищеварению (в дополнение к обычному действию пепсина в желудке) | ||
трипсин | пищевая | Производство продуктов для детского питания | |
реннин | сыроделие | Свертывание молока (получение сгустка казеина) | |
Бакте- риальные протеазы |
Стирка белья | Стиральные порошки с ферментными добавками | |
кожевенная | Отделение волоса – способ, при котором не повреждаются ни волос, ни шкура | ||
текстильная | Извлечение шерсти из обрывков овечьих шкур | ||
пищевая | Получение белковых гидролизатов (в частности, для производства кормов) | ||
Глюкозооксидаза | пищевая | Удаление глюкозы или кислорода | |
Каталаза | пищевая | Удаление пероксида водорода | |
резиновая | Получение (из пероксида водорода) кислорода, необходимого для превращения латекса в губчатую резину | ||
Целлюлазы | пищевая | Осветление фруктовых соков |
|
Пектиназы |
[1] Приложение 1
[2] Приложение 2
[3] Габриелян О.С, Маскаев Ф.Н., Пономарев С.Ю, Теренин В.И. Химия 10 класс // Москва. 2005. С-258
[4] Габриелян О.С, Маскаев Ф.Н., Пономарев С.Ю, Теренин В.И. Химия 10 класс // Москва. 2005. С-254-255