Похожие рефераты Скачать .docx Скачать .pdf

Реферат: Технология защиты воздушного бассейна (атмосферы) от загрязнений

Виталий Чихарин

Этот краткий обзор технологии защиты атмосферы не рассчитан на специалистов, многое в нем сильно упрощено (для специалистов есть толстые и подробные книги), но он дает основное понятие о методах очистки.

Для начала -- вещь, которую следует четко понять и усвоить, и повторять которую я, возможно, буду еще несколько раз: технология сама по себе ничего не значит. Почти наверняка имеется способ очистить любые выбросы от любых загрязнений практически до нулевой их концентрации. Единственная проблема, сколько это будет стоить: повышение степени очистки на порядок (например, с 90% улавливается/10% уходит до 99% улавливается/ 1% уходит ) приводит к увеличению стоимости примерно в 10 раз. Так что дело не в технологии, а в экономической целесообразности ее применения.

Сначала немного терминологии.

Здесь и далее под загрязняющим веществом (ЗВ) мы будем понимать любое вещество, находящееся в неположенных количествах и/или в неположенное время и/или в неположенном месте.

Эмиссией загрязняющих веществ называется выброс ЗВ (загрязняющих веществ).

Источники выбросов делят на:

организованные (например, дымовая труба предприятия);

и неорганизованные (например, неплотность в аппарате).

Второе деление:

стационарные (трубы предприятий)

и передвижные (автомобили, железнодорожный транспорт и т.п.).

Наконец, выбросы деляется на подвергающиеся очистке (это могут быть выбросы только от организованных источников) и неподвергающиеся очистке -- от неорганизованных источников и от части организованных. Конечно, выбросы ЗВ можно также делить в соответствии с характером содержащихся в них ЗВ.

Основными источниками выбросов в атмосферу являются промышленные предприятия и автотранспорт. Доля автотранспорта колеблется в широких пределах и зависит от страны и района. По России эта величина составляет (в среднем) около 13%. Состав загрязнений от промышленных предприятий зависит от типа производства. В выбросных газах автотранспорта преобладают оксиды азота, соединения свинца (если в качестве антидетонатора используется тетраэтилсвинец, от чего в настоящее время практически отказались), полициклические ароматические углеводороды (ПАУ), а также сажа и оксид серы (для дизельных двигателей).

Для любого предприятия важно, чтобы схема очистки выбросных газов была наиболее дешевой при выбранной степени очистки (как по капитальным, так и по текущим затратам), позволяла повторно использовать ценные компоненты, находящиеся в выбросных газах, а аппаратура и сооружения занимали бы возможно меньшую площадь.

Степень очистки определяется относительно величины ПДВ (предельно допустимых выбросов, то есть такого количества выбрасываемых в атмосферу загрязнителей, которое обеспечит их концентрацию в приземном слое, не превышающую ПДК - предельно допустимую концентрацию), либо по величине ВСВ (временно согласованных выбросов).

Величина концентрации в приземном слое рассчитывается по утвержденным методикам и в общем и целом зависит от характеристики трубы - ее высоты, диаметра; свойств выбросных газов - их температуры, скорости истечения; метеорологических характеристик - скорости ветра, частоты низких инверсий. Из вышеизложенного ясно, что при одном и том же количестве выбрасываемых загрязнителей можно уложится в ПДК, просто увеличив высоту трубы. Поэтому, например, в Сибири, где частота низких инверсий выше, чем в европейской части России, высота труб промышленных предприятий больше. Также в областях с большей средней силой ветра рассеивание происходит быстрее и для предприятия расположенного в этом районе величина ПДВ по сравнению с предприятием того же профиля и той же мощности будет выше.

Теперь рассмотрим собственно технологии очистки. Все методы очистки делятся на регенеративные и деструктивные. Первые позволяют возвращать в производство компоненты выбросов, вторые трансформируют эти компоненты в менее вредные.

В случае, если в газовом потоке содержатся ценные вещества (например, летучие растворители), может быть выгоднее использовать регенеративные методы (но все опять-таки определяется экономической целесообразностью: возможно, себестоимость выделения этих компонентов будет больше их цены). Все зависит от характеристик загрязнителя и его концентрации в газовом потоке: чем она меньше, тем дороже выделение.

По другому признаку все методы очистки можно разделить на реагентные и безреагентные. Использование дополнительных реагентов, естественно, удорожает процесс.

Наконец, методы очистки газовых выбросов можно разделить по типу обрабатываемого компонента (очистка от аэрозолей - от пыли и тумана, очистка от кислых и нейтральных газов и так далее).

Обычно, аэрозоли (взвеси твердых или жидких частичек в газе) имеются в каждом выбросе. Для их удаления используются следующие методы очистки:

гравитационные -- в них осаждение взвешенных частичек происходит под действием силы тяжести: газовый поток с небольшой скоростью проходит через определенный аппарат, при этом наиболее крупные взвешенные частицы падают на дно и затем удаляются;

инерционные -- в них используется резкое изменение направления движение газового потока: взвешенные частицы по инерции продолжают движение, ударяются о специально установленные преграды и либо прилипают к ним, либо падают на дно и удаляются. К классу аппаратов, основанных на этом методе, относится, например, жалюзийный пылеуловитель - газовый поток проходит через жалюзи, элементы которых установлены под углом к направлению его движения.

Сюда же относятся аппараты, где осаждение происходит под действием центробежной силы (центробежная сила является частным случаем силы инерции). Самыми распространенными из таких аппаратов являются циклоны. На их устройстве я бы хотел остановится подробнее, ввиду того, что почти никакое производство без них не обходится. Очень часто вся очистка заключается в пропускании газового потока через циклон, например, на мебельных и деревообрабатывающих производствах.

Циклон - это вертикальный аппарат, верхняя часть которого представляет собой цилиндр, а нижняя - конус, сужающийся к основанию аппарата. Внутри (соосно) находится еще одна труба меньшего диаметра, доходящая примерно до середины конусной части (впрочем, этой внутренней трубы может и не быть). Загрязненный газовый поток подводится тангенциально (то есть по касательной) в верхней части аппарата, закручивается спиралью и опускается вниз. Отброшенные центробежной силой взвешенные частицы ударяются о стенки и падают вниз, где под днищем аппарата обычно имеется бункер. Очищенный газовый поток в нижней части закручивается в обратную сторону и поднимается вверх, выходя из верхней части аппарата. Чем меньше диаметр циклона, тем эффективнее он очищает, но тем меньше его производительность, поэтому газовый поток можно распараллелить и пустить одновременно в несколько маленьких циклонов (батарею).

основанные на фильтрации (используются фильтры из ткани, нетканого полотна, а также жесткие фильтры -- насыпные или сита). Материал фильтра может иметь щелочную реакцию, тогда он помогает очистить газовый поток также от кислых газов (SOx, NOx). Фильтры регенерируют продувкой в обратном направлении или встряхиванием.

электрические методы очистки. При этом способе очистки газовый поток направляется в электрофильтр, где проходит в пространстве между двумя электродами - коронирующим и осадительным. Частицы пыли заряжаются, движутся к осадительному электроду, разряжаются на нем. Таким методом можно очищать пыли с удельным сопротивлением от 100 до 100 млн. Ом*м. Пыли с меньшим удельным сопротивлением сразу же разряжаются и улетают, а с большим - образуют плотный изолирующий слой на осадительным электроде, резко уменьшая степень очистки. Методом электрической очистки можно удалять не только пыли, но и туманы. Очистка электрофильтров производится путем смыва пыли водой, вибрацией или с помощью ударно-молоткового механизма.

различные мокрые методы - использование пенных аппаратов, скрубберов.

Возможны комбинации всех этих методов (например, фильтроциклон - комбинация циклона и фильтра, центробежный скруббер -- практически орошаемый водой циклон и т.д.). При выборе конкретного метода очистки руководствуются его стоимостью, объемами подлежащих очистке газовых потоков, характеристиками взвешенных частиц (дисперсионный состав, плотность пыли, смачиваемость, электропроводность).

Для очистки от газов применяют следующие методы:

адсорбция, то есть поглощение твердым веществом газового (в нашем случае) компонента. В качестве адсорбентов (поглотителей) применяют активные угли различных марок, цеолиты, силикагель и другие вещества. Адсорбция -- надежный способ, позволяющий достигать высоких степеней очистки; кроме того, это регенеративный метод, то есть уловленный ценный компонент можно вернуть обратно в производство. Применяется периодическая и непрерывная адсорбция. В первом случае по достижении полной адсорбционной емкости адсорбента газовый поток направляют в другой адсорбер, а адсорбент регенерируют - для этого используется отдувка острым паром или горячим газом. Затем ценный компонент можно получить из конденсата (если для регенерации использовался острый пар); для этой цели используется ректификация, экстракция или отстаивание (последнее возможно в случае взаимной нерастворимости воды и ценного компонента). При непрерывной адсорбции слой адсорбента постоянно перемещается: часть его работает на поглощение, часть - регенерируется. Это, конечно, способствует истиранию адсорбента. В случае достаточной стоимости регенерируемого компонента использование адсорбции может быть выгодным. Например, недавно (весной 2001 года) проведенный для одного из кабельных заводов расчет участка рекуперации ксилола показал, что срок окупаемости составит менее года. При этом 600 т ксилола, которые ежегодно попадали в атмосферу, будут возвращены в производство.

абсорбция, то есть поглощение газов жидкостью. Этот метод основан либо на процессе растворения газовых компонентов в жидкости (физическая адсорбция), либо на растворении вместе с химической реакцией -- химическая адсорбция (например, поглощение кислого газа раствором с щелочной реакцией). Этот метод также является регенеративным, из полученного раствора можно выделить ценный компонент (при использовании химической адсорбции это не всегда возможно). В любом случае вода очищается и хотя бы частично возвращается в систему оборотного водоснабжения.

термические методы -- являются деструктивными. При достаточной теплотворной способности выбросного газа его можно сжечь напрямую (все видели факелы, на которых горит попутный газ), можно применить каталитическое окисление, или (при малой теплотворной способности газа) использовать его в качестве дутьевого газа в печах. Получающиеся в результате термического разложения компоненты должны быть менее опасными для окружающей среды, чем исходный компонент (например, органические соединения можно окислить до углекислого газа и воды -- если нет других элементов, кроме кислорода, углерода и водорода). Этот метод позволяет добиться высокой степени очистки, но может стоить дорого, особенно если используется дополнительное топливо.

различные химические методы очистки - как правило связанные с использованием катализаторов. Таковым, например, является каталитическое восстановление оксидов азота из выхлопных газов автотранспорта (в общем виде механизм этой реакции описывается схемой:

CnHm + NOx + CO -----> CO2 + H2O +N2,
kt

где в качестве катализатора kt используется платина, палладий, рутений или другие вещества). Методы могут требовать применения реагентов и дорогих катализаторов.

биологическая очистка - для разложения загрязняющих веществ используются специально подобранные культуры микроорганизмов. Метод отличается низкими затратами (реагентов используется мало и они дешевые, главное - микроорганизмы живые и размножаются сами, используя загрязнения как пищу), достаточно высокой степенью очистки, но в нашей стране, в отличие от Запада, широко распространения, к сожалению, пока не получил.

конденсация, компримирование - физические методы очистки, применимые лишь при значительных концентрациях ЗВ в выбросе.

В заключение хотелось бы добавить следующее: на многих функционирующих сейчас предприятиях системы очистки не позволяют добиться концентраций в приземном слое ниже ПДК (да и сами величины ПДК постоянно пересматриваются в сторону снижения). Часть элементов системы очистки выбросов не работает, часть работает в нештатном режиме, на закупку нового оборудования нет денег, а если бы даже и нашлись деньги, его эксплуатация сильно повысит себестоимость продукции. Так что никакая технология сама по себе для охраны природы ничего не сделает. Нужны "правила игры", которые сделают выгодным затраты на природоохранные мероприятия.

Глоссарий

Краткий словарь использованных терминов:

ВСВ

временно согласованный выброс -- выбросы вредных веществ, установленные для аналогичных по профилю и мощности предприятий, имеющих лучшую на данный момент технологию производства.

Инверсия (инверсионный слой)

такое вертикальное распределение температур в атмосфере, когда с увеличением высоты температура воздуха не падает, а растет.

Низкая инверсия

инверсия в нижнем слое атмосферы. При этом затруднено вертикальное перемешивание воздуха, а следовательно, затрудняется рассеивание ЗВ в атмосфере.

Острый пар

водяной пар в непосредственном контакте с каким-то компонентом (если контакт через стенку -- это глухой пар).

ПДВ

предельно допустимый выброс -- такое количество вредного вещества, выбрасываемых из конкретного источника, которое с учетом рассеивания не даст в приземном слое концентрации выше ПДК (к сожалению, здесь не учитываются санитарные нормы -- концентрация веществ может быть значительно ниже ПДК, но вещества эти имеют весьма неприятные органолептические -- ощущаемые органами чувств -- свойства. Каждый, кто проходил, например, мимо табачной фабрики мог в этом убедится).

ПДК

предельно допустимая концентрация вредного вещества -- та концентрация вредного вещества, присутствие которого в воздухе в течение определенного промежутка времени практически не повлияет на здоровье человека и его потомков. Различают ПДКр.з. (рабочей зоны), ПДКм.р. (максимально разовое) и т.д. Обратите внимание на это определение, потому что часто ПДК путают с летальной концентрацией (мол, если концентрация выше ПДК -- вдохнул и все). На самом деле, значение ПДК -- именно та концентрация, которая (по современным представлениям) совершенно не влияет на здоровье человека и его потомков (другое дело, что значения ПДК часто пересматривались, когда выяснялось, что считавшееся практически безвредным вещество на самом деле чрезвычайно опасно -- как это случилось с винилхлоридом, асбестом и многими другими веществами). Если веществ несколько, безопасность проверяется по формуле 1/S ПДКi?1 (к сожалению, эта формула не учитывает синергестического, то есть взаимоусиливающие свойства веществ).

Ректификация

метод разделения веществ (смеси), основанный на разнице температур кипения этих веществ.

Экстракция

метод разделения веществ (смеси), основанный на их различной растворимости в определенном растворители. Компоненты смеси извлекаются путем перевода их из одной жидкой фазы (например, водного раствора) в другую (например, какой-либо органический растворитель), играющую роль экстрагента.

Рекуперация (отходов)

процесс извлечения ценных веществ, участвующих в технологическом процессе, и возвращения их в исходном товарном виде для повторного использования.

Список литературы

Для подготовки данной работы были использованы материалы с сайта http://geographer.ru/

Похожие рефераты:

Нефтеперерабатывающий завод "Уфанефтехим" как источник загрязнения среды обитания

Защита атмосферы на предприятиях строительной индустрии

Снижение вязкости растворов мелассы с помощью моноглицеридов дистиллированных

Загрязнение атмосферы

Химия и экология

Загрязнение атмосферы

Методы очистки промышленных газовых выбросов

Очистка газов, основанная на катализе

Безопасность жизнедеятельности и охрана труда

90 шпаргалок по БЖД 1 курс (1-2 семестр)

Производство поливинилбутираля

Переработка одноразовых шприцов

Вопросы по экологии

Основы промышленной экологии

Сущность и направления охраны окружающей среды

БЖД

Защита атмосферы

Безопасность жизнедеятельности

Биосфера и ее свойства. Последствия парникового эффекта