Похожие рефераты | Скачать .docx | Скачать .pdf |
Реферат: Радиационное загрязнение
Содержание стр.
Введение…………………….………….………….……………………
1 Источники и характеристика радиационного загрязнения…
1.1 Характеристика радиационного загрязнения……………
1.2ПО «Маяк» …………………………………………………...
1 .3 Чернобыль…..……………………………………………….
2 Распространение радиационного загрязнения………………….
2.1 Радиоактивное загрязнение воздушной среды………….
2.2 Радиоактивное загрязнение водной среды. ……………..
2.3 Радиоактивное загрязнение почвы. ………………………
2.4 Радиоактивное загрязнение растительного и
животного мира. ……………………………………………….
3 Переработка и нейтрализация радиационных отходов. ……….
4. Радиационная обстановка в Краснодарском крае. …………….
5 Возможные последствия применения ядерного оружия массового поражения…………….…………….…………….……..
Заключение…………….…………….…………….…………….……..
Список литературы…………….…………….…………….………….
Введение
Радиоактивное загрязнение биосферы это превышение естественного уровня содержания в окружающей среде радиоактивных веществ. Оно может быть вызвано ядерными взрывами и утечкой радиоактивных компонентов в результате аварий на АЭС или других предприятиях, при разработке радиоактивных руд и т.п. При авариях на АЭС особённо резко увеличивается загрязнение среды радионуклидами (стронций-90, цезий-137, церий-141, йод-131, рутений-106 и др.). В настоящее врёмя, по данным Международного агентства по атомной энергетике. (МАГАТЭ), число действующих в мире реакторов достигло 426 при их суммарной электрической мощности около 320 ГВт (17% мирового производства электроэнергии).
Ядерная энергетика, при условии строжайшего выполнения необходимых требований, более или менее экологически чище no сравнению с теплоэнергетикой, поскольку исключает вредные выбросы в атмосферу (зола, диоксиды, углерода и серы, оксиды азота и др.). Так, во Франции быстрое наращивание мощностей АЭС позволило в последние годы значительно уменьшить выбросы диоксида серы и оксидов азота в секторе энергетики соответственно на 71 и 60% . В Японии для стабилизации энергообеспечения страны намечается в ближайшие два десятилетия построить около 40 новых АЭС, что удовлетворит 43% энергопотребностей. Однако в целом в мире отмечена тенденция сокращения строительства новых АЭС.
Использование атомной энергии в широких масштабах приводит к накоплению радиоактивных отходов. Возникает проблема их захоронения.
1 Источники и характеристика радиационного загрязнения .
1.1 Характеристика радиационного загрязнения.
Научные открытия и развитие физико-химических технологий в XX в. привели к появлению искусственных источников радиации , представляющих большую потенциальную опасность для человечества и всей биосферы. Этот потенциал на много порядков больше естественного радиационного фона, к которому адаптирована вся живая природа.
Естественный радиационный фон обусловлен рассеянной радиоактивностью земной коры, проникающим космическим излучением, потреблением с пищей биогенных радионуклидов и составлял в недавнем прошлом 8—9 микрорентген в час (мкР/ч), что соответствует среднегодовой эффективной эквивалентной дозе (ЭЭД = НD) для жителя Земли в 2 миллизиверта (мЗв). Рассеянная радиоактивность обусловлена наличием в среде следовых количеств природных радиоизотопов с периодом полураспада (T1/2) более 105 лет (в основном урана и тория), а также 40К, 14С, 226Ra и 222Rn. Газ радон в среднем дает от 30 до 50% естественного фона облучения наземной биоты. Из-за неравномерности распределения источников излучения в земной коре существуют некоторые региональные различия фона и его локальные аномалии.
Указанный уровень фона был характерен для доиндустриальной эпохи и в настоящее время несколько повышен техногенными источниками радиоактивности — в среднем до 11— 12 мкР/ч при среднегодовой ЭЭД в 2,5 мЗв. Эту прибавку обусловили:
а) технические источники проникающей радиации (медицинская диагностическая и терапевтическая рентгеновская аппаратура, радиационная дефектоскопия, источники сигнальной индикации и т.п.);
б) извлекаемые из недр минералы, топливо и вода;
в) ядерные реакции в энергетике и ядерно-топливном цикле;
г) испытания и применение ядерного оружия. Деятельность человека в несколько раз увеличила число присутствующих в среде радионуклидов и на несколько порядков — их массу на поверхности планеты.
Главную радиационную опасность представляют запасы ядерного оружия и топлива и радиоактивные осадки, которые образовались в результате ядерных взрывов или аварий и утечек в ядерно-топливном цикле — от добычи и обогащения урановой руды до захоронения отходов. В мире накоплены десятки тысяч тонн расщепляющихся материалов, обладающих колоссальной суммарной активностью.
С 1945 по 1996 г. США, СССР (Россия), Великобритания, Франция и Китай произвели в надземном пространстве более 400 ядерных взрывов. В атмосферу поступила большая масса сотен различных радионуклидов, которые постепенно выпали на всей поверхности планеты. Их глобальное количество почти удвоили ядерные катастрофы, произошедшие на территории СССР. Долгоживущие радиоизотопы (углерод-14, цезий-137, стронций-90 и др.) и сегодня продолжают излучать, создавая приблизительно 2%-ю добавку к фону радиации. Последствия атомных бомбардировок, ядерных испытаний и аварий еще долго будут сказываться на здоровье облученных людей и их потомков.
Пока еще трудно говорить о влиянии техногенного превышения естественного фона радиации на биоту биосферы. Мы еще не знаем, как может сказаться на биоте океана разгерметизация затопленных контейнеров с радионуклидами и реакторов затонувших подводных лодок. Во всяком случае, можно предполагать некоторое повышение уровня мутагенеза.
Радиационные загрязнения, связанные с технологически нормальным ядерным топливным циклом, имеют локальный характер и доступны для контроля, изоляции и предотвращения эмиссий. Эксплуатация объектов атомной энергетики сопровождается незначительным радиационным воздействием. Многолетние систематические измерения и контроль радиационной обстановки не обнаружили серьезного влияния на состояние объектов окружающей природной среды. Дозы облучения населения, проживающего в окрестностях АЭС, не превышают 10 мкЗв/год, что в 100 раз меньше установленного допустимого уровня. Вероятность радиационных аварий реакторов АЭС сейчас оценивается как 10 –4 --10 -5 в год.
1.2 ПО «Маяк»
ПО «Маяк». Самое крупное из известных сейчас скоплений радионуклидов находится на Урале, в 70 км к северо-западу от Челябинска на территории производственного объединения «Маяк». ПО «Маяк» было создано на базе промышленного комплекса, построенного в 1945—1949 гг. Здесь в 1948 г. был пущен первый в стране промышленный атомный реактор, в 1949 г. — первый радиохимический завод, изготовлены первые образцы атомного оружия. В настоящее время в производственную структуру ПО «Маяк» входят ряд производств ядерного цикла, комплекс по захоронению высокоактивных материалов, хранилища и могильники РАО. Многолетняя деятельность ПО «Маяк» привела к накоплению огромного количества радионуклидов и сильному загрязнению районов Челябинской, Свердловской, Курганской и Тюменской областей. В результате сброса отходов радиохимического производства непосредственно в открытую речную систему Обского бассейна через р. Теча (1949—1951 гг.), а также вследствие аварий 1957 и 1967 гг. в окружающую среду было выброшено 23 млн. Ки активности. Радиоактивное загрязнение охватило территорию в 25 тыс. км2 с населением более 500 тыс. человек. Официальные данные о десятках поселков и деревень, подвергшихся загрязнению в результате сбросов радиоактивных отходов в р. Теча, появились только в 1993 г.
В 1957 г. в результате теплового взрыва емкости с РАО произошел мощный выброс радионуклидов (церий-144, цирконий-95, стронций-90, цезий-137 и др.) с суммарной активностью 2 млн. Ки. Возник «Восточно-Уральский радиоактивный след» длиной до 110 км (в результате последующей миграции даже до 400км) и шириной до 35—50 км (рис. 1.1). Общая площадь загрязненной территории, ограниченной изолинией 0,1 Ки/км2 по стронцию-90, составила 23 тыс. км2 . Около 10 тыс. человек из 19 населенных пунктов в зоне наиболее сильного загрязнения с большой задержкой были эвакуированы и переселены.
Зона радиационного загрязнения на Южном Урале расширилась вследствие ветрового разноса радиоактивных аэрозолей с пересохшей части технологического водоема № 9 ПО «Маяк» (оз. Карачай) в 1967 г. В настоящее время в этом резервуаре находится около 120 млн Ки активности, преимущественно за счет стронция-90 и цезия-137. Под озером сформировалась линза загрязненных подземных вод объемом около 4 млн м3 и площадью 10 км2 . Существует опасность проникновения загрязненных вод в другие водоносные горизонты и выноса радионуклидов в речную сеть.
Рис. 1.1 Кара-схема «следа», связанного с аварией на ПО «Маяк» в 1957 г.
Зоны загрязнения с активностью по стронцию-90: 1 - более 50 Ки/км2 ; 2 - более 5 Ки/км2 ; 3 - более 0,1 Ки/км2 ; 4 - более 0,02 Ки/км2 через год после аварии
По данным радиационного мониторинга, выпадения цезия-137 из атмосферы в районах, расположенных в зоне влияния ПО «Маяк», в течение 1994г. были в 50—100 раз больше, чем в среднем по стране. Высоким остается и уровень загрязнения местности цезием-137 в пойме р. Теча. Концентрации стронция-90 в речной воде и в донных отложениях в 100—1000 раз превышают фоновые значения. В каскаде промышленных водоемов в верховьях Течи содержится 350 млн м3 загрязненной воды, являющейся по сути низкоактивными отходами. Суммарная активность твердых и жидких РАО, накопленных в ходе деятельности ПО «Маяк», достигает 1 млрд Ки. Сосредоточение огромного количества РАО, загрязнение поверхностных водоемов, возможность проникновения загрязненных подземных вод в открытую гидрографическую систему Обского бассейна создают исключительно высокую степень радиационного риска на Южном Урале.
1 .3 Чернобыль.
Не только нынешнее, но и последующие поколения будут помнить Чернобыль и ощущать последствия этой катастрофы. В результате взрывов и пожара при аварии на четвертом энергоблоке ЧАЭС с 26 апреля по 10 мая 1986 г. из разрушенного реактора было выброшено примерно 7,5 т ядерного топлива и продуктов деления с суммарной активностью около 50 млн Ки. По количеству долгоживущих радионуклидов (цезий-137, стронций-90 и др.) этот выброс соответствует 500—600 Хиросимам.
Из-за того, что выброс радионуклидов происходил более 10 суток при меняющихся метеоусловиях, зона основного загрязнения имеет веерный, пятнистый характер (рис. 1.2). Кроме 30-километровой зоны, на которую пришлась большая часть выброса, в разных местах в радиусе до 250 км были выявлены участки, где загрязнение достигло 200 Ки/км2 . Общая площадь «пятен» с активностью более 40 Ки/км2 составила около 3,5 тыс. км2 , где в момент аварии проживало 190 тыс. человек. Всего радиоактивным выбросом ЧАЭС в разной степени было загрязнено 80% территории Белоруссии, вся северная часть Правобережной Украины и 19 областей России. В целом по РФ загрязнение, обусловленное аварией на ЧАЭС, с плотностью 1 Ки/км2 и выше охватывает более 57 тыс. км2 , что составляет 1,6% площади ЕТР (табл. 1.1). Уточненные в 1994 г. границы площадей, загрязненных цезием-137, по сравнению с 1993 г. почти не изменились. Следы Чернобыля обнаружены в большинстве стран Европы (табл. 1.2), а также в Японии, на Филиппинах, в Канаде. Катастрофа приобрела глобальный характер.
.Рис. 1.2. Карта-схема территорий с наиболее интенсивным загрязнением радионуклидами выброса Чернобыльской аварии:
— зона активности 15 Ки/км2 ; — зоны с активностью более 40 Ки/км2 ;—— — граница 30-километровой зоны; ----- — Государственная граница
И сегодня спустя полтора десятилетия после чернобыльской трагедии существуют противоречивые оценки ее поражающего действия и причиненного экономического ущерба. Согласно опубликованным в 2000 г. данным из 860 тыс. человек, участвовавших в ликвидации последствий аварии, более 55 тыс. ликвидаторов умерли, десятки тысяч стали инвалидами. Полмиллиона человек до сих пор проживает на загрязненных территориях.
Таблица 1.1. Площади областей и республик России, загрязненных цезием-137 (по состоянию на январь 1995 г.)
Области, республики |
Общая площадь области, республики, тыс. км2 |
Площадь загрязнений цезием-13 7, км2
|
||||
Ки/км2 |
||||||
1-5 |
5-15 |
15-40 |
>40 |
|||
1. |
Белгородская |
27,1 |
1 620 |
|||
2. |
Брянская |
34,9 |
6 750 |
2628 |
2 130 |
310 |
3. |
Воронежская |
52,4 |
1 320 |
|||
4. |
Калужская |
29,9 |
3 500 |
1 419 |
||
5. |
Курская |
29,8 |
1 220 |
|||
6. |
Липецкая |
24,1 |
1 619 |
|||
7. |
Ленинградская |
85,9 |
850 |
|||
8. |
Нижегородская |
74,8 |
250 |
|||
9. |
Орловская |
24,7 |
8 840 |
132 |
||
10. |
Пензенская |
43,2 |
4 130 |
|||
11. |
Рязанская |
39,6 |
5 320 |
|||
12. |
Саратовская |
100,2 |
150 |
|||
13. |
Смоленская |
49,8 |
100 |
|||
14. |
Тамбовская |
34,3 |
510 |
|||
15. |
Тульская |
25,7 |
1 320 |
1 271 |
||
16. |
Ульяновская |
37,3 |
1 100 |
|||
17. |
Мордовия |
26,2 |
1 900 |
|||
18. |
Татарстан , |
68,0 |
110 |
|||
19. |
Чувашия |
18,0 |
80 |
|||
Итого |
49 760 |
5450 |
2 130 |
310 |
Точных данных о количестве облученных и полученных дозах нет. Нет и однозначных прогнозов о возможных генетических последствиях. Подтверждается тезис об опасности длительного воздействия на организм малых доз радиации. В районах, подвергшихся радиоактивному заражению, неуклонно растет число онкологических заболеваний, особенно выражен рост заболеваемости раком щитовидной железы детей.
Таблица 1.2. Средние эффективные эквивалентные дозы радиации для ряда стран Европы в течение первого года после Чернобыльской аварии, мкЗв
Страна |
Эффективная эквивалентная доза за первый год |
Ожидаемая эффективная эквивалентная доза |
Австрия |
670 |
3200 |
Финляндия |
360 |
2000 |
Болгария |
940 |
1800 |
Румыния |
570 |
1700 |
Югославия |
380 |
1700 |
Греция |
590 |
1200 |
Чехия и Словакия |
390 |
890 |
Италия |
300 |
810 |
Норвегия |
230 |
790 |
Польша |
240 |
740 |
Венгрия |
250 |
400 |
СНГ (СССР) |
260 |
820 |
2 Распространение радиационного загрязнения.
2.1 Радиоактивное загрязнение воздушной среды.
Радиоактивные вещества, попадающие в атмосферу при их добыче, и эксплуатации атомных установок и двигателей, могут представлять опасность. Однако при современном уровне защитной техники этот Источник радиоактивности незначителен.
Наибольшее загрязнение атмосферы радиоактивными веществами происходит в результате взрывов атомных и водородных бомб. Каждый такой взрыв сопровождается образованием грандиозного облака радиоактивной пыли. Взрывная волна огромной силы распространяет ее частицы во всех направлениях, поднимая их более чем на 30 км. В первые часы после взрыва осаждаются наиболее крупные частицы, несколько меньшего размера — влечение 5 суток, а мелкодисперсная пыль потоками воздуха переносится на тысячи километров и оседает на поверхности земного шара в течение многих лет.
2.2 Радиоактивное загрязнение водной среды.
Основными источниками радиоактивного загрязнения Мирового океана являются:
- загрязнения от испытаний ядерного оружия (в атмосфере до 1963 г.);
- загрязнения радиоактивными отходами, которые непосредственно сбрасываются в море;
- крупномасштабные аварии (ЧАОС, аварии судов с атомными реакторами);
- захоронение радиоактивных отходов на дне и др. (Израиль и др., 1994).
Во время испытания ядерного оружия, особенно до 1963 г., когда проводились массовые ядерные взрывы, в атмосферу было выброшено огромное количество радионуклидов. Так, только на арктическом архипелаге Новая Земля было проведено более 130 ядерных взрывов (только в 1958 г. -46 взрывов), из них 87- в атмосфере.
Отходы от английских и французских атомных заводов загрязнили радиоактивными элементами практически всю Северную Атлантику, особенно Северное, Норвежское, Гренландское, Баренцево и Белое моря. В загрязнение радионуклидами акватории Северного Ледовитого океана некоторый вклад сделан и нашей страной. Работа трех подземных атомных реакторов и радиохимического завода (производство плутония), а также остальных производств в Красноярске-26 привела к загрязнению одной из самых крупных рек мира - Енисея (на .протяжении 1 500 км). Очевидно, что эти, радиоактивные продукты уже попали в Северный Ледовитый океан.
Воды Мирового океана загрязнены наиболее опасными радионуклидами цезия-137, стронция-90, церия-144, иттрия-91, ниобия-95, которые, обладая высокой биоаккумулирующей способностью переходят по пищевым цепям, и концентрируются в морских организмах высших трофических уровней, создавая опасность, как для гидробионтов, так и для человека. Различными источниками поступления радионуклидов загрязнены акватории арктических морей, так в 1982 г. максимальные загрязнения цезием-137 фиксировались в западной части Баренцева моря, которые в 6 раз превышали глобальное загрязнение вод Северной Атлантики. За 29-летний период наблюдений (1963-1992 гг.) концентрация стронция-90 в Белом и Баренцевом морях уменьшилась лишь в 3-5 раз. Значительную опасность вызывают затопленные в Карском море (около архипелага Новая Земля) 11 тыс. контейнеров с радиоактивными отходами, а также 15 аварийных реакторов с атомных подводных лодок. Работами 3-й советско-американской экспедиции 1988 г. установлено, что в водах Берингова и Чукотского моря, концентрация цезия-137 близка к фоновой для районов океана и обусловлена глобальным поступлением данного радионуклида из атмосферы за длительный промежуток времени. Однако эти концентрации (0,1,Ки/л) были в 10-50 раз ниже, чем в Черном, Баренцевом, Балтийским и Гренландском, морях, подверженных воздействию локальных источников радиоактивного загрязнения
Все вышеперечисленное показывает, что человек, вероятно, забыл: океан - это мощная кладовая минеральных и биологических ресурсов; в частности, он даёт 90% нефти и газа, 90% мировой добычи брома, 60% магния и огромное количество, морепродуктов, что важно при увеличивающемся населении нашей планеты. По этому поводу знаменитый исследователь Жак-Ив Кусто напоминает: «…Море - продолжение нашего мира, часть нашей Вселенной, владения, которые мы обязаны, охранять, если хотим выжить».
2.3 Радиоактивное загрязнение почвы.
В связи с широким использованием в народном хозяйстве радиоактивных веществ появилась опасность загрязнения почв радионуклидами. Источники радиации — ядерные установки, испытание ядерного оружия, отходы урановых шахт. Потенциальными источниками, радиоактивного загрязнения могут стать аварии на ядерных установках, АЭС (как в Чернобыле, Екатеринбурге, а также в США, Англии).
В верхнем слое почвы концентрируются радиоактивные стронций и цезий, откуда они попадают в организм животных и человека. Лишайники северных зон обладают повышенной способностью к аккумуляции радиоактивного цезия. Олени, питающиеся ими, накапливают изотопы, а у населения, использующего в пищу оленину, в организме в 10 раз больше цезия, чем у , других северных народов.
2.4 Радиоактивное загрязнение растительного и животного мира.
Биологическое накопление свойственно и зеленым растениям, которые, аккумулируя определенные химические элементы, изменяют окраску хвои, листьев, цветков и плодов. Это иногда служит, индикаторным, признаком, при поисках полезных ископаемых. Например, береза и осина в Восточной Сибири накапливает в своей древесине значительные, содержания стронция-90, что приводит к появлению необычной окраски - неестественно зелёного цвета. Сон-трава на южном Урале аккумулирует никель поэтому ее около-цветник вместо фиолетового цвета становится белым, что указывает на высокие концентрации никеля в почве. В ареале рассеяния урановых месторождений лепестки иван-чая вместо розовых становятся белыми и ярко-пурпуровыми, у голубики плоды вместо темно-синих становятся белыми и т,д. (Артамонов, 1989).
Радионуклиды, попадая ,в окружающую среду, часто рассеиваются и разбавляются в водах, но они могут различными способами накапливаться в живых организмах при движении по пищевым цепям ("биологическое накопление. На рис. 2.1 показан процесс накопления стронция-90 по пищевым цепям в небольшом канадском озере Перч-Лейк, принимающим низкоактивные отходы
Рис. 2.1 Накопление стронция-90 в трофических цепях небольшого канадского озера Перч-Лейк. получающего низкоактивные отходы. Цифры указывают средние коэффициенты накопления относительно озерной воды, содержание стронция-90 в которой принято за 1.
Поскольку содержание радионуклида в виде принимается за 1, то его концентрация постепенно возрастает по пищевым цепям. В костях окуня и ондатры его содержание возрастает в 3000-4000 раз по сравнению с концентрацией в воде. Это имеет существенные негативные последствия для живых организмов, включая и человека, и биосферы в целом. Установлено, что коэффициент накопления стронция-90 в раковинах моллюсков днепровских водохранилищ относительно воды достигает 4800 (Францевич и др., 1995). Поэтому при оценке воздействия радионуклидов на среду необходимо учитывать эффект биологического накопления их живыми, организмами и последствия для естественных экосистем.
3 Переработка и нейтрализация радиационных отходов.
Одна из наиболее острых экологических проблем в стране — проблема радиоактивных отходов. Только на предприятиях Минатома России (ПО «Маяк», Сибирский химический комбинат, Красноярский горно-химический комбинат) сосредоточены 600 млн. м3 РАО с суммарной активностью 1,5 млрд. Ки. На 29 энергоблоках АЭС хранится 140 тыс. м3 жидких и 8 тыс. м3 отвержденных отходов общей активностью 31 тыс. Ки, а также 120 тыс. м3 излучающих твердых отходов (оборудование, строительный мусор). Ни одна АЭС не имеет полного комплекта установок для подготовки отходов к захоронению. Поставщиками РАО являются также Военно-морской флот (ВМФ), атомный ледокольный флот, судостроительная промышленность и предприятия неядерного цикла. На их долю приходится 240 тыс. м3 отходов с активностью более 2 млн. Ки.
Одна из наиболее сложных технологических стадий ядерного топливного цикла — переработка отработавшего ядерного топлива (ОЯТ) и захоронение РАО. На предприятиях Минатома, Минтранса и ВМФ России хранятся 7800 т ОЯТ с общей активностью 3,9 млрд. Ки. ОЯТ АЭС с реакторами типа РБМК в настоящее время не перерабатывается, а ОЯТ от реакторов ВВЭР транспортируется в специальное хранилище с перспективой последующей переработки на строящемся заводе РТ-2 горно-химического комбината в г.Железногорске Красноярского края. Однако строительство этого завода вызывает протесты общественности, поскольку существующая технология регенерации ОЯТ связана с образованием большого количества жидких РАО разной степени активности. Наибольшие возражения вызывает решение о возможности приема для временного хранения с целью последующей переработки ОЯТ с зарубежных АЭС.
Рис. 7.14. Карта-схема расположения источников радиационной опасности в российском секторе Арктики:
1 — места затопления контейнеров с РАО (всего более 10 тыс. контейнеров); 2 — места затопления судов или реакторных отсеков с аварийными реакторами; 3 - складирование или захоронение твердых РАО; 4 - места проведения ядерных испытаний; 5 — район развертывания долгосрочной программы ядерных испытаний и размещения регионального могильника РАО; 6 — районы неучтенных затоплений расщепляющихся материалов; К — место гибели атомных подводных лодок «Комсомолец» и «Курск»
Остаются нерешенными вопросы, связанные с утилизацией атомных подводных лодок, обращением с РАО и ОЯТ на объектах ВМФ России. К 1994 г. выведены из эксплуатации 121 атомная подводная лодка; для них строятся пункты временного хранения. Полностью загружены хранилища ОЯТ Мурманского морского пароходства. Тяжелое положение с хранением РАО сложилось на Тихоокеанском флоте. В связи с аварийным состоянием спецтанкера ТНТ-5 в октябре 1993 г. был произведен сброс жидких РАО в Японское море. После запрещения сброса отходов в море количество их неуклонно возрастает.
На большей части территории Российской Федерации мощность экспозиционной дозы (МЭД) гамма-излучения на местности соответствует фоновым значениям и колеблется в пределах 10...20 мкР/ч. В результате радиационного обследования городов и населенных пунктов страны выявлены сотни участков локального радиоактивного загрязнения, характеризующихся МЭД гамма-излучения от десятков мкР/ч до десятков мР/ч (в отдельных случаях — Р/ч). На этих участках находятся утерянные, выброшенные или произвольно захороненные источники ионизирующих излучений различного назначения, технологические отходы производств и содержащие радионуклиды стройматериалы. Эти загрязнения повышают риск для населения получить опасную дозу облучения в самом неожиданном месте, в том числе и в собственном доме, когда, например, строительные панели становятся мощным источником ионизирующего излучения.
4. Радиационная обстановка в Краснодарском крае.
В 2001 г. радиационная обстановка не претерпела существенных изменений и в основном формировалась под действием естественных Радионуклидов урана-238 (радия-226), тория-232 и продуктов их распада, калия-40, аварийных радиоактивных выбросов Чернобыльской АЭС 1986 г., Космического излучения и техногенных источников ионизирующего Излучения (ИИИ).[1]
Сохраняют актуальность проблемы близповерхностных отложений урансодержащих песчано-глинистых осадочных пород с содержанием урана от 50 до 200 г/т (на отдельных участках до 1000 г/т) и чернобыльского радиоактивного загрязнения территории края цезием-137 (около 23 кКи) и стронцием-90 (около 7 кКи), достигающего на территории Кавказского государственного природного биосферного заповедника (данные аэрогамма-спектрометрии) и в отдельных местах г.Сочи (данные ЦГСЭН и ООО «Радиационная медицина») 2,5 Ки/км2 по цезию-137.
В Краснодарском крае, по данным краевой инспекции Госатомнадзора, 87 предприятий используют НИИ. В это число не входят предприятия, имеющие генерирующие источники. Из них 58 (в соответствии с Нормами радиационной безопасности (НРБ-99)) подлежат обязательному лицензированию органами Госатомнадзора. Остальные 29 имеют источники с удельной или суммарной активностью менее установленной в НРБ-99 и не подлежат регламентации. На конец 2000 г. 47 подлежащих лицензированию предприятий имели лицензии Госатомнадзора на право работы с ИИИ.
Радиационный контроль предприятий осуществляется инспекторским составом комитета в соответствии с утвержденными планами проверок, а также в ходе совместных проверок с другими контролирующими и надзорными органами. В 2001 г. проведено 158 проверок (в т.ч. 27 целевых). Выявлено 41 нарушение при обращении с радиоактивными веществами и ИИИ, наложено 11 штрафов на сумму 31 тыс. руб. Контролировались не только предприятия, имеющие ИИИ, но и предприятия, на которых могут образовываться, применяться, обрабатываться, перемещаться искусственные и техногенные естественные радионуклиды (порты, сельскохозяйственные предприятия, предприятия топливно-энергетического комплекса, стройиндустрии и т.д.).
Ввоз грузов из-за границы, на который комитет давал согласование (доменные шлаки для дорожного строительства из Украины), предусматривал обязательное прохождение радиационного контроля на каждую завозимую партию.
Для контроля за ввозом и транзитом через территорию края радиоактивных веществ, отходов и ИИИ на границах с Ростовской областью и Ставропольским краем специализированной организацией «Радиационные контроль» установлено 4 поста дозиметрического контроля. Однако в июле 2001 г., в связи с распоряжением Министерства внутренних дел России о недопустимости нахождения на контрольных постах милиции и ГИБДД других контролирующих служб, 3 поста (в ст.Кущевская, Кавказская и Успенская) были ликвидированы. Силами комитета, ЦГСЭН в Краснодарское крае, специализированной организации «Радиационный контроль» в течение 2001 г. проводился регулярный контроль транзитных грузов, переваливаемых через порты края. Так, в Новороссийском морском торговом порту было проверено около 10 000 вагонов, 12 000 автомобилей и 3000 автоприцепов с идущим на экспорт металлоломом. 18 вагонов, 1 автомобиль и 3 автоприцепа содержали загрязненный радионуклидами металлолом. Эти транспортные средства были после тщательного дозиметрического обследования отправлены в адреса поставщиков.
В целом, ведомственный и государственный радиационный контроль обеспечивают безопасность при обращении с ИИИ. Отработанные источники ионизирующего излучения сдаются предприятиями края на Ростовский спецкомбинат "Радон". В 2001 г. на спецкомбинат «Радон» предприятия и организации края сдали на захоронение 2155 (в том числе 2037 дымо-извещателей) отработавших источников ионизирующего излучения (содержащих изотопы полония-210, селена-75, иридия-192, стронция-90, цезия-13 7, кобальта-60, талия-204, радия-226, плутония-239) общей активностью около 115 Ки.
На двух радиационно-опасных объектах (РОО) - Троицком йодном заводе (ТЙЗ) и ВНИИ биологической защиты растений (ВНИИ БЗР) до настоящего времени не захоронены должным образом радиоактивные отходы (РАО) и не проведена дезактивация и рекультивация радиационно-загрязненных территорий. Однако заводом и институтом проводилась работа по нормализации радиационной обстановки как за счет собственных средств, так и за счет средств краевого бюджета и экологического фонда (ВНИИ БЗР). Последние были выделены в соответствии с постановлением Законодательного собрания Краснодарского края от 27.10.99 г. № 300-П и постановлением главы администрации края от 01.04.2000 г. № 144 «О проведении первоочередных работ по ликвидации радиационно-опасного объекта во ВНИИ БЗР г.Краснодара», подготовленным по инициативе ЦГСЭН и комитета природных ресурсов по Краснодарскому краю.
Троицким йодным заводом выполнялись выданные контролирующими и надзорными органами предписания по нормализации радиационной обстановки. В частности, сооружено временное бетонное хранилище слабо радиоактивных отходов, в котором складировано около 100 т радиобарита Ва(Rа)SO4 и загрязненного технологического оборудования. Территория завода в целях снижения внешнего и внутреннего облучения персонала и для подавления пылерадиационного фактора отсыпана слоем грунта с высадкой зеленых насаждений, частично забетонирована. Ежегодно с участием специалистов КНР по Краснодарскому краю, ЦГСЭН в Краснодарском крае, и специализированной организации «Радиационной контроль» проводятся детальные дозиметрические обследования территории завода и гамма-спектрометрические исследования отобранных проб.
В результате проведенных работ радиационная обстановка на заводе в период с 1996 по 2001 гг. улучшилась, что подтверждается упомянутыми радиационными обследованиями. Затраты на эти работы составили 1 832 900 деноминированных рублей. В 1997-1998 гг. завод перешел на новую технологию получения йода с использованием соляной кислоты, практически исключающую образование твердых радиоактивных отходов. Затраты завода на внедрение новой технологии составили более 3 млн. руб.
В соответствии с законом РФ «О радиационной безопасности населения» № 3-ФЗ, постановлением Правительства РФ от 27.01.97 г. № 93 и постановлением правительства Краснодарского края от 27.08.98 г. № 27-П, для ТЙЗ разработан «Радиационно-гигиенический паспорт». Индивидуальные годовые эффективные дозы облучения персонала ТЙЗ, в соответствии с радиационно-гигиеническим паспортом за 2000 г., составили: группа А - 0,187 мЗв, группа Б - 0,115 м3в. Риски возникновения стохастических эффектов у персонала составили: индивидуальный - 7,1*10-6 случаев в год (при допустимом по НРБ-99 п. 2.1.1. пределе риска 1,0*10-3 случаев в год), коллективный 3,16*10-4 случаев в год. Таким образом, воздействие радиационного фактора ТЙЗ на население близлежащих населенных пунктов (ст.Троицкая и пос.Новотроицкий) пренебрежимо мало в сравнении с естественными источниками облучения (1-2 мЗв за счет радона и естественного фона). Анализ данных медицинской статистики по заболеваемости населения, представленных управлением здравоохранения г.Крымска и Крымского района, показал, что статистически значимая связь онкологических заболеваний с работой ТЙЗ в зоне обслуживания Троицкой участковой больницы не прослеживается.
На ТЙЗ остается нерешенной проблема захоронения около 5000 т слаборадиоактивных отходов (радиобарита), содержащих радий-226 (около 20 кБк/кг), радий-228 (около 20 кБк/кг) и торий-228 (от 7 до 17 кБк/кг), которые частично перемешаны с грунтом, а частично помещены во временной хранилище на территории завода. В 1993 г. Всероссийским проектно-конструкторским и научно-исследовательским объединением ВНИПИЭТ разработано «Технико-экономическое обоснование различных вариантов схем реабилитации радиационно-загрязненных территорий и объектов Троицкого, йодного завода Краснодарского края». Это ТЭО прошло государственную экологическую экспертизу, в результате которой к дальнейшей проработке из пяти вариантов был выбран вариант 4 «Хранение загрязненного грунта навалом на части пруда-отстойника», включающий строительство хвосто-хранилища, его заполнение загрязненным грунтом и дезактивацию территории завода. Стоимость реализации этого проекта в ценах 1993 г. составляла 4902,3 млн.руб.
На опытном поле ВНИИ БЗР площадью 2,5 га находится около 5000 м3 загрязненного грунта, а мощность дозы достигает 250 миллирентген в час. За весь период работы на поле с 1971 по 1993 гг. было использовано 9,2 Ки биологически опасных радионуклидов (цезий-137, стронций-90, церий-144 йод-125, рутений-100 и др.) В хранилище института складировано около 10 кюри неиспользуемых радионуклидов (цезий-137, стронций-90, уран-238).
В 2000 г. по договору с НИИ атомных реакторов (НИИ АР, г.Дмитров-град) в ВНИИ БЗР проведена полная физическая инвентаризация ИИИ и РАО
Вывоз твердых и жидких ИИИ для утилизации во ВНИИ АР и захоронения на Ростовском спецкомбинате «Радон» запланирован на 1-й квартал 2002г. Однако, в институте останутся жидкие и твердые радиоактивные отходы, кондиционирование и захоронение которых потребует значительных затрат. Но наибольших затрат потребует дезактивация опытного поля института.
Поэтому, по инициативе комитета, мероприятия по реабилитации радиационно-загрязненных территорий Троицкого йодного завода и ВНИИ БЗР с объемами финансирования 50 и 30 млн. руб. соответственно были включены в одобренную Указом президента РФ от 15.06.96 г. № 913 и утвержденную Постановлением правительства РФ от 13.06.96 г. № 702 «федеральную целевую программу по комплексному социально-экономическому развитию Краснодарского края в 1996-2001 гг.». Однако финансирование в рамках этой программы по указанным мероприятиям не проводилось. Комитет также неоднократно обращался в Минатом РФ (последнее письмо на имя министра Адамова Е.О. от 13.04.2000 г. № 01-20/190) с просьбой включить проблемы йодного завода и ВНИИ БЗР в федеральную целевую программу «Ядерная и радиационная безопасность России» на 2000-2006 гг. Но и в этом случае перспектива финансирования весьма проблематична (ответ Минатома от 13.06.2000 г. № 011-2945).
Наличие радиационно-опасного объекта во ВНИИ БЗР, расположенном в черте г.Краснодара, вызывает обоснованную тревогу у населения города, которая поддерживается периодическими, эмоциональными выступлениями СМИ, обращениями к президенту В.В.Путину. В то же время средств края на его ликвидацию явно недостаточно.
В 2000 г. инспекторским составом проведено 36 800 измерений гамма-фона, в том числе на обследуемых предприятиях. Естественный гамма-фон на территории края находится в пределах средних многолетних значений и составляет около 10-20 мкР/час. Аналогичные данные получены Краснодарским центром по гидрометеорологии и мониторингу окружающей среды на 27 станциях наблюдения (СНЛК). Данные по гамма-фону вводятся в компьютерную базу данных и статистически обрабатываются.
По данным ЦГСЭН, в Краснодарском крае вклад в коллективную дозу облучения населения от различных видов облучения составил:
- от деятельности предприятий, использующих источники ионизирующего излучения - 2,21 чел.Зв (0,014 %);
- от естественных (природных) источников - 11670,0 чел.Зв (76,53 %);
- от глобальных выпадений и прошлых радиационных аварий - 158,62 чел.Зв (1,04%);
- от медицинских исследований - 3417,45 чел.Зв (22,412 %).
Наиболее существенной причиной облучения населения от естественных источников излучения являются радон-222 и строительные материалы местного производства: кирпич, глина, мрамористые известняки, керамзит.
Производственный радиационный контроль за производимой продукцией в необходимом объеме осуществляется только на Новороссийском цементном заводе.
Радиационных аварий в течение отчетного года, связанных с переоблучением населения и загрязнением окружающей среды, не зарегистрировано.
Для повышения эффективности радиационно-экологического контроля и обеспечения радиационной безопасности населения, персонала и окружающей среды необходимо:
- разработать и утвердить на уровне Российской Федерации экономический механизм ответственности природопользователей за радиационное загрязнение окружающей среды;
- инициировать и поддерживать научно-исследовательские работы в области радиационной экологии и радиационного мониторинга в Краснодарском крае, используя имеющийся научный потенциал и лабораторную базу;
- объединить усилия контролирующих органов в области радиационного контроля и радиационной безопасности в части охраны окружающей среды;
- совершенствовать систему радиационного контроля трансграничных грузов;
- добиваться на уровне Правительства Российской Федерации финансирования Федеральных целевых программ, в которые включены проблемы радиационной и радиационно-экологической безопасности;
- для подготовки квалифицированных кадров специалистов-экологов включать в учебные программы ВУЗов курсы по радиационной экологии и привлекать к преподавательской работе ведущих ученых и специалистов в области радиационной безопасности и радиационной экологии;
- изыскать средства для финансирования завершения работ по аэро- гамма-спектрометрическому обследованию загрязненности территории края гамма-излучающими радионуклидами.
5 Возможные последствия применения ядерного оружия массового поражения
ЯДЕРНАЯ КАТАСТРОФА (военная биосферная катастрофа)— глобальные экологические последствия применения оружия массового уничтожения (ядерного, химического, биологического), что в конечном итоге приведет к разрушению основных природных экосистем Земли. В настоящее время мощность накопленных запасов ядерного оружия в мире составляет около 16-18 •109 т, т.е. на каждого жителя планеты приходится более 3,5 т тротилового эквивалента (Рябчиков, 1987). Поэтому в ряде стран (США, Канада, Англия, Германия и др.) проведены исследования по оценке последствий ядерной войны на биосферу в целом, в частности смоделировано более 20 различных сценариев. При ядерной катастрофе суммарная мощность взрывов может находиться в пределах от 6500 Мт. (базовый сценарий) до 10-12 тыс. Мт. (жесткий сценарий). Аналогичные работы проведены в Вычислительном центре Российской АН; опубликованы различные варианты сценариев ядерной катастрофы в работах М.И.Будыко, Ю.А.Израэля, Г.С.Голицына, К.Я. Кондратьева и др.
Результаты проведенных исследовании по данной проблеме указывают на недопустимость ядерной войны, которая с неизбежностью приведет к глобальным изменениям климата и к деградации биосферы, в целом (табл. 60).
Таблица 60. Геофизические, (экологические) последствия, основных крупномасштабных поражающих факторов ядерных взрывов (Будыко и др. 1986)
Основные крупномасштабные эффекты (поражающие факторы). |
Возможные геофизические последствия |
1.Загрязнение биосферы радиоактивными продуктами |
Изменение –электрических свойств атмосферы, изменение погоды. Изменение свойств ионосферы. |
2.Загрязнение атмосферы аэрозольными продуктами |
Изменение радиационных свойств атмосферы. Изменение погоды и климата. |
3. Загрязнение атмосферы . различными газообразными веществами (метаном, этиленом и др.) |
|
Тропосферы |
Изменение радиационных свойств атмосферы, изменение погоды и климата. |
Верхней атмосферы |
Изменение радиационных свойств верхней атмосферы, нарушение озонного слоя. Изменение возможности прохождения Уф- излучения, изменение климата. |
4. Изменение альбедо земной поверхности |
Изменение климата. |
Видно, что среди возможных геофизических (экологических) последствий применения ядерного оружия следует выделить: массовые радиационные и иные поражения изменение погоды и климата, разрушение озонового слоя, нарушение состояния ионосферы и т.п. К этому необходимо добавить сильное загрязнение атмосферы аэрозольными и газообразными частицами, возникшими в результате, как взрывов, так и многочисленных пожаров.
По данным М.И.Будыко и др. (1986) при ядерной войне даже при мощности, взрыва 5000 Мт. в атмосферу поступит 9,6 *103 т аэрозолей из которых 80% проникнет в стратосферу. Наличие в атмосфере огромного количества аэрозолей, газообразных примесей и дыма ядерных пожаров - все это, приведет к уменьшению притока солнечной радиации к земной поверхности и, конечно, к понижению температуры воздуха не планете примерно на 150 С («ядерная зима»). Ожидаемое среднее понижение температуры воздуха над континентами северного полушария Будет составлять более 200 С. такой крупный ядерный конфликт коренным образом повлияет на климат в виде наступления темноты («ядерная ночь»), изменит глобальную циркуляцию воздуха и т.д. Следствиями этого будут: прекращение процесса фотосинтеза, вымораживание и уничтожение растительности на огромных территориях, гибель посевов сельскохозяйственных культур и в конечном итоге гибель всего живого и человеческой цивилизации. Также, к последствиям ядерных взрывов следует добавить еще радиацию от разрушенным АЭС (более 420), при этом 85% их расположено именно в северном полушарии. По расчетам медиков, при реализации только базового сценария в северном полушарии около, 60% населения сразу погибнет от ударной волны, ожогов и летальной дозы радиации, 25% будут поражены ионизирующей радиацией и т.д., т.е. будет поставлена под сомнение возможность существования Человека как биологического вида.
Основным путем предотвращения глобальной экологической катастрофы является ликвидации всех видов оружия массового уничтожении, что сможет предотвратить малейшую возможность ядерной войны, в которой не будет ни победителей, ни побежденных, Также для уменьшения вероятности непреднамеренного самоуничтожения населения земли необходимо значительно расширить экологические исследования последствий применения ядерного и другого вида оружия. Как отмечает Н.Н. Моисеев(1990, с.307), «…по существу все собственно экологические проблемы сводятся к соизмерению своих действий с возможностями окружающей среды»
Заключение
Катастрофа на Чернобыльской АЭС, в результате которой значительная территория Белоруссии, Украины и России оказалась пораженной радиоактивными, выбросами, заставляет серьезно задуматься о технологической дисциплине на атомных электростанциях, часть которых нуждается в реконструкции и модернизации.
Осуществляется комплекс дополнительных мер по усилению безопасности эксплуатируемых атомных реакторов. Произведены экологические экспертизы проектов строящихся АЭС и ТЭС и других объектов с атомными энергетическими установками. Реализуется программа использования нетрадиционных, экологически безопасных источников энергии, и строительства опытно-экспериментальных АЭС с различными типами и схемами расположения атомных реакторов.
Список литературы
1. М.И. Будыко. «Современные проблемы экологии» М.:1994г. 307с.
2. А.П. Акимова. «Экология» М.:2001г.
3. Доклад правительству России «О состоянии окружающей природной среды Краснодарского края в 2001г». М.: 2002г.
4. В.И Цветкова «Экология, Учебник» М.: 1999г.
5. Петров Н.Н. «Человек в чрезвычайных ситуациях». Учебное пособие - Челябинск: Южно-Уральское книжное изд-во, 1995 г.
6. Т.Х.Маргулова «Атомная энергетика сегодня и завтра» Москва: Высшая школа, 1996 г.
[1] Доклад правительству России «О состоянии окружающей природной среды Краснодарского края в 2001г
Похожие рефераты:
Миграция радионуклидов стронция-90 в почвах различных типов Павлодарской области
Аккумулирование радионуклидов растениями лесных фитоценозов
Аккумулирование радионуклидов грибами в зонах радиоактивного загрязнения
Защита населения в зонах радиационного загрязнения
Влияние радиоактивного загрязнения на сельское хозяйство
Меры реабилитации агроценозов при радиационном воздействии
Региональные экологические проблемы Украины и их мониторинг
Анализ причин и последствий крупнейших ядерных катастроф
Экологические проблемы атомных электростанций
Чернобыльская катастрофа и ее последствия
Влияние промышленности и транспорта на экологию. Радиационная обстановка в России