Скачать .docx |
Курсовая работа: Организация внутризаводских взаиморасчетов по удельным и общим расчетам электроэнергии
Содержание
1. Коммерческийитехнический (внутризаводской) учет электроэнергии
2. Автоматизированныесистемыконтроляиучетаэлектроэнергии (АСКУЭ)
3. Нормированиеилимитированиеэлектропотребления
4. Видынорм, ихполучениеаиспользование
5. Расчет и контроль удельных расходов электроэнергии на единицу продукции. Контроль общих расходов электроэнергии
6. Энергетическиебалансы
7. Определениеобъемаэнергосбережениядлядействующей технологии
8. Текущиеиперспективныепрогнозыэлектропотребления
9. Оценкаправильностиопределениямаксимуманагрузки. Потребители-регуляторы
Список литературы
1. Коммерческий и технический ( внутризаводской ) учет электроэнергии
Внедрениекоммерческогоитехнического (внутризаводского) учетаэлектроэнергиинапредприятииявляетсяэффективнымспособоморганизацииэкономииэнергоресурсов.
Коммерческийучетпредусматриваетвзаимоотношениясэнергосбытовой организацией, технический (внутризаводской) учет - сотдельнымивторичнымипотребителями (арендаторами, хозрасчетнымипроизводственнымиединицами, энергоемкимипроизводствами).
Коммерческий учет - процессполученияиотображениякоммерческой информации одвижениитоварнойпродукции (оказанииуслуг) сцельюпроведенияфинансовыхрасчетовмеждусубъектамирынкаэлектроэнергии.
Выделяютследующиеосновныезадачикоммерческогоучетаэлектроэнергии:
·потреблениеактивнойиреактивнойэнергии (включаяобратныйпереток) заданныевременныеинтервалыпоотдельнымсчетчикам, заданнымгруппамсчетчиковипредприятиювцеломсучетоммноготарифности;
·средние (получасовые) значенияактивноймощности (нагрузки) исредний (получасовой) максимумактивноймощности (нагрузки) вчасыутреннегои вечернегомаксимумовнагрузкипоотдельнымсчетчикам, заданнымгруппам счетчиковипредприятиювцелом;
·построениеграфиковполучасовыхи, принеобходимости, трехминутныхнагрузок, необходимыхдняорганизацийрациональногоэнергопотребленияпредприятия.
Расчетыпокупле-продажеэлектроэнергиимеждуучастникамирынка должныпроизводитьсяпопоказаниямтехприборовучета, которыеуказаныв действующихдоговорах. Вдоговорахнаоптовомрынкедлякаждогосетевогоэлементанеобходимоуказать, какойизмерительныйкомплекс средствкоммерческогоучетаявляетсяосновным, акакой - резервным, т.е. определитьосновную и резервные зоны учетасубъектарывка.
Приборыучетамогутрасполагатьсянестроговточкахразделабалансовой (эксплуатационной) принадлежностивследствиетого, чтовреальныхусловияхсхемарасстановкиизмерительныхкомплексовзависитотвозможности установкипервичныхдатчиков (трансформаторовтокаинапряжения).
Конкретныетребованиякаппаратурераспространяютсянавновьустанавливаемыеимодернизируемыесредства коммерческого учета , входящиев состававтоматизированныхсистемконтроляиучетаэлектроэнергии (АСКУЭ). ВАСКУЭоптовогорынкадолжныиспользоватьсясамыесовременныепервичныедатчики, отличающиесямалымивеличинамиистабильностьюосновнойи дополнительнойпогрешностивширокомдиапазоневлияющихвеличин. Необходимостремитьсякосвоениюдатчиковсцифровымвыходом. Сеченияпоставкииучетадяясубъектоврынкадолжнысовпадать, анакаждуюзонупо-ставкинеобходимопредусматриватьдвезоныучетапообесторонызоныпоставки. Этоозначает, чтосмежныесубъектырынка (имеющиеобщиеграницы балансовойпринадлежности) должныустановитьизмерительныекомплексы средствкоммерческогоучетанавсехприсоединенияхграничныхсетевыхэлементовк "своим" подстанциям. Общиетехническиетребованияктрансформаторамтока (ТТ) итрансформаторамнапряжения (ТН), каккдатчикамтокаи напряжениявцепяхкоммерческогоучетаотраженывсоответствующихГОСТах. ВАСКУЭоптовогорынкаследуетприменятьтолькотрансформаторытока, измерительныеобмоткикоторыхспециальнопредназначеныдляподключенияприборовкоммерческогоучета, иимеющиеклассточностинениже 0.2S, O.SS[4.8].
2. Автоматизированные системы контроля и учета электроэнергии ( АСКУЭ )
ВнастоящеевремявРоссии, всвязиспроводимойреформойэлектроэнергетики, всеболееактуальнапроблемавнедренияавтоматизированныхсистемконтроляиучетаэлектроэнергииимощности (АСКУЭ) наобъектахэлектроэнергетики, промышленныхпредприятиях, атакжевбытовомсекторедля решениязадачконтроля, учетаиэкономииэнергоресурсов. Однимизусловий выходапотребителейнарынокпокупкиэлектроэнергииунезависимыхсбытовыхкомпанийявляетсяналичиесистемыкоммерческогоучетаэлектроэнергии [4.9].
Ссередины 90-хгодоввбольшинствеэнергосистемпроводилисьдостаточноактивноработы, повнедрениюАСКУЭ. Объектамиавтоматизациина этомэтапебыливосновномкрупныеэлектростанции, межсистемныеиграничныеподстанцииврегиональныхэнергосистемах, атакжекрупныепромышленныепотребители. Кконцу 90-хгодовэтиработывосновномбылизавершеныи внастоящеевремястоитзадачавнедрениясистемучетанасреднихпромышленныхпредприятияхивжилищно-бытовомсекторе. Приавтоматизациитаких объектовнасовременномэтапепоявляетсярядновыхзадач, которыенеобходимоучитыватьприпроектированииивнедренииАСКУЭ:
·построениесистемавтоматизациинасреднихпредприятияхнаоснове контроллеровсбольшимколичествомканаловучетавбольшинствеслучаев являетсяизбыточным. Длятакихобъектовнеобходимоустройствосменьшим количествомканаловучетаиболеедешевоепоцене, носохраняющеефункциональныевозможностипредыдущихмоделейконтроллеровиотвечающее современнымтребованиям;
·припитаниинесколькихпредприятийсоднойподстанциивозникает необходимостьсозданияотдельныхсистемкоммерческогоучетадлякаждого предприятиясвозможностьюполучениясводнойинформацииобалансеподстанциислужбамипоставщикаэлектроэнергиииподстанции;
·необходимостьсозданияАСКУЭнакрупныхпромышленныхпредприятиях, гденарядускоммерческимучетомнеобходимвнутризаводской (технический) учет. Какправило, такиепредприятиязанимаютбольшуюплощадьи имеютнесколькотерриториальнораспределенныхобъектовавтоматизации (производств, цехов). ДлясозданиятакихАСКУЭнеобходимасистемасбора данныхссетевойархитектурой. Отдельныеобъектыавтоматизацииимеютнебольшоеколичествоточекучета (до 12-16 каналов), новсвязисбольшими расстояниямимеждуобъектамипрокладкалинийсвязиотэлектросчетчиковк одномуконтроллеруявляетсядостаточнотрудоемкойзадачей;
- впоследнеевремявсвязисреструктуризациейРАО«ЕЭСРоссии»и новымитребованиями, предъявляемымикработенаФедеральномоптовом рынкеэлектрическойэнергии (мощности) (ФОРЭМ) всеболееширокоеприменениенаходятмногофункциональныесчетчикиэлектроэнергии.
Исходяизвышеперечисленныхтенденций, ведущиефирмы- производителиэлектронногооборудованиядлясистемконтроляиуправленияразработалииначаливыпускконтроллеровдляАСКУЭ. ДляпримерарассмотримконтроллерСИКОНСЮфирмы«Системыитехнологии».
ЦентральнымузломконтроллераявляетсямикроконтроллерSAB80C167 фирмыSIEMENS. ВконтроллереСИКОНСЮпримененамногозадачнаяоперационнаясистемареальноговремени. Масштабируемоеядрооперационной системыподдерживаетфункционированиедо 32 процессовсвозможностью выбораприоритета. Наличиесистемныхвызововядрадаетвозможностьуправлятьдинамическимирежимамидиспетчеризации, распределениемпамяти, межпроцессорнойкоммуникациейисинхронизациейпроцессов. Всеэтогарантируетустойчивостьизмеренийисбораданныхсэлектросчетчиковвтемпе процессаинезависимуюодновременнуюпередачуданныхнесколькимпользователяминформации. ОтличительнойчертойконтроллеровСИКОНСЮявляетсятакженаборизнесколькихмодификацийисетеваяархитектура. Благодаря этомуонимогутиспользоватьсядлярешениябольшогокругазадачприсозданииАСКУЭ [4.1].
ТиповаяструктурнаясхемаАСКУЭнабазеконтроллераСИКОНСЮ представленанарисунке 4.1. Насхемепоказанавозможностьподключенияк контроллеруэлектросчетчиковразличныхтипов (поимпульснымвходамипо последовательныминтерфейсам) иразныхпользователейинформации. Схема представляетсетевуюархитектурусистемыучета. Данныеслюбогоконтроллерасетимогутчерезинтерфейсыодногоизконтроллеровпередаватьсянаверхнийуровеньповыделенномуканалусвязи (физическойлинии) либопотелефонномуилидругимканаламсвязи.
ОсновныехарактеристикиконтроллераСИКОНСЮ:
·контроллерпозволяетвестиединыегруппыучетаисинхронизацию времениконтроллероввсетиProfibus;
·количествоканаловдляподключениясчётчиковсимпульснымвыходомкодномуконтроллеру - до 16-и," обеспечиваетподключениевсетьProfibusдо 32 контроллеров, приэтом общеечислоканаловсистемыучетаможетдостигать 512-и; количествотарифныхзонвсутки - до 12-и; - количествогруппучётавкаждомконтроллере - до 8-и, приэтомобщее числогруппсистемыучетаиз 32 контроллеровможетдостигать 256-и;
·контрольданныхобэнергиииусредненноймощностизафиксированныеподинтервалы (1, 3 или 5 минут) иинтервалывремени (15, 30 или 60 минут), засутки, месяц, квартал;
·контрольтекущихзначенийэнергииипоказанийсчетчиков;
·ведениеграфиковмощности;
·контрольданныхопревышениилимитовмощности;
·контроллерведеткалендарьрабочих, праздничныхинерабочихдней;
·совместимсосновнымитипамисчётчиков (индукционными, электронными, многофункциональными) разныхзаводов-изготовителей;
- наличиевбазовоймодификациивстроенногобуквенно-цифрового пультаоператора;
·наличиеупрощенноймодификации (безвстроенногопультаоператора), работающейв режимеудаленногоконтроллера;
·широкийтемпературныйдиапазонусловийэксплуатации: от -10 °Сдо +50 °С (поспец. заказуот -40 °Сдо +70 °С).
СовременныесистемыАСКУЭисчетчикиэлектроэнергииотечественных производителейадаптированыктребованиямотечественныхстандартови норм, отличаютсяиспользованиемсовременнойэлементнойбазы, хорошопродуманнымиалгоритмамиработы, современнымпрограммнымобеспечением, отвечаютвсемтребованиямРоссийскихимеждународныхстандартов, адаптированыкпоследующемунаращиваниюимодернизации.
3. Нормирование и лимитирование электропотребления
Нормированиеилимитированиеэлектропотребления - составнаячасть техническогонормированиярасходавсехиспользуемыхвпроизводствересурсов.
Научнообоснованноенормирование предусматриваетрешениедвухосновныхзадач:
·планированиеэлектропотребления;
·выявлениеиреализациярезервовэкономииэлектроэнергии.
Впрактикеэнергетическогопланированиянаходятприменениедваразныхспособаустановлениянорм: непосредственноеопределениеихпрямым расчетомдляпланируемыхусловийпроизводстваи расчетотфактическидостигнутогоуровня. Опытнормирования«отфакта»иногдадаетменееобъективныерезультатыпосравнениюспрямымрасчетомнормнапланируемыйпериод. Однакоэтонеозначает, чтоприустановлениинормрасходаэлектроэнергии можнонеучитыватьдостигнутыйуровеньфактическихудельныхрасходов. Такойподходвнормированииозначалбыотрывпланируемыхпоказателейот реальнойдействительности. Поэтомуобязательныйучетвнормахфактически достигнутыхрасходовресурсовследуетсчитатьоднимизметодологических принциповнормирования.
Структуранормдолжнасоответствоватьтехнологиииорганизациипроизводстваиохватыватьвсестатьирасходаэлектроэнергиинанормированный видпродукцииилиработ. Нормыдолжныучитыватьтакжепланируемыек осуществлениюмероприятияпоэкономииэлектроэнергии. Нормыподлежат своевременнойкорректировкеприизмененииусловийпроизводства [4.5].
ОднимизосновныхмеханизмоворганизациивыполненияФедеральной целевойпрограммы "ЭнергосбережениеРоссии" впериод 1998 - 2005 годовявляетсялимитированиеэлекгропотребления. Процедурелимитированиядолжен предшествоватьэнергоаудит, которыйдолженвыявитьвеличинуфактического потребленияпредприятиемэлектроэнергии, атакжереальныйпотенциалэнергосбережения. Организациялимитирования бюджетным организациямпредусматривает, чтоустанавливаемыегосударствомлимитыэлектропотребленияв натуральномистоимостномвыражениидолжныбытьобеспеченыбюджетным финансированием. Припроведенииразличныхпоглубиневидовэнергоаудита (экспресс-аудит, инструментальный, выборочный, комплексный, целевойит.д.) существенноезначениенарядустехническимобследованиемдолжензанимать ифинансовыйаудит, посколькурезультатомобследованиядолжныбытьрекомендациикактехнического, такифинансово-экономическогохарактера.
Предприятия, гдевследствиебанкротствавведеновнешнееуправление, приутверждениимероприятийповыводупредприятияизкризисадолжны иметьзаключениеГосэнергонадзораобэффективностииспользованияэлектроэнергии. Такжесогласованноезаключениеэнергоаудитанеобходимопредприятиям, заявляющимобизменениивеличиныэлектропотребления. Приразработкеотраслевыхпрограммэлектропотребяенияреализуемыйпотенциалэкономииопределяетсянакаждыйгод. Еговеличинадолжнабытьучтенаприопределениилимитовэнергопотреблениясоответствующимиминистерствамии ведомствами.
4. Виды норм , и х получение и использование
Норма - этотехническииэкономическиобоснованнаяплановаямерапотребленияресурсовнаединицупродукции (работы) дляданныхусловийпроизводства; онастановитсядействующейсмоментавводаобъективногоучета, контроляистимуловпоеевыполнению.
Нормыдолжныотвечатьследующимтребованиям:
·бытьпрогрессивными, т.е. отвечатьсовременномууровнютехники, технологиииорганизациипроизводства;
·являтьсядинамичными, т.е. менятьсявзависимостиотизмененийтехники, технологий, организации;
·бытьобоснованными, т.е. разрабатыватьсянаосновеанализапроизводстваисоответствующихрасчетов.
Снижениенормрасходаэлектроэнергиинаединицувыпускаемойпродукциихарактеризуетэффективностьееиспользования. Приэтомнеобходимо, чтобынормыбылиоптимальными, установленныминаосноветехнико-экономическихрасчетов.
Подоптимальной нормой понимаетсяобъективнонеобходимыйрасход электроэнергиинапроизводствоединицыпродукцииилиобъемаработыпри данныхусловияхпроизводства.
Нормырасходаэлектроэнергииразрабатываютсярасчетно-аналитическим, опытнымилирасчетно-статическимметодами.
Расчетно - аналитический методпредусматриваетустановлениенорм расходаэлектрическойэнергиирасчетнымпутемнабазепрогрессивныхпоказателейиспользованияэнергетическихресурсоввпроизводствепостатьямрасхода.
Опытный метод определениянормзаключаетсявнахожденииудельных затратэлектроэнергиинаосноведанныхэксперимента (испытаний). Этотметод применяетсяприразработкеиндивидуальныхнорм. Оборудованиеприэтом должнонаходитсявтехническиисправномсостоянии, атехнологическийпроцессосуществляетсяврамках, предусмотренныхтехнологическимирегламентамииинструкциями.
Расчетно - статический методнахождениянормрасходаресурсовосновываетсянаанализестатическихданныхзарядпредшествующихлетофактическихудельныхрасходахэлектрическойэнергииифакторов, влияющихнаих изменение.
Техническииэкономическиобоснованнаянормасвидетельствуетотом, чтоеевыполнениеобеспечиваетростэкономическойэффективностинапромышленномпредприятия.
Нормарасходаэлектроэнергииможетиспользоватьсядляагрегата, цеха, предприятия, т.е. там, гдеимеетсявозможностьконтролянормытехническими средствамиизмерения.
Нормырасходаэлектроэнергииустанавливаютсявзависимостиоттипа производства. Так, вединичномимелкосерийномпроизводствевусловиях разнообразнойноменклатурывыпускаемойпродукциицелесообразноустанавливатьнормырасходана 1 чработыэнергоприемныхустройств, всерийноми массовомпроизводстве—нормырасходапотребляемойэнергиинадеталеопе-рацию, деталь, технологическийпроцессивцеломнаизделие. Помимонорм расходаэлектроэнергии, связанногонепосредственносвыпускомпродукции, устанавливаютсянормырасходанавспомогательныеиобслуживающиепроцессы, нормыпотерьвсетяхвпроцессеит.д. Например, нормарасходадвигательнойэнергиина 1 чработыоборудования( g ^, кВт - ч ) определяетсяпоформуле [4.6]:
Шчл = Мп Кя Ки К„ / Кш > (4.1)
гдеМя - номинальнаямощностьэлектродвигателятехнологическогооборудования, кВт ',
Кв —коэффициентиспользованиядвигателяповремени;
Км —коэффициентиспользованиядвигателяпомощности;
К„ - —коэффициент, учитывающийпотеривсетях;
Кш —коэффициентполезногодействияэлектродвигателя.
где 2ф - фактическийрасходэлектроэнергии, ед . эн ./ ед . «р.;
ДйС/ - относительнаявеличинаэкономииэлектроэнергиизасчетпроведенияi-roмероприятияпонормализациитехническогосостоянияэнергопотребляющегооборудования, доляед.;
и - числомероприятий, врезультатекоторыхснижаетсярасходэнергииза счетнормализациитехническогосостоянияэнергопотребляющегооборудования.
Размеробщепроизводственнойнормыэлектропотреблениянапромышленныхпредприятияхопределяетсяследующимобразом:
Э = Эа "- А (1, Эагч ( ед . эн ./ ед . проб .), (4.5)
гдеЭ° " - фактическийудельныйрасходэлектроэнергиизаотчетныйпериод, ед. эн./ед. прод.;
Ad ,- заданиепоснижениюнормырасходаэнергии, доляед.
Плановаяжепотребностьвэлектроэнергиирассчитываетсяпоформуле
Qia -3Nm (ed.m./zod), (4.6)
гдеNm - планируемыйвыпускпродукции, руб./ год.
Всвоюочередь, величинапланируемойэкономииэлектроэнергии [4.14]:
АЭПЛ = (Эот - Э ) ■ Nm (ед . энУгод ), (4.7)
гдеЭот - нормарасходаэнергииотчетногогода, ед . эн ./ ед . прод .
Производственноепотреблениеэнергииопределяютсуммированиемрасходаэнергииповсемтехнологическимустановкамиобъектамвспомогательногохозяйства. Полнуюпотребностьвэнергии, атакжепоотдельномупараметру рассчитываютсучетомпотерьприпередачеэнергиипозаводскимкоммуникациям.
Припланированиисоставляютсметызатратпокаждомуцеху, устанавливаютмаксимальнуюнагрузкуэлектроэнергии - размерприсоединенноймощности.
Приопределенииобщецеховыхэлектрозатратдляизготовлениязаданногоколичествапродукциииисполненияуслугзаопределённыйпериодтребуетсявключать:
1) технологическиепроцессы (основнойивспомогательные);
2) отопление;
3) освещение;
4) вентиляцию (сулавливаниемвыбросов);
5) кондиционирование;
6) транспортированиеготовойпродукции;
7) транспортирование, хранениеотходов;
8) поддержаниепротивопожарнойсистемы;
9) перекачкусточныхвод;
10) хранениеготовойпродукции.
Затратынаэлектроэнергиюскладываютсяизсуммыоплатыпоставщику электроэнергииподвухставочномутарифу (замаксимальнуюнагрузкуизапотребленнуюэнергию) ирасходовпредприятия.
Расходэлектроэнергииучитываетсяспомощьюграфиковэлектрической нагрузки. Припланированиинеобходимоопределитьплановуюмаксимальную нагрузкуиплановыесредниенагрузки. Длянебольшихпредприятийнеобязательнорассчитыватьвсепараметрырежимовпотребления, достаточновычислитьмаксимумнагрузки.
Годовыеплановыеграфикистроятисходяизсуммарныхсреднихсуточныхграфиковнагрузки. Расчетыведутсяпопотреблениюбрутто, т.е. сучетом всехпотерь. Учитываютсянамечаемыемероприятияпорегулированиюграфиковнагрузки.
Показателиэкономичностиэлектропотребленияиндивидуальныдляразличныхвидовизделий. Онихарактеризуютсовершенствоконструкцииданного видаизделияикачествоегоизготовления. Вкачествепоказателейэкономичностиэлектропотребления, какправило, следуетвыбиратьудельныепоказатели.
Организациясистемконтроляэлектропотребленияявляетсяактуальной задачейдлялюбогопредприятия. Внедрениеданныхсистемпозволяетполучитьреальнуюкартинуиспользованияресурсовиуменьшитьихоплату, т.к. прекращаетсяоплатапотерьнамагистраляхпоставщика.
Организациясистемучетаэлектропотреблениянапредприятиях, имеющихбольшоеколичествоэлектросчетчиков, позволяетосуществлятьдистанционныйконтрольработыоборудованияитекущихрасходовэлектроэнергиипо всемсчетчикамиобъектамучета, атакжеобеспечиваетхранениеданныхи возможностьпредоставленияинформациизаразличныепериоды.
Рассмотримсхемувзаимодействияаппаратныхсредствипрограммного обеспечениядляорганизацииучетаэлектроэнергиивсистемахконтроляи управлениятехнологическимипроцессаминапримереиспользованиясчетчиковэлектрическойэнергииАльфаилиАльфаПлюсфирмыАБББЭИ "Метро-ника" (рисунок 4.2) [4.15].
Электросчетчикипоместамихрасположенияобъединяютсявобъекты контроляпутемподключениякадаптерамАББилимультиплексорам-расширителямМПР-16МприпомощиинтерфейсовИРПС, RS-422/485 или нульмодемногоинтерфейсассоответствующимипреобразователями.
Вобъектконтролямогутвходитьдо 31 мультиплексора-расширителяи до 16 счетчиковнакаждыймультиплексор.
КаждыйизтакихобъектовподключаетсякразнымСОМ-портам IBMPC-совместимогоконтроллерапофизическимлиниямиликаналамсвязи (витойпаре, оптическим, телефонными/илирадиоканаламидругим).
IBMPC-совместимыйконтроллерприпомощидрайвераможетодинобслуживатьвсеобъекты: счетчикиилигруппысчетчиков, опрашиваяодновременновпараллельномрежимедо 8 линийпоследовательнойсвязи. Скорость обменапоинтерфейсу "токоваяпетля" иRS-232 — 300, 1200, 2400, 4800, 9600
IBMPC-совместимыеконтроллерынижнегоуровняприпомощилокальнойвычислительнойсети (ЛВС) присоединяютсяккомпьютеруверхнегоуровня. ДляподдержкисвязипоЛВСиспользуетсялюбоеПО, поддерживающее протоколNetBIOS: Lantastic, NWLite, сетевыекомпонентыWindows3.11 ит.д.
Вспомогательноепрограммноеобеспечениеконтроллерапередаетинформациюотсчетчиковккомпьютеруверхнегоуровня. Вкомпьютере, работающемподуправлениемWindowsNT, возможновавтоматическомрежиме выполнениеразличныхзадач, такихкак: отображениеихранениепринимаемой информации, управлениебазамиданных, контрольтехнологическихпроцессов, поддержкаединогоастрономическоговременивовсейсистеме, отслеживание внештатныхилизапланированныхсобытийвсистеме [4.15].
6. Энергетические балансы
Энергетическийбалансвыражаетполноеколичественноесоответствие (равенство) заопределенныйинтервалвременимеждурасходомиприходом энергиивэнергетическомхозяйстве. Энергетическийбалансявляетсястатическойхарактеристикойдинамическойсистемыэнергетическогохозяйствазаопределенныйинтервалвремени.
Оптимальнаяструктураэнергетическогобалансаявляетсярезультатом оптимизационногоразвитияэнергетическогохозяйства. Энергетическийбалансможетсоставляться:
а) поэнергетическимобъектам (электростанции, котельные), отдельным предприятиям, цехам, участкам, энергоустановкам, агрегатамит.д.;
б) поназначению (силовыепроцессы, тепловые, электрохимические, освещение, кондиционирование, средствасвязииуправленияит.д.);
в) поуровнюиспользования (свыделениемполезнойэнергииипотерь);
г) втерриториальномразрезеипоотраслямнародногохозяйства.
Основойрасчетапотребностиэлектроэнергииявляютсябалансырасхода иприхода. Отчетныебалансыэлектроэнергиистроятсянаосновепервичного учетапосчетчикам. Вприходнойчастидолжныбытьданывсеисточникипоступленияэнергиинапредприятие, врасходной—всенаправленияеерасходования.
Балансэлектроэнергииподразделяетсянабалансыэлектроэнергиипостоянногоипеременноготока.
Сводныйэнергобаланспоказываетнаправлениеразвитияэнергоснабженияпредприятиявколичественномикачественномотношениях. Энергобалансыразрабатываютсянаосновепроизводственнойпрограммыпредприятияи удельныхнормрасходаэнергиинаединицупродукции [4.7].
Расходнаячастьэнергобалансавключаетпотребностьпредприятияв энергоресурсахнапроизводственные, хозяйственно-бытовыеинепроизводственныенужды. Приходнаячастьэнергобалансасостоитизобъемовпокрытия потребностипредприятиявэнергоресурсахзасчеткаксобственных, такипривлекаемыхсостороныисточников. Энергобалансдолженобеспечиватьравенствомеждурасходнойкприходнойчастями [4.6]:
<?р= Gn , (4.8)
гдеGp —потребностьпредприятиявэнергоресурсах, усл. ед.;
(?„—объемпокрытияпотребностипредприятиявэнергоресурсах, усл. ед.
Еслипотребностьвэлектроэнергиибольше, чемвозможностиисточниковихпокрытия, топредприятиюнеобходимопересмотретьрасходнуючасть энергобалансаиразработатьмероприятияпоснижениюпотребностииэкономномурасходованиюэлектроэнергииилиискатьдополнительныеисточникипокрытияпотребности. Вслучаепревышенияприходнойчастиэнергобалансанад расходной, необходиморазработатьмероприятияпореализацииизлишней энергииилиразработатьмероприятияпооптимизациимощностейсобственных подразделений, входящихвсоставэнергетическогохозяйствапредприятия.
Потребностьпредприятиявэлектроэнергии [4.6]:
Gp = Gnp + Gx 6 + GH + GCT + Gm , (4.9)
где <jnp - производственнаяпотребностьвэлектроэнергии, усл. ед.;
GX 6 - потребностьвэлектроэнергиинахозяйственно-бытовыенужды, усл. ед.;
GH - потребностьвэлектроэнергиинанепроизводственныенужды, усл. ед.;
GCT - отпускэлектроэнергиинасторону, усл. ед.;
Gm - потериэлектроэнергиивсетях, усл. ед.
Потребностьвэлектроэнергииустанавливаетсянаосновенормрасходаи соответствующихобъемныхпоказателей.
Производственнаяпотребностьпредприятиявэлектроэнергиивключает потребностьвдвигательнойэнергии, вэнергиинатехнологическиенужды, на хозяйственно-бытовыенужды.
Потребностьэлектроэнергиидляосвещениярассчитываетсяисходяиз освещаемойплощади, нормыосвещенияиколичествачасовосвещения. Во многихслучаяхпотребностьвэлектроэнергиидляосвещенияопределяетсяпо количествуустановленныхсветильников, ихмощностиипланируемомуколичествучасовосвещения.
7. Определение объема энергосбережения для действующей технологии
Высокаясебестоимостьвыпускаемойпродукциивзначительнойстепени обусловленазатратаминаэлектроэнергию. Рыночныеусловиязаставляют предприятияпереходитькэнергосбережениюинормированиюэлектропотребления. Подэнергосбережением впромышленностипонимаетсяприменение технологиисрациональнымрасходованиемэлектроэнергиииснижениемпотерь. Еслипредприятиенезнаетреальныхграфиковнагрузкисвоихподразделений, неможетдостовернооценить, кто, когда, сколькоиначторасходует электроэнергию, оновынужденозавышатьзаявленноезначениемаксимуманагрузки, чтоприводиткзначительнойпереплатезаустановленнуюмощность.
Энергетическиепотериразделяютсянапотеринеустранимые (илипотери, устранениекоторыхэкономическинеоправданно) ипотери, устранениекоторыхвданныхтехническихусловияхвозможноиэкономическицелесообразно.
Потериэлектроэнергии, устранениекоторыхвозможноиэкономически целесообразно, можноразделитьна:
а) потери, вызванныенеудовлетворительнойэксплуатациейоборудования иинженерныхсетей;
б) потери, вызванныеконструктивныминедостаткамиоборудования, не правильнымвыборомтехнологическогорежимаработы, отставаниемразвития инженерныхсетейит.д. [4.3].
Длякаждогоагрегатаилитехнологическойлинии, электропотребление которыхфиксируетсяпосчетчикам, удельныерасходынаединицупродукции могутбытьрассчитанызакаждыесутки (илитехнологическуюоперацию) иза год (месяц, квартал). Этипоказателиимеютгауссовораспределение, которое характеризуетсясреднимзначениемиобластьюопределенногоразброса, называемойобластьютехнологическинормальнойработы [4,12]. Выходпараметра изобластитехнологическинормальнойработыдолженфиксироваться, технологуследуетпроанализироватьпричиныотклоненияинайтипутиегоустранения. Чемлучшеработаетагрегат, темменьшесреднеезначениеудельногорасхода, однакоегоснижениеимеетпредел, обусловленныйвозможностямитехнологии.
Одинаковыеудельныерасходыдляразличногооборудованиянемогут бытьжесткозаданыдаженаодномпредприятии, посколькуработаагрегатазависитотмногихфакторов. Темболеенеможетбытьодинаковыхудельных расходовуоднотипныхтехнологическихлинийиагрегатов, ноработающихна разныхпредприятиях, т.е. вразличныхсложившихсятехноценозах. Подтерминомтехноценоз подразумеваетсясложнаятехническаясистема - современное промышленноепредприятие. Исследованиеценозовкакцелостностипредполагаетихсистемноеописаниеиерархическойсистемойпоказателей. Структуру ценозакаксообществаэлементов-особейотражаетописаниеегоэлементовпо повторяемости. Анализпоказателейсцельюихприменениядляпрактических расчетовопираетсянатеориюиматематическийаппаратН-распределения -гиперболическогораспределения [4.12]. Вкаждомтехноценозеагрегатработаетвразныхусловияхпотехнологии, сырью, обслуживанию, воздействиюокружающейсреды. Результатыэнергосбереженияможнооценивать, толькоимея ввидуиндивидуальностькаждогопроизводства. Ценологическое влияние -этовлияниеконкурирующихмеждусобойпредприятийзаограниченный ресурсэлектроэнергии.
Такимобразом, невозможнопронормироватьрасходыэлектроэнергии длявсехрежимовивсехвидовпродукции, нельзясчитатьихпостоянными, на нескольколетвперед. Поэтомунереальноопиратьсянанихприопределении экономииэлектроэнергиипоцехамипрогнозированиипараметровэлектрояо-требленияпредприятиявцелом. Здесьнеобходимболееобобщенныйпоказатель, связывающийпотреблениеэлектроэнергиисвыпускомпродукции. Таким показателемможетявлятьсяэлектроемкостьпродукции, предложеннаявработе [4.12].
Электроемкость базовоговидапродукциирассчитываетсякакотношениегодовогоэлектропотребленияпредприятиякобъемуеевыпуска. Размерностьданногопоказателя—кВт-ч/тиликВт-чнаединицупродукции, чтосовпадаетсразмерностьюудельногорасхода, ноэтивеличиныимеютразныйфизическийсмысл.
Удельный расход —этоколичествоэлектроэнергии, затраченноенапроизводствоединицыданноготехнологическогопродукта. Например, дляметаллургическогопредприятиязаединицупродукцииможетбытьпринятаIтпроката. Электроемкостьжепрокатаучитываетрасходэлектроэнергиинетолько непосредственнонапроизводствопроката, ноивовсехпредыдущихпеределах данногопредприятия (сталь, чугун, железорудноесырье, какиспользуемыезатемдляполученияпроката, такипродаваемыедругимпредприятиям), атакже затратыэлектроэнергиинапроизводствоизделийдальнейшегопередела, выработкукислорода, сжатоговоздуха, тепла, водоснабжениеит.д. Поэтомузначениеэлектроемкостивнесколькоразпревышаетзначениеудельногорасхода электроэнергиинасоответствующийвидпродукции.
Общеегодовоеэлектропотреблениепредприятиясучетомегоструктуры (затратэлектроэнергиинавыпускразныхвидовпродукцииинавспомогательныенужды) можнопредставитьввиде
гдеAj - расходэлектроэнергиинапроизводствоосновныхвидовпродукции;
Aj - расходэлектроэнергиинавспомогательныепроизводстваидругие нужды;
п —числовидовосновнойпродукции;
т - числостатейрасходанавспомогательныенужды;
а , - удельныйрасходэлектроэнергиинавыпуск /-говидапродукции;
М ,- объемпроизводстваi - говидапродукции.
Выбраводинвидпродукциикакбазовыйсиндексомi - п , удельнымрасходомДбиобъемомпроизводстваА/Б иразделиввыражение (4.10) наобъем производстваэтоговидапродукции, можнополучитьвыражениедляопределенияэлектроемкостибазовоговидапродукции [4.12]:
Аъ = Ащ I МБ = ав + £ л*+ £ а / М & (4.11)
гдеki = Mi I А/б—коэффициентывложенности, показывающие, какоеколичествокаждоговидавыпускаемойпродукцииприходитсянаединицубазовой.
Такимобразом, электроемкостьбазовоговидапродукцииявляетсяхарактеристикойструктурыэлектропотребленияпредприятия. Причемвэтомпоказателеучитываютсянетолькоудельныерасходыэлектроэнергии, ноисложившиесясоотношениямеждуобъемамивыпускаемойпродукции. Коэффициентывложенностимогутрассматриватьсякаквесовыекоэффициенты, определяющиезначимостьконкретногоудельногорасходавобщейструктуреэлектропотребления. Удельныйрасходнапроизводствоединицыбазовоговида продукциивключаетсявформулусвесом, равнымединице, авкладыдругих удельныхрасходовопределяютсясоотношениямимеждуобъемамипроизводстваповидампродукции. Третьеслагаемоевформуле (4.11) представляетсобойвкладвэлектроемкостьрасходаэлектроэнергиинавспомогательныенуждыпредприятия, такжеотнесенногокединицебазовойпродукции. Электроемкость, следовательно, характеризуетпредприятиекаксложившуюсясистему техноценоза, гдесуществуютопределенныевзаимосвязимеждупроизводственнымициклами.
Базовымможетбытьвыбранодинизвидовосновнойпродукции, внекоторомсмыслезавершающийпроцесспроизводства, иливид, напроизводство которогорасходуетсязначительнаядоляэлектроэнергии. Еслинапредприятии вьтускаетсяодинвидпродукции, электроемкостьсовпадаетсобщезаводским удельнымрасходомэлектроэнергии, посколькувнемучитываютсянетолько затратынаединицупродукции, ноивсерасходыэлектроэнергиинавспомогательныепроцессы, потеривсетяхит.д. Еслижевыпускаетсямноговидовпродукции, целесообразнорассчитыватьэлектроемкостьпонесколькимосновным видамианализироватьихсовокупность.
ДлямногономенклатурныхпроизводствсбольшимчисломвидоввыпускаемойпродукциивсоответствиистеориейН-распределениядостаточнорассматривать 5 - 10 % общегочиславидов. Онидолжныбытьвыбранытакимобразом, чтобынаихпроизводствозатрачивалосьнеменее 60 % общегоэлектропотребленияпредприятия.
Годовоеэлектропотреблениемногономенклатурныхпроизводствсущественнозависитотизмененийобъемоввьшускаемойпродукции, которыевсвою очередьотражаютсостояниеконъюнктурырынканаданныймоментвремени.
Еслидлякаждоговидапродукциимногономенклатурногопроизводства рассчитатьэлектроемкостькакотношениегодовогоэлектропотреблениякобъемувыпускаэтоговида, товцеломпопредприятиюэтивеличиныподчиняются ранговомураспределению. Полученныепараметрыранговогораспределенияпо годамимеютдостаточностабильнуютенденциюкувеличению. Возрастание ранговогокоэффициентапоказывает, чтонапредприятиисгодамиувеличиваютсяразнообразиевыпускаемойпродукциииразницаврасходахэлектроэнергиинавыпускразличныхвидов.
Совокупностькривыхранговогораспределенияпредставляетсобойповерхность. Анализструктурно-топологическойдинамики (траекториидвиженияособипокривойранговогораспределения) наэтойповерхностидаетвременнойрядэлектроемкостикаждогоисследуемоговидапродукции, чтопредставляетинтерессточкизрениявозможностипрогнозапараметровэлектропотребления. Можносделатьвыводоналичиижесткойкорреляционнойсвязи междугодовымэлектропотреблениеммногономенклатурногопроизводства, структуройвыпускаемыхизделийивидовымразнообразиемвьшускаемойпродукции [4.12].
Общаяформула, выражающаязависимостьгодовогоэлектропотребления оттехнологическиопределяющихвидовпродукции, длямногономенклатурных производствзаписываетсяследующимобразом [4.12]:
Л год = МЭВ ) - М 2 Эв 2 + МзЭй, (4.12)
гдеМ \ —М $ - объемывыпускапервого—третьеговидовпродукции;
Э„1 —Эа з - соответствующиерасчетныеэлектроемкости.
Вусловияхэкономическойнестабильностипромышленностиувеличиваетсявероятностьошибокпрогнозированияэлектропотребления. Применение устойчивыхранговыхиН-распределенийструктурыэлектропотреблениятех-
ноценозовнаосновебанковданныхдаетвозможностьпрогнозироватьтенденцииразвитияипараметрыэлектропотреблениядажевусловияхсильныхвнешнихвозмущений (реорганизацияпредприятий, спадпроизводстваит.п.) [4. 12].
8. Текущие и перспективные прогнозы электропотребления
ЭффективностьАСКУЭвозрастаетпривозможностивыполненияфункцийпрогнозированияэлектропотребления.
Современныесистемыучетаэлектроэнергиипозволяютосуществлятьтекущий 3-минутный (5-минутный) и 30-минутныйпрогноз.
Текущий прогноз выполняетсяследующимобразом [4.11 ]:
помощностивчасыпикконтролируетсяипрогнозируется (рассчитывается) электропотребление (впрогнозеучаствуют 3-минутныемощности). Если вероятнынарушенияустановленноголимита, токорректируетсяплан-график загрузкиоборудованиядлясведениякминимумувероятностипревышенияустановленноголимита;
порезультатамстатистическогоанализаиданнымпланируемогообъема выпускапродукциинаочереднойрасчетныйпериодрассчитываютсярекомендуемыелимитынапотребляемуюэлектроэнергиюимощность;
длянаглядностивыводятсягистограммысчисленнымизначениямии указаннымиограничениями;
всяотсортированная: информацияпередаетсянахранениевбазуданных.
Цельпрогноза на 30- минутном интервале состоитвопределениивероятноймощностивконце 3-минутногоинтервалапофактическим 3-минутным значенияммощностивегоначале. Еслипрогнозныезначениясбольшойвероятностьюималымотклонениембудутсовпадатьсфактическоймощностьюв конце 30-минутногоинтервала, топоявитсявозможностьоперативногоупреждающегоснижениямощностидляисключенияеепревышенийвконцеуказанногоинтервала.
Предварительновесь 30-минутныйинтервалразбиваетсянадесять 3-минутных (илишесть 5-минутных) интервалов. Поистечениюочередных 3 мин вбазуданныхзаписываетсязначение 3-минутноймощности. Крометого, задаетсявчасыпик (втечениерасчетногопериодаониобычнонеменяются) 30-минутныйлимит, запревышениекотороговозможноприменениесанкцийввидештрафа.
Еслиочередной 30-минутныйинтервалтольконачался, топрогнозное значениемощностиР L наконецочередного (/-го) 30-минутногоинтервалаопределяетсяпоформуле [4.11]:
РС = Р№ Ы * 10, (4.13)
где 10 - число 3-минутныхинтерваловна 30-минутноминтервале;
PiQ L '1 - мощностьвконце (£-1) - гоинтервала.
Послеистеченияпервого 3-минутиогоинтервала (£-м) 30-минутноминтервале (4.11]:
Поокончанииочередных 3 минрассчитываются:
максимальноеiV,, иминимальноеPmin значения 3-минутноймощности на 30-минутноминтервале;
отклоненияпрогнозногозначенияотРтах иPmi №
Послекаждогоочередного 30-минутногоинтервалавычисляетсявероятностьпрогнозаскользящимметодом, например, по 10 — 20 30-минутныминтервалам. Вероятностьоцениваетсякакотношениечислаудачныхкобщему числупрогнозов (прошедших 30-минутныхинтервалов). Удачнымможетсчитатьсяпрогнозмощности, значениекоторойпослеокончанияочередного 30-минутногоинтервалаотклонилосьотфактическоймощностименеечемна 5 %.
Перспективный прогноз осуществляетсянарасчетныйпериод. Дляповышениядостоверностиперспективногопрогнозанеобходимоувязыватьэлектропотреблениесплановымобъемомвыпускаемойпродукциинаинтервале прогнозаинормамипотребленияэлектроэнергии.
Вначалерасчетногопериодазаосновуберутсясведениясогласнодоговорупредприятиясэнергоснабжающейорганизацией. Договорноезначение (ограничение, лимит) потребляемойэлектроэнергиираспределяетсяпосуткам текущегорасчетногопериода. Вбазуданныхвводитсяграфикработы, составленныйсучетомрабочих, ремонтныхивыходныхднейнатекущийрасчетный период. Фактическиесредниезначенияпотребленнойэлектроэнергиипорабочимдням (возможноспривязкойкобъемувыпущеннойпродукции) умножаютсяначислорабочихдней. Приэтомучитываетсясреднееэлектропотреблениеврабочие, выходныеиремонтныесутки. Еслифактическоепотребление отличаетсяв 1,5 — 2 разаотпланируемогонаэтисутки, тографикработывтекущемрасчетномпериодекорректируется.
Вероятноеотклонениеотустановленноголимитанаконецрасчетногопериодаопределяетсявследующейпоследовательности:
рассчитываетсявероятноеэлектропотреблениенаоставшийсяпериодс учетомсреднихзначенийпотребленияврабочие, ремонтныеивыходныесутки;
фиксируетсяфактическоесуммарноепотреблениеэлектроэнергиисначаларасчетногопериодапотекущиесутки:
суммируетсявероятноепотреблениенаоставшийсяпериод (прогнозное значение) сфактическимсуммарнымпотреблениемэлектроэнергиисначала расчетногопериоданатекущиесутки;
определяетсяразностьмеждулимитомэлектропотреблениянатекущий расчетныйпериодиегопрогнознымзначением.
ВероятноеотклонениеотлимитанапотреблениевконцетекущегорасчетногопериодаAF 1 определяетсяпоформуле [4.11]:
AFL = FPL - FL , (4.15)
гдеFPL - прогнозноесуммарноепотреблениедоконцарасчетногопериода, кВт * ч ;
FL - лимитнапотреблениевтекущемрасчетномпериоде, кВт *ч.
Анализрезультатовперспективногопрогнозапозволяетуточнятьлимиты натекущийрасчетныйпериодиобеспечиватьэффективноеэлектропотребление.
9. Оценка правильности определения максимума нагрузки . Потребители - регуляторы
Снижениемаксимумов (пиков) нагрузкивчасымаксимумаэнергосистемыпозволяетснизитьпотериэлектроэнергии. Регулированиесуточныхграфиковнагрузкиможетосуществлятьсянесколькимиспособами. Впервуюочередь необходимовыравниватьграфикзасчетпереводанаиболееэнергоемкогооборудования, работающегопериодически, счасовмаксимуманадругиечасысуток. Такимоборудованиеммогутсчитаться, например, отдельныевидыкрупныхстанков, сварочныемашины, компрессоры, насосыартезианскихскважин, испытательныеизарядныестанции, холодильныеустановки, мельницы, установкитоковвысокойчастоты, отдельныевидыэлекротермическогооборудования, пилорамыидр. Сэтойжецельюцелесообразновчасымаксимумовнагрузокэнергосистемыпровестинапредприятияхтекущиеипрофилактическиеремонтытехнологическогоиэнергетическогооборудования, упорядочитьработу вспомогательныхцеховдлясниженияихэлектрическихнагрузоквуказанные часы, установитьтвердыйграфикработывентиляционныхустановокит.д. При выполнениимероприятийпоотключениювчасымаксимумовсоответствующегооборудованияследуетучитыватьвлияниевыключенияданногооборудованиянадругиепроизводственныепроцессыинаработупредприятиявцелом.
Снижениенагрузкиможетдостигатьсяпутемрассредоточенияповременипусковкрупныхэлектроприемников, созданиязапасовполуфабрикатаза счетинтенсификацииихпроизводствавнечасовмаксимума.
Кмероприятиямповыравниваниюсуточныхграфиковотносятсятакже смещениевремениначалаиокончанияразличныхсменсцельюсовмещенияс часамимаксимуманагрузкимежсменныхиобеденныхперерывовнапредприятиях; введениемтретьей (ночной) сменыдляэнергоемкогооборудования; введениеразныхвыходныхднейдляпредприятий. Мероприятияпоизменению режимаработысвязанысизменениемусловийтрудаработниковпредприятий, поэтомуихосуществлениеможетбытьдопущенотольковкрайнихслучаях.
Наприсоединеннуюмощностьвлияютмаксимумы (пики) нагрузки, образующиесяпринеравномерномпотреблении. Выравниваниенагрузкипозволяет снизитьприсоединеннуюмощность.
Чтобыопределитьмаксимальную (пиковую) технологическуюнагрузку, строятплановыйграфикпотребления, учитываяданныеотчетногогода, планируемыйрежимработыоборудования, сменностиивозможностисокращения расходаэнергии.
Расчетэнергиинадвигательныецелипроизводитсяотдельнодлякрупныхимелкихэлектродвигателей, которыеобъединяютвгруппыпопринципу одинаковогорежимаработы.
Длякрупныхэлектродвигателейстроятсяплановыеграфикинагрузкина основанииданныхорежимеработыиотчетныхданных. Изграфиковможно определитьтребуемоеколичествоэлектроэнергии.
Мелкиедвигателипохарактеруработыразбиваютсянаоднородные группы. Длякаждойгруппынаходитсямощностьприсоединенная, т.е. сумма мощностей, взятыхпопаспортусучетомпотерьвдвигателях.
Данныевпаспортедолжныбытьточными, таккакизношенноеоборудованиепотребляетэнергиина 30 - 35 % больше, чемобкатаннаяноваямашина, а уновойнеобкатанноймашинырасходэнергииповышенпримернона 10% противнормы.
Врезультатеанализаирасчетовполучаютсявсенеобходимыеданныео величинеприсоединенноймощности. Длязавершениярасчетовнеобходимо иметьполученныеизотчетныхграфиковискорректированныекоэффициенты спросаинагрузки.
Взависимостиотполнотыинформациионагрузкахэлементовсетиза расчетныйпериод, длярасчетовнагрузочныхпотерьмогутиспользоватьсяследующиеметоды [4.2]:
1 Методыпоэлементныхрасчетов, использующиеформулу
к Т /4/
А»; «ЗД* £*,£(/• (4.16)
гдек - числоэлементовсети;
1ц - токоваянагрузкаi - гоэлементасопротивлениемRi вмоментвремени/, 6 t - периодичностьопросадатчиков, фиксирующихтоковыенагрузки элементов.
2 Методыхарактерныхрежимов, использующиеформулу
bW ^ ihPitt , (4.17)
гдеАР, - нагрузочныепотеримощностивсетивj'-mрежимепродолжительностьюt , часов;
и - числорежимов.
3 Методыхарактерныхсуток, использующиеформулу
Д», (4.18)
гдет - числохарактерныхсуток, потериэлектроэнергиизакаждыеизкоторых, рассчитанныепоизвестнымграфикамнагрузкивузлахсети, составляют
Дж - эквивалентнаяпродолжительностьвгоду«-гохарактерногографика (числосуток).
4 Методычислачасовнаибольшихпотерьт, использующиеформулу
АГн = ЛРл < п г, (4.19)
гдеДРшю - потеримощностиврежимемаксимальнойнагрузкисети.
5 Методысреднихнагрузок, использующиеформулу
гдеДРер - потеримощностивсетиприсреднихнагрузкахузлов (илисетив целом) завремяТ ;
Аф - коэффициентформыграфикамощностиилитока.
6 Статическиеметоды, использующиерегрессионныезависимостипотерь электроэнергииотобобщенныххарактеристиксхемирежимовэлектрических сетей.
Выравниваниеграфиканагрузкисетиосуществляетсяспомощью применениякпотребителямстимулирующихмер, обеспечивающихперенос частинагрузкинаночныечасы. Снижениепотерьэлектроэнергиивсетиопределяютпоформуле [4.2]
гдеиндексами 1 и 2 обозначеныкоэффициентыформыграфикадовыравниванияипосленего;
AW № - нагрузочныепотеривсетиприкоэффициентеформыкц .
Однимгопутейсниженияпиковнагрузкиявляетсяиспользованиена промышленныхпредприятияхпотребителей - регуляторов , т. е. такогоэлектротехнологическогооборудования, котороеможетработатьврежимерегулированиявсоответствииспотребностямиэнергосистемы. Приэтомполучаемая вэнергосистемеэкономиясредствможетпревышатьдополнительныезатраты потребителя-регулятора.
Оптимизациярежимовсетипонапряжению, мощностиичастотеиспользуетсявраспределительныхсетяхсучетомспецификиихработы. Какизвестно, вцентрахпитания (ЦП) сетей 6-10и35кВширокоиспользуетсярегулированиенапряжения. ОсновнойзадачейрегулированиянапряжениявЦПявляетсяобеспечениедопустимыхотклоненийнапряженияэлектроприемников, присоединенныхксетям 6 - 10 кВиниже. Приэтом, какправило, удаетсяодновременноснизитьипотериэлектроэнергиивсетях. Возможноститакого сниженияувеличиваютсяприналичиивЦПвсехсетей 6 — 10 кВтрансформаторовсРПН.
Враспределительныхсетяхповышениеуровнянапряженияприводитне толькокуменьшениюпотерьмощности, ноикроступотребляемоймощности нагрузоквсоответствиисихстатическимихарактеристикамипонапряжению. Поэтомудляопределенияцелесообразностиповышенияуровнянапряженияв распределительныхсетяхнадоанализироватьеговлияниенаизмененияпотерь мощностивсетиипотреблениенагрузок. Крометого, надоучитыватьиущерб потребителейотнизкогокачестванапряжения.
Ктрехфазнымсетям 0,4 кВподключаетсябольшоеколичествооднофазныхэлектроприемников, присоединяемыхкоднойфазеянулевомупроводу. Ихподключениепроизводитсяповозможностиравномерномеждуфазами, однакотокифаз /А , /вя /с оказываютсявтойилаинойстепенинеодинаковыми.
Различаютвероятностнуюнесимметрию, имеющуюперемежающийся характерсбольшейзагрузкойтоодной, тодругойфазы, исистематическуюнесимметрию, прикоторойнеодинаковысредниезначениянагрузок. Первыйвид несимметрииможетбытьустраненлишьспециальнымиустройствамистири-сторнымуправлением, переключающимичастьнагрузоксперегруженнойна недогруженнуюфазу. Систематическаянесимметрияможетбытьсниженапутемпериодического (i- 2 разавгод) перераспределениянагрузокмеждуфазами.
Список литературы
АхметовP.P., КабановН.Д., СатовВ.Д. СетевойконтроллерСИКОН // Приборыисистемыуправления. — 1995 - № 5.
М.Г. Баширов, Э.М. Баширова, Н.К. Буланкин Экономика электропотребления в промышленности , Уфа 2004г.