Скачать .docx  

Реферат: Экономическая кибернетика

Эк. Кибернетика.

Игра – матем. Модель конфликтной ситуации.

Стратегия игрока – это правила выбора действий в сложившейся ситуации.

Решение игры – это нахождение оптимальной стратегии для каждого игрока, т.е. нахождение цены игры.

Оптимальная стратегия игрока – это стратегия, которая в среднем (настрив. на длительную игру) дает игроку возможный наибольший выигрыш.

Неонтогонистическая – если выигрыш одной из сторон склад. из проигрыша др. стороны, иначе антогонистическая – выигрыш одного равен проигрышу др.

Матричные игры.

- самые простые игры. Играют 2 чел. У каж конечное число стратегий. Список стратегий известен каж играющему, т.е. игра с полной инф. Игра одноходовая.

Величина выигрыша известна заранее, опис. В числовых единицах. Оба дейст. Сознательны, никто не поддается. Игра яв-ся антогонистической. Правила определяют победителя.

Игры с седловой точкой обладают св-м устойчивости – если один игрок примен оптим стратегию, то др. игроку не выгодно отклон-ся от своей оптим стратегии.

Первонач сведен по т. вероятности.

Случайные событие – это событие, которое может произойти или не произойти в данной ситуации.

Вероятность – это количественная характеристика, мера появ-я событий.

P( А)=(число благопр. событий)/(общее число событий).

М(х)= å i хi pi матем. ожидание .

D(x)= å i х2 i pi (M(x))2 дисперсия.

s (x)= Ö D(x) – средне квадратичное отклонение – показывает степень разбросанности значений случайной величины относительно матем. ожидания.

Правило 3 сигм ( s ) :

P í M(x)-3 s (x)<x<M(x)+3 s (x) ý = 0 ,997

÷ Вероятность того, что сличайная величина х попадает в интервал с концами матем. ожидания -3s(х) и +3s(х) равняется 0,997.

Многоуголь. распределение – ломанная линия соед-я последовательно точки с коор-ми (хi ;pi ).

Смешанные стратегии.

- распределение вероятностей на множестве его чистых стратегий, обобщение обычной стратегии.

Чистая стратегия – это стратегия, которая применяется с вероятностью 1.

Теорема Неймана : Любая матричная игра имеет оптимальное решение возможно среди смешанных стратегий.

Стратегия А i активная первого игрока – если вероятность исполь-я в оптим стратегии больше нуля (Аi -акт, если р* i >0); S* A - оптим стратегия.

Стратегия В j активная второго игрока – если вероятность исполь-я ее в опти стратегии больше нуля (Bi -акт, если q* i >0); S* B - оптим стратегия.

Неактивная стратегия – вероятность применения, которой в оптим стратегии равна нулю.

Теорема устойчивости: Если один игрок применяет свою оптим стратегию, то 2 игроку не выгодно выходить за рамки своих активных стратегий.

Теорема : В матр. игре количество активных стратегий у каж игрока одинаковое.

Применение решений в усл. неопределенности.

Рассмотрим игру человек и природа. Человек – лицо принимающее решение. Природа – экон-я среда в состоянии рынка.

Отличия от матричной игры : Активные решения принимает только чел, он хочет найти наиболее оптим решение. У природы стихийное поведение и она не стремится к выигрышу. Считается, что чел знает список сост природы, но не знает какое из них будет фактическим. В игре с природой чел труднее сделать свой выбор, поэтому сущ несколько подходов нахождения оптимального решения.

Подход определяется склонностью чел к риску.

Риск – это может быть упущенная выгода или необход понести дополнит произв-е затраты.

Элементы матрицы – это ожидание резуль. Деятельности в завис от сост природы.

1) Подход махмах оптимистический” : В каж точке мы находим макс элемент и после этого находим макс из полученных чисел. gi =maxj aij Þg=maxi gi =gi0 Þ выб Аi0 .

Выбираем макс значение. Чел ориентир на самый лучший возмож результат, не обращ внимание на возмож неудачи.

2) Критерий Вальда – критерий пессимизма : Находим в каж строчке миним элемент и выбираем ту стратегию, которая дает макс гарантируемый доход.

ai =minj aij Þa=maxi ai =ai Þ выб Аi0 .

3)Критерий Гурвица ( l ) – ур пессимизма : Человек выбирает 0£l£1. Находим число a i = l a i +(1- l ) g i Þa maxi a i = a i0 Þвыб Аi0 . Если l=1 – кр Вальда (пессимизма), если l=0 – кр оптимизма. Конкретная величина l опред-ся эк-ой ситуацией.

4) Критерий Сэвиджа – кр минимального риска : Состав март риска по формуле rij = b j ij . bij =max aij Þ rij =bj -aij .

R=(rij ) –матр риска; ri =maxj rij Þ mini ri =ri0 Þ выб Аi0 .

Если бы мы знали, то мы бы выбрали наиболее эф-е решение. Для самого эф-го решения: rij =0 (если Пj ) Þ Аi . Риск = величине упущенной возможности.

У каж критерия есть свои особенности применения. Если мы оценив ситуацию по разным критериям, то мы можем принять более обоснован решение. Трудность обоснования яв-ся, что природа не стремится к выигрышу.

Принятие решения в усл риска.

Рассотрим вариант игры чел и природы в случаи, когда нам известно сост природы. Природа к выигрышу не стремится. Находим стратегию, которая приносит макс средний доход. Средний доход расчитывается по правилу теории вероятности.

Величина среднего дохода равна матем ожиданию при этой стратегии.

1) М(Ai )=n åj=1 aij pj Находим макс maxi M(Ai )

2) Правило минималь среднего риска. R=(Ai )=n åj=1 rij pj . Находим наимень mini R(Ai ).

Лемма : Указ выше 2 критерия в результате всегда приводят к выбору одной и той же оптим стратегии.

Док-во: Найдем миним сред риска mini R(Ai )= mini åj rij pj = minij (bjij )pj )= minij bj pjj аij pj )={åj bj pj – не зависит от переменной i, значит это const С}= mini (С-åj аij pj )Þ минимум разности соот-ет максимуму вычитаемого.

maxi åj аij pj =M(Ai ).

Номера стратегий, на которых достиг миним среднего риска, равны номерам стратегий обеспеч наиболь средний выигрыш.

Бейссовский подход нахождения оптимального решения.

Бейсовский подход: Если первонач распредел вероятности мы получ доход `Q` . Если мы можем провести эксперемент дающий новое распред вероятности в завис от первонач `Q` и нового `Q’ , мы делаем свой выбор стратегии. p'Þ`Q’` .

Некоторые св-ва матричной игры.

Замеч№1 О масштабе игр : Пусть даны 2 игры одинаковой размерности с платежной матрицей р(1) и р(2) . При чем при любых i и j выпол (а(2) ij =aa(1) ij +b), некоторые числа a и b. Тогда: 1) опт стратегии 1 игрока в 1 и 2 игре одинаковые. Опт стратегии 2 игрока одинаковы в обеих играх.

2) Цена второй игры V2 =aV1 +b.

Для некот методов решений все элементы матр должны быть не отрицательными.

Заме№2 О доминировании стратегий : Этот прием применяется для умень размерности игры.

А : Аi доминирует над Акiк ), если для любого j выпол нерав-во аij >akj и хотя бы одно из этих нерав-в строгое.

Ак – заведомо невыгодна; сред размер выигрыша меньше; р* к =0, стратегия пассивная.

В : Вj доминирует над Вtjt ), если для любого i выпол нерав-во аij >ait и хотя бы одно из этих нерав-в строгое.

Bt – невыгодна Þ q* t =0 – актив стратегия.

Доминир стратегии вычеркиваются и получ матр меньшей размерностью.

Замеч№3 Сравнение операций по методу Парето : Допустим есть операции Q1 , Q2 ,… Qn . Для каж опер-и расчит 2 параметра: 1) E(Q) – эффективность (доход);

2) r(Q) – степень риска (s-сред квадратич отклон).

Самая лучшая операция – это опер с наилуч эф-ю и с наимень риском. F(Q)= k E(Q)-r(Q) , где k - это склонность к риску (не мат проблема). Находим макс из этих критериев maxi F(Qi ). Операция Qi >Q, если эф-ть не менее E(Qi )³E(Qj ), а риск опер r(Qi )£r(Qj ) и хотя бы одно из нерав-в строгое.

Доминир страт отбрас, как заведомо невыгодные.

Множ Парето – это все недоминир-е операции. Наиболее эф-е среди них.

Понятие о позиционных игр.

У каж игрока своя платежная матрица. Выигрыш одного не означ проигр др. Таким способом можно высчитывать взаимные интересы игроков, а также возможность образования коалиции. Можно расчит динамические игры учитывая фактор времени и т.д.

Позиционные игры возникает в случаи, когда надо принимать последо-но несколько решений, при чем выбор решения опираются на предыдущ-е решения.

Рассотрим простейш случ позиц-й игры с природой. Решение изобр в виде дерева решений.

Дерево решений – граф-е изобр-е всех возможных альтернатив игрока и сост природы с указ вероятности соответ-х состояний и размеров выигрыша в каж ситуации.

Альтернатива игрока изобр квадратом – список возможных стратегий в соот-й ситуации. Сост-е природы кружочком, чел на них влиять не может. Делается оценка каж вершины и наход макс оценка ситуаций соот-х каж ветви дерева решений.

EMV денежное решение; EMV= å i ( отдача в i- ом сост-и )pi

maxвершина (EMV)=?