Скачать .docx | Скачать .pdf |
Реферат: Речное хозяйство р Мура
Министерство сельского хозяйства Российской Федерации
Федеральное государственное образовательное учреждение
Высшего профессионального образования
ИРКУТСКАЯ ГОСУДАРСТВЕННАЯ СЕЛЬСКОХОЗЯЙСТВЕННАЯ АКАДЕМИЯ
КАФЕДРА ЗЕМЛЕУСТРОЙСТВА
Расчетно-графическая работа
ПО ДИСЦИПЛИНЕ "ГИДРОЛОГИЯ"
Выполнил: студент третьего курса
заочного отделения агрономического ф-та
специальность: землеустройство
Шифр 06404
Кобелева М.А.
Проверил: д. т. н. профессор Иваньо Я.М.
Иркутск 2008
Содержание
1. Характеристики водности рек
2.1 Определение испарения с малого водоема при отсутствии данных наблюдений
2.2 Определение испарения с суши с помощью карты изолиний испарения
2.3 Определение испарения с суши по уравнению связи теплового и водного балансов
3. Вычисление расхода воды аналитическим способом
Список использованной литературы
Введение
Значение гидрологии, гидрометрии и регулирования стока определяется главными задачами водного хозяйства как отрасли науки и техники, охватывающей учет, изучение, использование, охрану водных ресурсов, а также борьбу с вредным действием вод.
Гидрология - это наука, изучающая гидросферу, включая океаны и моря, реки, озера, болота, почвенные и грунтовые воды, снег и ледники, влагу атмосферы, а также ее свойства и протекающие в ней процессы и явления во взаимосвязи с атмосферой, литосферой (земной корой) и биосферой.
Вода - основная среда, обеспечивающая обмен веществ и развитие организмов. С древнейших времен жизнь человека и развитие культуры связаны с водой. Она широко используется в промышленности, энергетике, сельском и рыбном хозяйстве, в медицине и т.д. Вода - объект изучения физики, химии, механики и других наук.
Гидрология тесно связана с метеорологией - наукой об атмосфере и происходящих в ней процессах, и в первую очередь с той ее частью, которая исследует влагооборот и испарение с поверхности воды. Взаимосвязь гидросферы с литосферой наиболее отчетливо проявляется в процессах формирования земной поверхности под влиянием деятельности воды. В свою очередь, рельеф земной поверхности оказывает существенное влияние на образование водных потоков. Поэтому гидрология имеет много общего с геоморфологией - наукой, изучающей закономерности возникновения и развития форм земной поверхности.
Раздел гидрологии, изучающий поверхностные воды, называется гидрологией суши или континентальной гидрологией . Раздел гидрологии по изучению воды океанов и морей называют гидрологией океанов и морей или океанологией .
Гидрология грунтовых (подземных) вод называется гидрогеологией . В гидрологию входят те разделы гидрогеологии, которые изучают взаимодействие поверхностных и подземных вод, питание рек грунтовыми водами и др. Разделы гидрогеологии, изучающие способы поиска и добычи грунтовых вод, их взаимодействие с горными породами, относят к геологии.
Различают гидрологию рек (речная гидрология , или потамология ), озер (лимнология ), болот (тельматология ), водохранилищ , ледников (гляциология ). Речная гидрология и речная гидравлика, изучающие движение воды в речных руслах и их формирование, дополняют друг друга. Речную гидравлику можно рассматривать как раздел гидрологии суши и как раздел гидравлики.
Гидрология, занимающаяся решение различных инженерных задач (в гидротехнике, гидромелиорации, гидроэнергетике, водоснабжении, строительстве мостов, автомобильных и железнодорожных дорог и т.д.) называется инженерной .
В результате широкого применения в гидрологии теории вероятностных процессов сформировалась стохастическая гидрология .
Гидрометрия - это наука о методах и средствах определения величин, характеризующих движение и состояние жидкости и режим водных объектов. В задачу гидрометрии входят определения: уровней, глубин, рельефа дна и свободной поверхности потока; напоров и давлений; скоростей и направлений течения жидкости, пульсаций скоростей и давлений; параметров волн; гидравлических уклонов; расходов жидкости; мутности потока; расходов наносов и пульпы; элементов термического и ледового режимов потоков.
Регулирование речного стока - это наука о перераспределении (увеличение или уменьшение) во времени объемов речного стока в замыкающем створе реки по сравнению с ходом поступления воды на поверхность водосбора.
1. Характеристики водности рек
Цель занятия - изучить и определить основные характеристики речного бассейна, связанные с ее гидрологическим режимом.
Задачи: освоить основные понятия гидрологических характеристик бассейна реки; изучить основные характеристики, отображающие водный режим реки. Исходные данные: река и пункт наблюдений (р. Мура - п. Ирба); площадь водосбора (F=9320 км2 ); расход воды (Q=24,3 м3 /с); высота годового слоя осадков (x=405 мм).
Требуется: вычислить модуль стока (q, л/с∙км2 ); определить высоту слоя стока (y, мм); рассчитать объем годового стока (V, км3 ); найти коэффициент стока (η). Порядок выполнения работы:
Река Мура впадает в Ангару, являясь её левым притоком. Площадь водосбора - 9320 км2 . Высший уровень воды за год - 537 см, низший - 209 см, средний уровень воды за год - 388 см. Наибольший расход воды за год 33,9 м3 /сек, наименьший - 13,1 м3 /сек, средний расход воды за год - 23,7 м3 /сек. Годовой слой стока - 81 мм. Средняя продолжительность половодья 55 суток, за это время стекает 84% от годового стока вод. Паводок длится 13суток. Наивысшая температура воды в году 21,9єС приходится на 17 июля. С первой декады ноября по последнюю декаду апреля река находится под ледяным покровом, толщина которого достигает 112 см.
Модуль стока:
Слой стока:
Объём стока:
Коэффициент стока:
Выводы
В 4 варианте дана р. Мура в пункте наблюдения Ирба. Имея данные: площадь водосбора - 9320 км2 , расход воды - 24,3 м3 /сек, высота годового слоя осадков - 405 мм, мы получили следующие характеристики водности рек: модуль стока - 2,61 л/с∙км2 ; высота слоя стока - 82,22 мм; объем годового стока - 0,77 м3 ; коэффициент стока - 0, 203.
Последний показатель отражает, в районе с какой влажностью находится пункт наблюдения, в данном случае с. Ирба. Исходя из полученных данных можно сказать, что район относится к засушливым, так как в таких районах коэффициент стока уменьшается до нуля, а в районах избыточного увлажнения возрастает до 0,7. В данном случае =0, 203.
2. Расчеты испарения
Цель - рассчитать испарение с поверхности воды и с поверхности суши различными методами.
Задача - определить испарение:
1) с малого водоема при отсутствии данных наблюдений.
2) с суши с помощью карты изолиний испарения.
3) с суши по уравнению связи водного и теплового балансов.
2.1 Определение испарения с малого водоема при отсутствии данных наблюдений
Исходные данные: площадь водоема, расположенного вблизи г. Иркутска S = 4,5 км2 , средняя глубина H= 3,0 м, средняя длина разгона воздушного потока D = 4,5 км, средняя высота препятствий на берегу h= 12 м.
Требуется: вычислить среднемноголетнее испарение.
Порядок выполнения.
Среднемноголетнее испарение с малых водоемов, расположенных в равнинных условиях определяют по выражению:
,
где - среднемноголетнее испарение с эталонного бассейна площадью 20 м2 ,мм;
кн , кз , кΏ - поправочные коэффициенты соответственно на глубину водоема, на защищенность водоема от ветра древесной растительностью, строениями, крутыми берегами и другими препятствиями, а также на площадь водоема.
Среднемноголетнее испарение с бассейна площадью 20 м2 находят на карте изолиний. Так, для Муры Е20 = 350 мм.
Поправочный коэффициент на глубину водоема находят в зависимости от местоположения водоема и средней глубины. Для р. Мура, расположенной в лесостепной зоне, при = 3,0 м, кн = 0,995.
Поправочный коэффициент кз определяют в зависимости от отношения средней высоты (м) препятствий hр к средней длине (м) разгона воздушного потока D, следовательно,
; К= 0,98
Поправочный коэффициент на площадь водоема кΏ для лесостепной зоны при Ω = 4,5 км2 равен 1,25.
Находим среднемноголетнее испарение:
Ев = 350∙0,995∙0,98∙1,25 = 427 мм
2.2 Определение испарения с суши с помощью карты изолиний испарения
Исходные данные: карта среднегодового слоя испарения с суши.
Требуется: определить среднемноголетнее годовое испарение.
Порядок выполнения.
По карте находим расположение Иркутского района и замечаем, что изолиния проходит на отметке 350 мм. Следовательно, для Иркутского района среднемноголетнее годовое испарение (норма) равно 350мм.
2.3 Определение испарения с суши по уравнению связи теплового и водного балансов
Исходные данные: среднемноголетний слой осадков х = 405 мм, радиационный баланс R = 120 кДж/см2 , сумма среднемесячных положительных температур воздуха за год равна 54,3.
Требуется: определить среднемноголетнее годовое испарение.
Порядок выполнения.
1. По номограмме находим, что при х = 405 мм и R = 120 кДж/см2 среднемноголетний слой испарения Ес = 320 мм.
2. Для расчета испарения используют уравнение В.С. Мезенцева, которое имеет следующий вид:
,
где - максимально возможное испарение, мм;
- общее увлажнение, мм;
- параметр, учитывающий гидравлические условия стока.
3. Для определения максимально возможного испарения используем формулу И.В. Карнацевича:
Где Σt- сумма среднемесячных положительных температур воздуха за год.
мм
4. Находим испарение для Ирбы
мм
Вывод: данные расчеты испарения приобретают важное значение в связи с оценкой водного баланса. В результате расчетов получили:
среднемноголетнее испарение с поверхности воды Ев = 427 мм;
среднемноголетнее испарение с поверхности суши Ес = 320 мм.
3. Вычисление расхода воды аналитическим способом
Цель - найти основные гидрометрические характеристики реки.
Задача: вычислить расход воды.
Исходные данные: выписка из книжки для записи измерения расхода воды на реке.
Требуется: найти ширину реки (В, м); найти среднюю скорость реки (, м/с); найти максимальную глубину (hmax , м); найти среднюю глубину (, м); найти расход воды (Q, м3 /сек); найти смоченный периметр (ψ, м); найти гидравлический радиус (R, м); найти максимальную скорость реки (V max , м/сек); найти площадь живого сечения (ω, м2 ).
Порядок выполнения работы.
Таблица. Вычисление расхода воды аналитическим способом
№ вертикалей |
Расстояние от постоянного начала, м | Глубина, м | Расстояние между промерными вертикалями | Площадь живого сечения, м2 | Средняя скорость, м/c | Расход воды между скоростными вертикалями | ||||
Промерных | Скоростных | Средняя | между промерными вертикалями | между промерными вертикалями | между скоростными вертикалями | на вертикали | между скоростными вертикалями | |||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
Урез пб | 2 | 0 | ||||||||
0,39 | 2 | 0,78 | ||||||||
1 | 4 | 0,78 | 3,44 | 0,39 | 1,35 | |||||
1,33 | 2 | 2,66 | ||||||||
2 | I | 6 | 1,88 | |||||||
2,09 | 2 | 4,18 | 0,56 | |||||||
3 | 8 | 2,3 | ||||||||
2,37 | 2 | 4,74 | 14,01 | 0,65 | 9,04 | |||||
4 | 10 | 2,44 | ||||||||
2,55 | 2 | 5,09 | ||||||||
5 | II | 12 | 2,65 | |||||||
2,44 | 2 | 4,87 | 0,73 | |||||||
6 | 14 | 2,22 | 9,16 | 0,70 | 6,41 | |||||
2,15 | 2 | 4,29 | ||||||||
7 | III | 16 | 2,07 | |||||||
1,99 | 2 | 3,97 | 0,67 | |||||||
8 | 18 | 1,9 | ||||||||
1,78 | 2 | 3,55 | 11,40 | 0,47 | 5,35 | |||||
9 | 20 | 1,65 | ||||||||
0,83 | 4,7 | 3,88 | ||||||||
Урез лб | 24,7 | 0 | 0,0 | |||||||
38,01 | 38,01 | 22,14 |
Столбцы 1, 2, 3, 4, 9 - известны.
Столбец 5 - глубина между промерными вертикалями - среднее значение между средними глубинами на урезе правого берега и первой промерной вертикалью и так далее.
Столбец 7 - площадь между промерными вертикалями - произведение столбца 5 - глубина между промерными вертикалями, и столбца 6 - расстояние между промерными вертикалями.
Столбец 8 - площадь между скоростными вертикалями - сумма площадей между соответствующими промерными вертикалями. Общая площадь водного сечения получена как сумма частичных площадей между промерными или скоростными вертикалями.
Столбец 10 - скорость между скоростными вертикалями - между урезами воды и первой или последней промерной вертикалью это произведение средней скорости на вертикали и коэффициента 0,7; между остальными скоростными вертикалями - их среднее значение.
Столбец 11 - расход воды между скоростными вертикалями -произведение значений столбца 8 - площадь сечения между скоростными вертикалями, и столбца 10 - средняя скорость между скоростными вертикалями. Общий расход определяется как сумма всех расходов между скоростными вертикалями. Ширина реки - расстояние между геодезическим прибором и урезом левого берега вычесть расстояние между геодезическим прибором и урезом правого берега:
В = 24,7 м - 2 м = 22,7 м
Средняя скорость реки определяется по формуле:
Среднюю глубину реки находим с помощью выражения:
Смоченный периметр - ломаная линия по дну реки. Смоченный периметр всегда больше ширины реки (Ψ>В).
В нашем случае: ψ1 =2,15 м, ψ2 =2,28 м, ψ3 =2,04 м, ψ4 =2,00 м, ψ5 =2,01 м, ψ6 =2,05 м, ψ7 =2,01 м, ψ8 =2,01 м, ψ9 =2,02 м, ψ10 =4,98 м
Гидравлический радиус определяем по формуле:
Выводы: из работы видно, что:
расход воды на реке (Q) равен 22,14 м3 /сек;
площадь водного сечения (ω) - 38,01 м2 ;
ширина реки (В) - 22,7 м.;
средняя глубина () - 1,67 м.;
максимальная глубина (hmax ) - 2,65 м.;
средняя скорость течения () - 0,58 м/сек;
максимальная скорость (V max ) - 0,73 м/сек;
смоченный периметр (ψ) - 23,55 м.;
гидравлический радиус (R) - 1,61 м.
4. Расчёт годового стока
Цель: изучить закон вероятности гамма-распределения.
Задачи: построить эмпирическую кривую; найти статистические параметры ряда; построить аналитические кривые обеспеченности гамма-распределения.
Задание 1 Построение эмпирической кривой обеспеченности среднегодовых расходов воды.
Исходные данные: среднегодовые расходы воды на реке по данным наблюдений за 28 лет.
Требуется: построить эмпирическую кривую обеспеченности среднегодовых расходов воды.
Порядок выполнения работы.
Чтобы построить эмпирическую кривую нужно заполнить таблицу.
Таблица 1 Вычисление эмпирической обеспеченности среднегодовых расходов воды
№ п/п | Год | Q, мі/сек | Кi | P | Kp | Рг |
1 | 1957 | 15,2 | 0,63 | 3,45 | 1,57 | 2,09 |
2 | 1958 | 19,4 | 0,80 | 6,90 | 1,39 | 6,81 |
3 | 1959 | 33,9 | 1,39 | 10,34 | 1,36 | 8,53 |
4 | 1960 | 28,2 | 1,16 | 13,79 | 1,31 | 11,10 |
5 | 1961 | 28,4 | 1,17 | 17,24 | 1,28 | 13,05 |
6 | 1962 | 25,7 | 1,06 | 20,69 | 1, 20 | 20,06 |
7 | 1963 | 26,4 | 1,09 | 24,14 | 1,17 | 23,51 |
8 | 1964 | 20,5 | 0,84 | 27,59 | 1,16 | 24,44 |
9 | 1965 | 21 | 0,86 | 31,03 | 1,09 | 33,78 |
10 | 1966 | 31,2 | 1,28 | 34,48 | 1,06 | 37,88 |
11 | 1967 | 24,7 | 1,02 | 37,93 | 1,06 | 37,88 |
12 | 1968 | 13,5 | 0,56 | 41,38 | 1,05 | 39,09 |
13 | 1969 | 33 | 1,36 | 44,83 | 1,02 | 43,47 |
14 | 1970 | 16,7 | 0,69 | 48,28 | 1,02 | 44,11 |
15 | 1971 | 23,2 | 0,95 | 51,72 | 0,98 | 49,99 |
16 | 1972 | 24,8 | 1,02 | 55,17 | 0,95 | 54,01 |
17 | 1973 | 31,9 | 1,31 | 58,62 | 0,95 | 54,68 |
18 | 1974 | 21,5 | 0,88 | 62,07 | 0,95 | 55,36 |
19 | 1975 | 29,2 | 1, 20 | 65,52 | 0,88 | 65,40 |
20 | 1976 | 13,1 | 0,54 | 68,97 | 0,86 | 68,65 |
21 | 1977 | 25,7 | 1,06 | 72,41 | 0,85 | 70,56 |
22 | 1978 | 23,1 | 0,95 | 75,86 | 0,84 | 71,82 |
23 | 1979 | 23 | 0,95 | 79,31 | 0,80 | 78,34 |
24 | 1980 | 23,8 | 0,98 | 82,76 | 0,78 | 80,53 |
25 | 1981 | 20,7 | 0,85 | 86,21 | 0,69 | 90,77 |
26 | 1982 | 19 | 0,78 | 89,66 | 0,63 | 95,10 |
27 | 1983 | 38,2 | 1,57 | 93,10 | 0,56 | 98,01 |
28 | 1984 | 25,5 | 1,05 | 96,55 | 0,54 | 98,44 |
Qср = 24,30 |
Модульный коэффициент К i находим по формуле:
Для каждого модульного коэффициента вычисляем соответствующую ему эмпирическую обеспеченность Р по формуле:
В последнем столбце располагаем ранжированные в порядке убывания значения модульных коэффициентов Кр .
Эмпирическая кривая представляет собой зависимость Кр от Р .
Задание 2. Определение статистических параметров ряда.
Исходные данные: среднегодовые расходы воды на реке по данным наблюдений за 28 лет.
Требуется: найти среднеарифметическое ; отклонение σ; коэффициент асимметрии сs; коэффициент вариации сv.
Порядок выполнения работы.
Находим статистические параметры.
Таблица 2 Статистические параметры
Среднее | 24,3 |
Стандартная ошибка | 1,2 |
Медиана | 24,3 |
Мода | 25,7 |
Стандартное отклонение | 6,1 |
Дисперсия выборки | 37,7 |
Эксцесс | -0,1 |
Асимметричность | 0,2 |
Интервал | 25,1 |
Минимум | 13,1 |
Максимум | 38,2 |
Сумма | 680,5 |
Счет | 28,0 |
Из последней таблицы следует:
среднеарифметическое Qi :
м3 /сек;
стандартное отклонение σ :
м3 /сек;
коэффициент асимметрии С S :
коэффициент вариации С V :
Задание 3. Построение аналитических кривых обеспеченности гамма-распределения.
Исходные данные: эмпирическая обеспеченность и ранжированный в порядке убывания модульный коэффициент.
Требуется: построить аналитическую кривую обеспеченности и вычислить расход воды при 75-процентной и 95-процентной обеспеченности при гамма-распределении.
Порядок выполнения работы.
Для построения аналитических кривых заполняем таблицу ниже.
Таблица 3
Kp | P | Рг |
1,57 | 3,45 | 2,09 |
1,39 | 6,90 | 6,81 |
1,36 | 10,34 | 8,53 |
1,31 | 13,79 | 11,10 |
1,28 | 17,24 | 13,05 |
1, 20 | 20,69 | 20,06 |
1,17 | 24,14 | 23,51 |
1,16 | 27,59 | 24,44 |
1,09 | 31,03 | 33,78 |
1,06 | 34,48 | 37,88 |
1,06 | 37,93 | 37,88 |
1,05 | 41,38 | 39,09 |
1,02 | 44,83 | 43,47 |
1,02 | 48,28 | 44,11 |
0,98 | 51,72 | 49,99 |
0,95 | 55,17 | 54,01 |
0,95 | 58,62 | 54,68 |
0,95 | 62,07 | 55,36 |
0,88 | 65,52 | 65,40 |
0,86 | 68,97 | 68,65 |
0,85 | 72,41 | 70,56 |
0,84 | 75,86 | 71,82 |
0,80 | 79,31 | 78,34 |
0,78 | 82,76 | 80,53 |
0,69 | 86,21 | 90,77 |
0,63 | 89,66 | 95,10 |
0,56 | 93,10 | 98,01 |
0,54 | 96,55 | 98,44 |
Кр - ранжированный в порядке убывания модульный коэффициент. Р - эмпирическая обеспеченность.
РГ - значения обеспеченности при гамма-распределении, которое определяется формулой:
;
Для нахождения РГ в Excel пользуемся функцией ввода формул: гаммарасп.При этом x - первое значение kp ; альфа - ; бетта = ; интегральное - 1.
Пользуясь диаграммой, расположенной ниже, мы находим значение расхода воды при 75-процентной и 95-процентной обеспеченности, но данные значения не совсем точные, поэтому для определения расхода воды при 75-процентной и 95-процентной обеспеченности пользуемся следующими формулами:
Теперь мы находим К75Г и К95Г. Получаем, что: К75Г =0,82, а К95Г =0,63.
Следовательно:
Выводы: используя данные значения, мы построили эмпирическую кривую обеспеченности, а также аналитическую кривую обеспеченности при гамма-распределении среднегодовых расходов воды реке. Нашли расход воды при 75-процентной и 95-процентной обеспеченности гамма-распределения: Q75Г = 19,93 м3 /сек , Q95Г = 15,31 м3 /сек. Также получили статистические параметры:
среднеарифметическое | 24,3 |
отклонение σ | 6,1 |
коэффициент асимметрии сs | 0,2 |
коэффициент вариации сv | 0,25 |
Заключение
Из первой выполненной работы имея данные: площадь водосбора - 9320 км2 , расход воды - 24,3 м3 /сек, высота годового слоя осадков - 405 мм, мы получили следующие характеристики водности рек:
модуль стока - 2,61 л/с∙км2 ;
высота слоя стока - 82,22 мм;
объем годового стока - 0,77 м3 ;
коэффициент стока - 0, 203.
Последний показатель отражает, в районе с какой влажностью находится пункт наблюдения, в данном случае с. Ирба. Исходя из полученных данных можно сказать, что район относится к засушливым, так как в таких районах коэффициент стока уменьшается до нуля, а в районах избыточного увлажнения возрастает до 0,7. В данном случае ɳ=0, 203.
Во второй работе данные расчеты испарения приобретают важное значение в связи с оценкой водного баланса. В результате расчетов получено:
среднемноголетнее испарение с поверхности воды Ев = 427 мм;
среднемноголетнее испарение с поверхности суши Ес = 320 мм.
Из третьей работы видно, что:
расход воды на реке равен 22,14 м3 /сек;
площадь водного сечения - 38,01 м2 ;
ширина реки - 22,7 м.;
средняя глубина - 1,67 м.;
максимальная глубина - 2,65 м.;
средняя скорость течения - 0,58 м/сек;
максимальная скорость - 0,73 м/сек;
смоченный периметр - 23,55 м.;
гидравлический радиус - 1,61 м.
В четвертой работе используя данные значения, мы построили эмпирическую кривую обеспеченности, а также аналитические кривые обеспеченности при гамма-распределении среднегодовых расходов воды. Нашли расход воды при 75 - и 95-процентной обеспеченности гамма-распределения: Q75Г = 19,93 м3 /сек , Q95Г = 15,31 м3 /сек.
Список использованной литературы
1. Гидрология, гидрометрия и регулирование стока: Учебники и учебные пособия для высших сельскохозяйственных учебных заведений/ Г.В. Железняков, Т.А. Неговская, Е.Е. Овчаров. - М. "Колос", 1984.
2. Практикум по гидрологии, гидрометрии и регулированию стока: Учебники и учебные пособия для студентов высших учебных заведений/ под редакцией Е.Е. Овчарова. - М. ВО"Агропромиздат", 1988.
3. Статистика с применением Exsel: Учебное пособие. / Под ред. Я.М. Иваньо, А. Ф Зверева. - Иркутск, 2006. - 137 с.