Скачать .docx  

Реферат: Контрольная работа: Унификация алгебраических выражений

Содержание

Введение

1. Задача унификации

2. Преобразование выражения в префиксную форму

3. Определение классов для реализации алгоритма

4. Операции класса Lisp _ item

4.1 Операция выполнения унификации (unifikacia )

4.2 Операция проверки применимости продукций(Primen _ prod )

4.3 Операция замены свободных переменных (zamena )

5. Операции класса podst

5.1 Операция проверки применимости (primenima )

6. Операции класса trojka

6.1 Операция проверки применимости (primenima )

Выводы

Литература


Введение

Тема курсовой работы по дисциплине "Проектирование интеллектуальных систем" - "Унификация алгебраических выражений".

Целью изучения дисциплины является подготовка специалистов в области автоматизации сложноформализуемых задач. Задачей изучения дисциплины является приобретение знаний о фундаментальных алгоритмах, применяемых при построении систем искусственного интеллекта, а также методов разработки программных приложений, реализующих эти системы.

Принципиальное отличие интеллектуальных систем от любых других систем автоматизации заключается в наличии базы знаний о предметной среде, в которой решается задача. Неинтеллектуальная система при отсутствии каких-либо входных данных прекращает решение задачи, интеллектуальная же система недостающие данные извлекает из базы знаний и решение выполняет.

По А. Н. Колмогорову, любая материальная система, с которой можно достаточно долго обсуждать проблемы науки, литературы и искусства, обладает интеллектом. Такое определение показывает, что данная дисциплина находится во взаимосвязи практически со всеми учебными дисциплинами. Тем не менее, следует подчеркнуть связи со следующими дисциплинами: "Программирование", "Математический анализ", "Линейная алгебра и аналитическая геометрия", "Дискретная математика", "Логическое программирование", "Экспертные системы", "Интерфейсы интеллектуальных систем".


1. Задача унификации

Формально задача записывается следующим образом: для данной теоремы Т в форме продукции вида

Н Þ С,

где Н – гипотеза;

С – заключение, и некоторого выражения Е необходимо проверить, можно ли сделать Н и Е полностью идентичными путем последовательных подстановок свободных переменных в Е. Если выражение Е с помощью подстановок свободных переменных удается привести к виду Н, то Е можно заменить выражением С. После этого в выражении С свободные переменные заменяют соответствующими им фрагментами из выражения Е.

Например, для продукции (теоремы) ( a + b )2 = a 2 + 2 ab + b 2 исходное выражение x 2 + ( y + √3)2 с помощью свободных переменных a = y и b = √3 можно преобразовать к виду x 2 + ( a + b )2 . Фрагмент выражения ( a + b )2 полностью совпадает с левой частью продукции, следовательно вместо него можно подставить правую часть продукции. В результате будет получено выражение x 2 + a 2 + 2 ab + b 2 . Для завершения преобразования необходимо свободные переменные a и b заменить соответствующими им фрагментами выражения Е. окончательно будет получено: x 2 + y 2 + 2 y √3 + (√3)2 .

Фундаментальная идея алгоритма связана с процедурой просмотра выражения: вначале делается попытка применить какую-либо продукцию ко всему выражению; если не удается применить ни одну продукцию, выбирается фрагмент выражения и проверяется применимость продукций к этому фрагменту и т.д.. Выполнение процедуры унификации прекращается, когда уже никакая продукция не может быть применена ни к какому подвыражению. Для изучения или разработки алгоритма унификации удобно представлять выражение и продукции в виде деревьев. Для приведенного выше примера деревья продукций и выражения будут иметь вид:

Рисунок 1 -Представление продукции и выражения в виде дерева (­ -символ операции возведения в степень)

На рисунке одинаковыми цветными прямоугольниками выделены совпадающие фрагменты деревьев продукции и выражения; штрихпунктирными линиями – соответствие между свободными переменными и фрагментами дерева выражения.

Алгоритм унификации выполняет обход дерева выражения, начиная с корня дерева. Для очередного узла дерева выполняются следующие действия:

- выполняется проверка на совпадение операции из узла дерева выражения Е с операцией в корне левой части очередной продукции Т. Если совпадают, то выполняется переход к следующему шагу. В противном случае, по окончании просмотра всех продукций, выполняется переход к следующему узлу дерева выражения Е;

- если в левой части продукции операндами операции являются переменные, то им сопоставляются ветви дерева выражения Е, отходящие от узла с совпавшей операцией (так, как показано на рисунке);

- фрагмент дерева выражения Е, соответствующий левой части продукции, заменяется деревом из правой части продукции (см. рисунок 2);

Рисунок 2 -Выражение Е после замены фрагмента на правую часть выражения

- в полученном дереве выражения Е выполняется замена свободных переменных сопоставленными фрагментами исходного дерева (см. рисунок 3).


Рисунок 3 -Выражение Е после замены свободных переменных соответствующими фрагментами

Таким образом, выполнение унификации предполагает построение дерева выражения. В наибольшей степени заданию выражения в форме дерева соответствует префиксная форма записи. Например, рассмотренные выше продукция и выражение в префиксной форме будут иметь следующий вид:

( ­ (+ a b ) 2) => (+ ( ­ a 2) (+ (* 2 (* a b )) ( ­ b 2)) );

(+ ( ­ x 2) ( ­ (+ y (√ 3)) 2)).

В каждой скобке присутствуют два или три элемента: знак операции или имя функции и один или два операнда. Операции соответствуют узлам дерева, а операнды – ветвям дерева. Такая фиксированная структура упрощает построение алгоритма унификации, но требует введения алгоритма преобразования выражения, заданного в инфиксной записи, в префиксную форму записи.


2.Преобразование выражения в префиксную форму

Это преобразование является частным случаем задачи трансляции выражений. Неформальное определение алгоритма заключается в следующем.

Алгоритмом используется два стека: стек операндов и стек операций. Строка с выражением сканируется слева направо. Если очередным элементом выражения является операнд – константа или переменная, - то он безусловно заносится в стек операндов. Если очередной элемент выражения открывающая скобка, то она безусловно заносится в стек операций. Закрывающая скобка вызывает действия, задаваемые в третьей строке таблицы.

Если очередной элемент выражения операция или скобка, то действия определяются в зависимости от соотношения приоритетов данной операции и операции на вершине стека операций (таблица 1). Обозначения: Op(E) – очередная операция из выражения Е; Op(stack) – операция на вершине стека операций. Значения приоритетов и количество операндов в операциях определяются с помощью справочника операций. Соблюдаются следующие соглашения о приоритетах:

- приоритет открывающей скобки из выражения выше приоритета любой операции на вершине стека;

- приоритет любой операции из выражения выше приоритета открывающей скобки на вершине стека операций;

- приоритет любой операции на вершине стека выше приоритета закрывающей скобки из выражения.


Таблица 1 - Связь между соотношением приоритетов операций и действиями алгоритма

Op(E) Ä Op(stack) Описание действий
>

1)Op(E) занести в стек операций;

2)перейти к следующему элементу выражения Е

=

1)сформировать тройку:

- операция - с вершины стека операций;

- один или два операнда - с вершины стека операндов;

2)ссылку на тройку поместить на вершину стека операндов;

3)Op(E) занести в стек операций;

4)перейти к следующему элементу выражения Е

<

1)сформировать тройку:

- операция - с вершины стека операций;

- один или два операнда - с вершины стека операндов;

2)ссылку на тройку поместить на вершину стека операндов;

3)снова провести сравнение приоритетов и выбрать действие в соответствии с таблицей.

Если очередной символ в выражении закрывающая скобка, а на вершине стека операций открывающая скобка, то удалить открывающую скобку из стека и перейти к следующему символу в выражении.

Работа алгоритма заканчивается, если при очередном обращении стек операций оказывается пустым. На вершине стека операндов будет находиться ссылка на выражение в префиксной форме.

Действия алгоритма иллюстрируются таблицей, в которой отображаются состояния стеков и другая информация после выполнения алгоритмом очередного шага для выражения a + b + c /( m - d ) . Символ $ используется как признак конца(дна) стека или входной строки.

Таблица 2 - Состояния основных структур алгоритма

Стек операций Стек операндов Символ входной строки Соотно-шение приори-тетов Описание
$ $ a
$ $a + >
$+ $a b
$+ $ab + =

Выделение тройки:

(+ a b)

$+ $(+ a b) c
$+ $(+ a b)c / >
$+/ $(+ a b)c ( >
$+/( $(+ a b)c m
$+/( $(+ a b)cm - >
$+/(- $(+ a b)cm d
$+/(- $(+ a b)cmd ) <

Выделение тройки:

(- m d)

$+/( $(+ a b)c(- m d) ) Удаление скобки
$+/ $(+ a b)c(- m d) $ <

Выделение тройки:

(/ c (- md))

$+ $(+ a b) (/ c (- md)) $ <

Выделение тройки:

(+ (+ ab) (/ c (- md)))

$ $(+ (+ a b)(/ c (- md))) $ Конец работы

3. Определение классов для реализации алгоритма

На рисунке 4 приведена диаграмма классов для реализации алгоритма унификации, на которой показана структура вызовов операций классов. Цифры над линиями указывают возможную последовательность вызовов. В рассматриваемой реализации алгоритма предполагается, что выражение представлено в префиксной форме. Описываться будут только те структуры данных и операции, которые связаны с принципом работы алгоритма унификации.

Рисунок 4 - Диаграмма классов для алгоритма унификации

В рассматриваемом примере реализации алгоритма унификации основную структурную единицу задает класс Lisp_item. Имя класса указывает на то, что проводится аналогия с понятием символа языка LISP. Суть заключается в том, что в LISP символ может обозначать константу, переменную, список, функцию или выражение, которое можно обрабатывать. Чтобы конкретизировать, что задает экземпляр класса Lisp _ item , в его состав вводится атрибут typ . Атрибут itm будет задавать ссылку на объект (константу, переменную или тройку – выражение, состоящее из операции и двух операндов). Причем, любой из операндов может быть экземпляром класса Lisp _ item .

Таблица 3 - Назначение операций класса Lisp _ item

Имя операции Описание

unifikacia(ArrayList sp,

ref ArrayList SV,TextBox tbox)

Выполняет унификацию данного экземпляра Lisp_item, где sp – список продукций (подстановок); SV – формируемый список свободных переменных; tbox – компонента для вывода текстовых сообщений.

Primen_prod(ArrayList sp, ref ArrayList SV,

TextBox tbox)

Проверяет применимость к данному экземпляру класса Lisp_item продукций из заданного списка SV. Назначение остальных параметров то же, что и в предыдущем случае.
zamena(ArrayList SV) Выполняет замену свободных переменных в результирующем выражении на соответствующие им фрагменты исходного выражения. SV – список свободных переменных

Для задания продукций (подстановок), используемых для унификации выражений, применяется класс podst . В соответствии с определением продукции атрибутами класса являются left _ part и right _ part . При этом и левая, и правая части могут представлять произвольные выражения и задаются как объекты класса Lisp _ item .

Таблица 4 - Назначение операций класса podst

Имя операции Описание
primenima(Lisp_item E, ref ArrayList SV) Определяет применимость левой части продукции к заданному выражению. Е – унифицируемое выражение; SV – формируемый список свободных переменных.
zamena(ArrayListSV) Выполняет замену свободных переменных в правой части удачно примененной продукции.

Для работы с выражением в префиксной форме предназначен класс trojka . Атрибуты этого класса предназначены для определения основных элементов и признаков выражения в префиксной форме: operation – символ операции; priority – приоритет операции; is _ func – операция является функцией; op 1 , op 2 – операнды.

Таблица 5 - Назначение операций класса trojka

Имя операции Описание

primenima(Lisp_item E,

ref ArrayList SV)

Определяет применимость тройки из левой части продукции к тройке заданного выражения. Е – унифицируемое выражение; SV – формируемый список свободных переменных.

4. Операции класса Lisp _ item

4.1 Операция выполнения унификации (unifikacia )

Действия данной операции определяются схемой на рисунке 5 и складываются из следующего. Вначале проверяется применимость продукций ко всему выражению.

Если удается удачно применить какую-либо продукцию из заданного списка, то выполняется выход. В противном случае, операция унификации (unifikacia ) вызывается для каждого из операндов выражения.

4.2 Операция проверки применимости продукций( Primen _ prod )

Действия данной операции определяются схемой на рисунке 6 и складываются из следующего. Организуется цикл просмотра списка продукций.

Для очередной продукции из списка (rpod ) вызывается операция проверки применимости продукции (Primenima ). Если операция возвращает истинное значение, то вызывается операция замены свободных переменных в правой части продукции.

Если же ни одной продукции применить не удалось, то возвращается ложное значение.

4.3 Операция замены свободных переменных ( zamena )

Действия данной операции определяются схемой на рисунке 7 и складываются из следующего. Состав выполняемых действий зависит от типа обрабатываемого элемента выражения.

В случае константы никаких действий не выполняется.

В случае простой переменной выполняется ее поиск в списке свободных переменных, после чего она заменяется соответствующим фрагментом выражения. Если обрабатываемый элемент является тройкой (операция и два операнда), то данная операция замены (zamena ) свободных переменных выполняется для каждого из операндов тройки.


5. Операции класса podst

5.1 Операция проверки применимости (primenima )

Действия данной операции определяются схемой на рисунке 8 и складываются из следующего. Вначале выполняется проверка соответствия типов левой части продукции и унифицируемого выражения. При несовпадении выполняется выход с возвратом значения false . При совпадении типов дальнейшие действия определяются типом левой части продукции.

Если левая часть – константа, то выполняется сравнение значений констант из левой части продукции и заданного выражения. Результат сравнения возвращается как результат выполнения операции.

Если левая часть продукции – переменная, то формируется элемент списка свободных переменных и помещается в список. Для задания элементов списка свободных переменных используется класс sv _ perem , атрибутами которых являются:

nm _ sv – имя свободной переменной;

fragment - фрагмент выражения, соответствующий переменной (тип Lisp_item).

Если левая часть – тройка, то выполняется выделение выражений тройки из левой части продукции и унифицируемого выражения, после чего вызывается операция класса trojka для проверки применимости тройки из продукции к тройке из выражения (primenima ).


Рисунок5 -СхемаалгоритмаоперацииLisp_item.unifikacia

Рисунок 6 - Схема алгоритма операции Lisp _ item . Primen _ prod

Рисунок 7 - Схема алгоритма операции Lisp _ item . zamena

Рисунок 8 - Схема алгоритма операции podst . primenima

6. Операции класса trojka

6.1 Операция проверки применимости (primenima )

Действия данной операции определяются схемой на рисунке 9 и складываются из следующего. Тройка из продукции будет считаться удачно примененной к тройке из унифицируемого выражения, если, во-первых, совпадают операции троек; во-вторых, правила применимости выполняются для первых и вторых операндов троек.

При совпадении операций троек, анализируется тип первого операнда.

В случае константы выполняется сравнение значений констант, стоящих на месте первого операнда в сравниваемых тройках. При несовпадении – выполняется выход.

Если первый операнд переменная, то ей сопоставляется первый операнд из тройки унифицируемого выражения и заносится в список свободных переменных.

Если первый операнд тройка, то для этого объекта вызывается описываемая операция primenima . При неудачном завершении этой операции выполняется выход из операции со значением false .

Поскольку в тройке может отсутствовать второй операнд (например, функции с одним аргументом, или одноместные операции типа (not x )), то если это подтверждается, то работа операции завершается со значением true . Если же второй операнд присутствует, то прежде всего проверяется возможное условие совпадения первого и второго операндов.

Если же в тройке из продукции операнды различны, то выполняется обработка второго операнда. Алгоритм обработки аналогичен алгоритму обработки первого операнда.


Рисунок 9, лист 1- Схема алгоритма операции trojka . primenima


Рисунок 9, лист 2.


Выводы

Таким образом, процесс унификации выражения складывается из трех последовательно выполняемых этапов:

преобразование выражения в инфиксной форме в выражение в префиксной форме Þ унификация выражения в префиксной форме Þ преобразование результата унификации из префиксной формы в инфиксную форму .

Что касается последнего преобразования, то оно реализуется в виде несложной рекурсивной процедуры.


Литература

1 . Уоссермен Ф., Нейрокомпьютерная техника, - М.,Мир, 1992.

2 . Горбань А.Н. Обучение нейронных сетей. - М.: ПараГраф, 1990

3 . Горбань А.Н., Россиев Д.А. Нейронные сети на персональном компьютере. - Новосибирск: Наука, 1996

4 . Gilev S.E., Gorban A.N., Mirkes E.M. Several methods for accelerating the training process of neural networks in pattern recognition // Adv. Modelling & Analysis, A. AMSE Press. – 1992. – Vol.12, N4. – P.29-53

5 . С. Короткий. Нейронные сети: алгоритм обратного распространения.

6 . С. Короткий, Нейронные сети: обучение без учителя. Artificial Neural Networks: Concepts and Theory, IEEE Computer Society Press, 1992.

7 . Заенцев И. В. Нейронные сети: основные модели./Учебное пособие к курсу "Нейронные сети" для студентов 5 курса магистратуры к. электроники физического ф-та Воронежского Государственного университета – e-mail: ivz@ivz.vrn.ru

8 . Лорьер Ж.Л. Системы искусственного интеллекта. – М.: Мир, 1991. – 568 с.

9 . Искусственный интеллект. – В 3-х кн. Кн. 2. Модели и методы: Справочник/ Под ред. Поспелова Д. А. – М.: Радио и связь, 1990. – 304 с.

10 . Бек Л. Введение в системное программирование.- М.: Мир, 1988.

11. Шлеер С., Меллор С. Объектно-ориентированный анализ: моделирование мира в состояниях. – К.: Диалектика, 1993. – 240 с.

12 . Буч Г. Объектно-ориентированный анализ и проектирование с примерами приложений на С++. - http://www.nexus.odessa.ua/files/books/booch.

13. Аджиев В. MS: корпоративная культура разработки ПО – http:// www.osp.ru

14. Трофимов С.А. Case-технологии. Практическая работа в RationalRose. – М.: ЗАО "Издательство БИНОМ", 2001.

15 . Новичков А. Эффективная разработка программного обеспечения с использованием технологий и инструментов компании RATIONAL. – http://www.interface.ru

16. Selic B., RumbaughJ. Использование UML при моделировании сложных систем реального времени. - http://www.interface.ru.