Скачать .docx  

Реферат: Измерение информации

Реферат на тему: Измерение информации.

Объемный и вероятностный подход.

Выполнил: ученик 10а класса

Школы №52

Ибрагимов Орхан.

Содержание.

Введение………………………………………….3

Вероятностный подход………………………….4

Таблица. Частотность букв русского языка…... 5

Объемный подход……………………………….6

Список используемой литературы……………..7

Введение.

Определить понятие «количество информации» довольно сложно. В решении этой проблемы существуют два основных подхода. Исторически они возникли почти одновременно. В конце 40-х годов XX века один из основоположников кибернетики американский математик Клод Шеннон развил вероятностный подход к измерению количества информации, а работы по созданию ЭВМ привели к «объемному» подходу.

Вероятностный подход

Рассмотрим в качестве примера опыт, связанный с бросанием правильной игральной .кости, имеющей N граней (наиболее распространенным является случай шестигранной кости: N = 6). Результаты данного опыта могут быть следующие: выпадение грани с одним из следующих знаков: 1,2,... N.

Введем в рассмотрение численную величину, измеряющую неопределенность -энтропию (обозначим ее Н). Величины N и Н связаны между собой некоторой функциональной зависимостью:

H = f ( N ) , (1.1)

а сама функция f является возрастающей, неотрицательной и определенной (в рассматриваемом нами примере) для N = 1, 2,... 6.

Рассмотрим процедуру бросания кости более подробно:

1) готовимся бросить кость; исход опыта неизвестен, т.е. имеется некоторая неопределенность; обозначим ее H1;

2) кость брошена; информация об исходе данного опыта получена; обозначим количество этой информации через I;

3) обозначим неопределенность данного опыта после его осуществления через H2. За количество информации, которое получено в ходе осуществления опыта, примем разность неопределенностей «до» и «после» опыта:

I = H1 - H2 (1.2)

Очевидно, что в случае, когда получен конкретный результат, имевшаяся неопределенность снята (Н2 = 0), и, таким образом, количество полученной информации совпадает с первоначальной энтропией. Иначе говоря, неопределенность, заключенная в опыте, совпадает с информацией об исходе этого опыта. Заметим, что значение Н2 могло быть и не равным нулю, например, в случае, когда в ходе опыта следующей выпала грань со значением, большим «З».

Следующим важным моментом является определение вида функции f в формуле (1.1). Если варьировать число граней N и число бросаний кости (обозначим эту величину через М), общее число исходов (векторов длины М, состоящих из знаков 1,2,.... N ) будет равно N в степени М:

X=NM . (1.3)

Так, в случае двух бросаний кости с шестью гранями имеем: Х = 62 = 36. Фактически каждый исход Х есть некоторая пара (X1, X2), где X1 и X2 - соответственно исходы первого и второго бросаний (общее число таких пар - X).

Таблица 1.3. Частотность букв русского языка

i

Символ

Р(i )

i

Символ

P(i )

i

Символ

Р(i )

1

Пробел

0,175

13

0,028

24

Г

0.012

2

0

0,090

14

М

0,026

25

Ч

0,012

3

Е

0,072

15

Д

0,025

26

И

0,010

4

Ё

0,072

16

П

0,023

27

X

0,009

5

А

0,062

17

У

0,021

28

Ж

0,007

6

И

0,062

18

Я

0,018

29

Ю

0,006

7

Т

0,053

19

Ы

0,016

30

Ш

0.006

8

Н

0,053

20

З

0.016

31

Ц

0,004

9

С

0,045

21

Ь

0,014

32

Щ

0,003

10

Р

0,040

22

Ъ

0,014

33

Э

0,003

11

В

0,038

23

Б

0,014

34

Ф

0,002

12

Л

0,035

Объемный подход

В двоичной системе счисления знаки 0 и 1 будем называть битами (от английского выражения Binary digiTs - двоичные цифры). Отметим, что создатели компьютеров отдают предпочтение именно двоичной системе счисления потому, что в техническом устройстве наиболее просто реализовать два противоположных физических состояния: некоторый физический элемент, имеющий два различных состояния: намагниченность в двух противоположных направлениях; прибор, пропускающий или нет электрический ток; конденсатор, заряженный или незаряженный и т.п. В компьютере бит является наименьшей возможной единицей информации. Объем информации, записанной двоичными знаками в памяти компьютера или на внешнем носителе информации, подсчитывается просто по количеству требуемых для такой записи двоичных символов. При этом, в частности, невозможно нецелое число битов (в отличие от вероятностного подхода).

Для удобства использования введены и более крупные, чем бит, единицы количества информации. Так, двоичное слово из восьми знаков содержит один, байт информации, 1024 байта образуют килобайт (кбайт), 1024 килобайта - мегабайт (Мбайт), а 1024 мегабайта - гигабайт (Гбайт).

Между вероятностным и объемным количеством информации соотношение неоднозначное. Далеко не всякий текст, записанный двоичными символами, допускает измерение объема информации в кибернетическом смысле, но заведомо допускает его в объемном. Далее, если некоторое сообщение допускает измеримость количества информации в обоих смыслах, то они не обязательно совпадают, при этом кибернетическое количество информации не может быть больше объемного.

В дальнейшем тексте данного учебника практически всегда количество информации понимается в объемном смысле.

Список используемой литературы.

Учебник Информатики и ИКТ 10-11 класс ( И.Г.Семакин, Е.К.Хеннер)

Сайт http://www.sitereferatov.ru