Скачать .docx  

Реферат: Радиолокатор

СОДЕРЖАНИЕ

1. Введение 2

2. Назначение 2

3. Основные технические данные 2

4. Режим работы 3

4.1. Принцип работы 3

4.2. Режим "Готовность" 3

4.3. Режим "Земля" 3

4.4. Режим "Метео" 3

4.5. Режим "Контур" 3

4.6. режим "Снос" 3

5. КОМПЛЕКТНОСТЬ АППАРАТУРЫ И СТРУКТУРНАЯ СХЕМА 3

5.1. Комплектность аппаратуры 3

5.2. Структурная схема 3

6. Особенности построения отдельных блоков и функциональных узлов 3

6.1. Антенна 3

6.2. Приемо-передающий блок 3

6.3. Индикаторный блок 3

6.4. Связь локатора с бортовым навигационным вычислителем 3

7. КОНТРОЛЬНЫЕ ВОПРОСЫ 3

1. Введение

Лабораторная работа "Изучение самолетного радиолокатора" имеет своей целью изучение современного радионавигационного метеолокатора "Гроза", который устанавливается на авиалайне­рах типа И2Г-62, 17-134, ТУ-154, ТУ-144. Локатор "Гроза" име­ет несколько режимов работы и позволяет решать ряд навигаци­онных задач. Как радиосистема локатор имеет оригинальные схем­ные и конструктивные решения. Изучение РЛС "Гроза", включаю­щее измерение основных технических параметров, является полез­ным при освоении курсов "Радиотехнические системы" и "Радиона­вигационные системы".

2. Назначение

Самолетная радиолокационная станция "Гроза" представля­ем собой метеорологический радиолокатор, предназначенный для обнаружения гидрометеообразований, опасных для прохождения самолета, а также для наблюдения на экране электроннолучево­го индикатора радиолокационного изображения местности, лежа­щей перед самолетом.

Кроме того, локатор дает возможность: определять коор­динаты радиолокационных ориентиров (курсовой угол и дальность) и по ним судить о месте нахождения самолета; предупреждать столкновения о другими самолетами и о горными вершинами; опре­делять грозовые зоны, опасные для пролета самолета; совершать полет по радиолокационным ориентирам, как по приводным радио­станциям; обнаруживать аэродромы посадки и определять направление взлетно-посадочных полос; определять угол сноса и путе­вую скорость самолета.

3. Основные технические данные

1) Дальность обнаружения при высоте полета 7 км

- зон грозовой облачности 200 км,

- особо крупных промышленных центров 350 км,

- незастроенной местности и водоемов 170 км,

- горных массивов и отдельных вершин 150 км;

2) Рабочая частота 9370±30 МГц

3) Мощность в импульсе 9 кВт;

4) Частота повторения импульсов 400 Гц;

5) Длительность импульсов 3,5 мкс;

6) Диаграмма направленности антенны:

- узкий луч, угол раствора 30 ;

- веерный луч, (вертикальная плоскость) 300 ;

7) Сектор азимутального обзора ±l000 ;

8) Пределы углов, при которых обеспечивается стабилизация плоскости обзора;

- по углу крена ±150 ;

- по углу тангажа ±50 ;

9) Чувствительность приемника 130 дБ/Вт;

10) Полоса пропускания приемника 1,8 + 2,0 МГц;

11) Промежуточная частота 30 МГц;

12) Масштабы разверток дальности:

0-30 км, метки через 10 км,

0-50 км, метки через 10 км,

0 - 125 км, метка через 25 км,

0 - 250 км, метки через 50 км,

200 - 375 км, метки через 50 км;

13) Режимы работы: "Готовность", "Земля", "Метео", "Контур", "Снос";

14) Максимальная ошибка определения угла сноси 1,50 ;

15) Суммарная масса блоков 45 кг;

16) Потребляемая мощность:

- сеть 115 в, 400 Гц 390 ВА,

- сеть 36 в, 4UO Гц 17 ВА,

- сеть 27 в, постоянный ток 80 ВА.

4. Режим работы

4.1. Принцип работы

РЛС "Гроза" является импульсным радиолокатором сантимет­рового диапазона, способным решать различные навигационные за­дачи. Принцип работы состоит в направленном излучении мощных радиоимпульсов, приема и усиления, отраженных от наземных или воздушных объектов сигналов и их яркостной индикации на электронно-лучевой трубке. Измерение угла сноса основано на испо­льзовании эффекта вторичных доплеровских частот (см. ниже).

При совместной работе РЛС с бортовым навигационным вычис­лителем на экране формируется электронное перекрестие, соответ­ствующее ожидаемым координатам радиолокационного ориентира, введенным в вычислитель. При совпадении отметки от ориентира с перекрестием производится коррекция показаний навигационного вычислителя по данным измерений на РЛС "Гроза".

В локаторе предусмотрено пять режимов работы: "Готовность", "Земля", "Метео", "Контур", "Снос".

4.2. Режим "Готовность"

При нажатии клавиши "РЛС" на пульте через четыре минуты локатор готов к работе, но передатчик, приемник и антенна не работают.

4.3. Режим "Земля"

В этом режиме осуществляется обзор земной поверхности при различной максимальной дальности. На дальностях до 30,50 и 125 км используется веерная диаграмма направленности. На дальности до 250 км диаграмма используется поочередно: веерная при дви­жении антенны по часовой стрелке и узкая - при обратном движении. Узкая диаграмма дополняет веерную, что увеличивает даль­ность действия РЛС. На дальностях 200 - 375 км используется узкая диаграмма.

При высоте полета 7 км нижний край узкого луча падает на землю на расстоянии 200 км от самолета. На дальностях с мас­штабом 30 км включается схема ВАРУ, ослабляющая влияние боковых лепестков и исключающая засветку экрана сильными сигналами от близких ориентиров.

Для повышения контрастности изображения схема видеоусилителя изменяется так, что изображение становится трех - тоновым:

- темный тон- сигнал на выходе отсутствует (отраженна от гладкой водной поверхности); экран не светится или слег­ка освещен шумами приемника;

- светлый тон - экран освещается за счет слабых сигна­лов, возникающих при отражениях от незастроенной местности; экран почти весь слегка равномерно освещен;

- яркий тон - на экране на фоне местности появляются яркие отметки, возникающие при отражении от радиолокацион­ных ориентиров (города, железнодорожные узлы, корабли, мос­ты и пр.). С помощью ручки управления "Контраст" можно вы­делить только сильные сигналы или более слабые.

4.4. Режим "Метео"

Режим предназначен для обнаружения различных гидрообразований в атмосфере, грозовых фронтов, и т.п. Кроме этого, он используется для определения достаточности превыше­ния самолета над горными вершинами и для обнаружения дру­гих самолетов, находящихся на том же эшелоне.

В режиме "Метео" на всех масштабах дальности использу­ется узкая диаграмма направленности антенны, которая ох­ватывает по вертикали на расстоянии 10 км от самолета-700 м; 30 км от самолета-2100 м; 50 км от самолвта-3500 м.

На экране, ближе к центру, располагаются зоны облачно­сти, находящиеся вблизи самолета. Чем больше плотность об­лачности, тем больше турбулентность движения частиц в ней, тем больше коэффициент отражения и тем ярче изображается эта облачность на экране. В режиме "Метео" просматривается вся метеорологическая обстановка на эшелоне полета, а при наклоне антенны вниз или вверх на несколько градусов мож­но выбрать наиболее безопасный эшелон движения.

Горные вершины просматриваются на экране в виде ярких отметок, за которыми располагаются тени, возникающие вслед­ствие того, что участки местности, лежащие за вершиной, ока­зываются экранированными и не облучаются. По мере приближения самолета к горной вершине ее изображение перемещается к центру экрана, размеры отметки уменьшаются и яркость ослабляется. Если превышение самолета над вершиной составляет более 600 м, то, не доходя до первого десятикилометрового кольца дальности, отметка от вершины исчезает, (отражатель выходит из диаграммы). Это является признаком безопаснос­ти полета. Если же превышение самолета над вершиной недо­статочно для безопасного полета, то отметка от вершины будет просматриваться и на меньших расстояниях, и экипаж должен предпринять обходной маневр.

Обнаружение других самолетов из-за малой эффективной отражающей поверхности (особенно на встречных курсах) про­изводится только на расстояниях 10-15 км.

Чтобы исключить ослабление отметок от самолетов и горных вершин под действием сигналов ВАРУ, схема ВАРУ в дан­ном режиме не работает.

4.5. Режим "Контур"

Режим предназначен для выделения зон облачности, опасных для прохождения самолета. Возможность выделения опасных зон основана на том, что интенсивность сигнала, отраженного от них, значительно больше, чем интенсивность сигнала, отраженного от неопасных зон. Используемый метод выделения опа­сных зон называется методом контурной индикации или методом "Изо-эхо". В схеме видеоусилителя сильные сигналы, получен­ные от опасных зон наблюдаемого пространства, подавляются. В соответствующем месте экрана появляются темные области, контрастно выделяющиеся на светлом фоне, образованном отра­жениями от неопасных зон.

В режиме "Контур" используется только узкая диаграмма направленности, работает схема ВАРУ, которая исключает воз­можность ошибочной оценки неопасной, но близко расположен­ной облачности, дающей сильный сигнал, воспринимаемый так же, как от опасной облачности. Регулятор "Контрастность" при выделении зон из схемы видеоусилителя отключается. Ника­кие регулировки в режиме "Контур" не производятся.

4.6. режим "Снос"

Режим позволяет определять угол сноса самолета. Для это­го применяется метод наблюдения на экране индикатора колеба­ний вторичных доплеровских частот. Колебания этих частот об­разуются в результате биений частот доплеровского спектра, получаемого при отражении радиоволн от поверхности значите­льных размеров. Вследствие амплитудной модуляции отраженно­го сигнала спектром вторичных доплеровских частот на линии развертки получаются яркостные блестки. Метод основан на том, что при совпадении азимутального направления диаграммы антен­ны с направлением линии фактического пути самолета вторичная доплеровская частота оказывается минимальной и соизмеримой с частотой развертки. Поэтому блестки хорошо наблюдаются при этом на экране.

Если направление антенны не совпадает с направлением ве­ктора путевой скорости, то для случая, земля облучается в пределах дуги а, б, в. Составлявшие ве­ктора путевой скорости в направлении этих точек будут различ­ны. Соответственно различными оказываются и доплеровские ча­стоты Fg(a), Fg (б) и Fg(в). Между ними возникают бие­ния детектор выделяет колебания разностной - вторичной доплеровской частоты Fg(а, б, в). Это напряжение после усиле­ния вместе с сигналом изображения вызывает яркостную модуля­цию линии развертка. Однако при наличии указанного выше не­совпадения величина Fg(а, б, в) велика, и глаз не обнаружива­ет мелькания яркости.

Если поворачивать антенну до тех пор, пока диаграмма на­правленности расположится симметрично относительно вектора путевой скорости, то составляющие путевой скорости (скорости сближения о точками Г и Е) будут равны. Вторичные доплеровские частоты в этом случав имеет минимальное значе­ние. При этом частота и скорость движения блес­ток на линии развертки также становятся минимальными.

Таким образом, по минимуму вторичных доплеровских час­тот определяется направление вектора путевой скорости, а угол, на который при этом пришлось отвернуть антенну от продольной оси самолета (от линии курса), и есть угол сноса. Угол сноса отсчитывается по азимутальной шкале индикатора напра­вления антенны.

В режиме "Снос" на масштабах дальностей до 30,50 и 125 км используется веерная диаграмма направленности, что обес­печивает наблюдение блесток по всей линии развертки дально­сти.

Скорость поворота антенны регулируется потенциометром, связанным с ручкой "Контраст", однако потенциометр "Конт­раст" из схемы видеоусилителя отключается. Ручное управление поворотом антенны включается при помощи нажимных клавишей.

5. КОМПЛЕКТНОСТЬ АППАРАТУРЫ И СТРУКТУРНАЯ СХЕМА

5.1. Комплектность аппаратуры

Самолеты ТУ-154 комплектуются следующими блоками локатора:

- антенный блок с диаметром отражателя 760 мм. вариант Гр1Б;

- два приемопередатчика, основной блок Гр2Б и дополни­тельный Гр2Б;

- индикаторный блок Гр4Н;

- эквивалент отклоняющей системы дополнительного инди­катора Гр35;

- блок стабилизации и управления антенной 1р7Б;

- коробка коммутационная Гр17, служащая для перехода о одного приемопередатчика на другой;

- коммутатор волноводный Гр47, служащий для переклю­чения антенны о одного приемопередатчика на другой;

- волноводный тракт Гр32.

5.2. Структурная схема

Структурная схема локатора, при включении питания станции нажатием клавиши "РЛС" на панели управления блока Гр4Н напряжение источников бортов» подается к локатору. Переключателем на панели устанавлива­ется один из режимов работы. При этом напряжение +27В по­ступает в блок Гр2Б на схему задержки включения передатчика, которая срабатывает и подключает, переменное напряжение пи­тания ко входу магнитного модулятора. Он формирует импульсы высокого напряжения для анодной цепи магнетрона и импульсы для запуска канала синхронизации и схемы ВАРУ. Магнетрон создает радиоимпульс СВЧ колебаний мощностью 9 кВт. Через антенный пе­реключатель он направляется в волноводный коммутатор Гр47, при этом небольшая мощность ответвляется к смесителю АПЧ.

С выхода Гр47 по волноводному тракту Гр32 импульс магнетрона подается в антенну Гр1Б и излучается ею в пределах уз­кой или веерной диаграммы направленности.

В паузах между импульсами передатчика энергия, отраженная от земной поверхности или от различных гидрообразований в ат­мосфере, воспринимается антенной. По волноводному тракту Гр32 через коммутатор Гр47 принятый сигнал в виде колебаний СВЧ по­дается в блок Гр2Б. Антенный переключатель направляет сигнал в смеситель приемника. Ко второму входу смесителя подводятся ко­лебания гетеродина, выполненного на лампе обратной волны (ЛОВ). Огибающая принятого сигнала, содержащая радиолокационную инфор­мацию, переносится на колебания промежуточной частоты, возника­ющие в смесителе.

Для обеспечения постоянства промежуточной частоты пополь­зуется система АПЧ. Система АПЧ состоит из смесителя АПЧ, схе­мы АПЧ и гетеродина, расположенных в блока Гр2Б.

Напряжение промежуточной частоты усиливается предварите­льным УПЧ. В отдельных режимах усиление ПУПЧ регулируется импу­льсом схемы ВАРУ, который исключает зависимость амплитуды выхо­дных импульсов от расстояния до отражающей зоны. С выхода ПУПЧ сигнал поступает на основной УПЧ и далее на детектор. Видеоим­пульсы с выхода узла УПЧ подается через коммутационную коробку Гр17 в блок индикатора Гр4Н на вход видеоусилителя. Схема ви­деоусилителя изменяется при переходе из одного режима в другой. В одном из "каскадов усилителя информационные видеоимпульсы сме­шиваются с импульсами масштабных меток, которые вырабатываются. каналом формирования масштабных меток (расположены в том же бло­ке).

Полный радиолокационный сигнал подается на модулирующий электрод ЭЛТ и управляет током луча трубки. Старт - импульс, вы­рабатываемый модулятором в блоке Гр2Б, подается через блок Гр17 в блок Гр4Н на запуск канала синхронизации. Здесь происходит формирование импульсов, управляющих работой канала масштабных меток и канала развертки, а также формирование импульсов под­света для приемника.

В РЛС применена радиально-круговая развертка с неподвиж­ной отклоняющей катушкой. Прямоугольные импульсы запуска раз­вертки поступают из схемы синхронизации в узел формирования пилообразных импульсов развертки в блоке Гр4Н. Эти импульсы трансформируются в две статорные обмотки вращающегося импуль­сного трансформатора (ВТИ), расположенного на антенне Гр1Б. Статорные обмотки соединены последовательно с отклоняющими ка­тушками на ЭЛТ. Результирующий магнитный поток, образованный током в катушках, отклоняет электронный луч в трубке. При по­вороте ротора ВТИ азимутальным приводом вращения антенны про­исходит синхронный поворот результирующего отклоняющего магнит­ного потока в отклоняющей катушке.

В качестве вспомогательных устройств в комплекте рассмат­риваются: схема стабилизации и управления антенной, система АПЧ, узлы питания и коробка коммутационная. Для работы схемы стаби­лизации и управления антенной используются сигналы рассогласо­вания по крену и тангажу от гиродатчика АГД-I. Кроме этого, на индикаторный блок могут подаваться сигналы от блока коррекции, сравнивающего координаты радиолокационного ориентира со счислимыми координатами в бортовом навигационном вычислителе.

6. Особенности построения отдельных блоков и функциональных узлов

6.1. Антенна

Антенна локатора обеспечивает: излучение радиоимпульсов передатчика, прием отраженных сигналов, выбор направления из­лучения и приема, синхронизацию направления излучения о нап­равлением радиальной развертки индикатора.

Высокочастотная часть антенны состоит из: параболического отражателя; веерного отражателя специально­го профиля; диэлектрического излучателя; контротражателя; вращателя плоскости поляризации волны.

Параболический отражатель, создающий узкий луч, выполнен из металлизированной стеклоткани. Перед параболическим отража­телем помещен дополнительный веерный отражатель сложного про­филя, образованный горизонтально расположенными проводниками, переплетенными стеклотканью. Этот отражатель прозрачен для ра­диоволн вертикальной поляризации и является основным отражателем для волн горизонтальной поляризации. Поэтому изменение по­ляризации излучаемой диэлектрическим излучателем волны приво­дит к изменению формы диаграммы направленности антенны от уз­кого луча к веерному и наоборот.

В качестве излучателя используется фторопластовый стержень, одним концом входящий в открытый конец круглого волно­вода. На втором конце излучателя укреплен металлический дисковый контротражатель.

Вращатель плоскости поляризации состоит из отрезка круг­лого волновода с ферритовым стержнем, расположенным вдоль оси волновода. На стержень действует управляемое магнитное поле под действием которого проявляется эффект Фарадея, т.е. при определенной величине намагниченности меняется поляризация про­ходящей волны.

Поляризация излучаемой волны и, соответственно, форма диаграммы направленности определяется автоматически, как указы­валось выше, режимом работы локатора и шкалой дальности.

С антенной связаны также другие приборы, обеспечивающие управление антенной: двигатель азимута; решающий вращающийся трансформатор схемы стабилизации; вращающийся трансформатор схемы канала развертки, кулачковый механизм коммутации диаграмм направленности; двигатель наклона; тахогенератор; вращающий­ся трансформатор отработки схемы стабилизации.

6.2. Приемо-передающий блок

В схеме можно выделить следующие основные узлы:

- тиристорно-магнитный модулятор;

- магнетранный СВЧ - генератор;

- высокочастотная головка;

- предварительный усилитель ПЧ;

- основной усилитель ПЧ;

- узел автоматической подстройки частоты;

- узел временной автоматической регулировки усиления. Циркулятор служит для переключения антенны с приемного на пе­редающий каналы блока. Высокочастотная головка содержат вход­ную цепь приемника, балансные смесители УПЧ и АПЧ и гетеродин, собранный на лампе обратной волны. Разрядник предназначен для улучшения защиты приемника во время действия импульса переда­тчика. Схема ВАРУ уменьшает усиление приемника при приеме си­гналов, отраженных от близкорасположенных объектов, - тем са­мым выравнивается интенсивность свечения индикатора во всем диапазоне дальностей, при приеме отражений от объектов с оди­наковой ЭПР.

Усилитель промежуточной частоты имеет логарифмическую амплитудную характеристику, что необходим для приближения динамического диапазона его выходных сигналов к динамическому диапазону амплитуд управляющих напряжений ЭЛТ. Динамический диапазон входных напряжений приемника 80 дБ, динамический ди­апазон управляющих сигналов ЭЛТ 20 дБ. Сжатие динамического диапазона обеспечивается схемой мгновенной автоматической ре­гулировки усиления (МАРУ).

Видеоусилитель имеет сложную схему и фактически предста­вляет собой двухканальный усилитель. В режиме трехтонового представления выходных сигналов канал усилителя "Фон" увили­вает слабые сигналы без ограничения и ограничивает "сверху" сильные сигналы. Тем самым он выравнивает вое сигналы. Вто­рой канал усиления, называемый "Выделение" является усилителем, работающим в режиме ограничения "снизу", а поэтому уси­ливает только сильные сигналы, создавая очень яркие отметки на экране индикатора. Как отмечалось выше, в различных режимах работы РДС могут включаться либо один либо оба канала ви­деоусилителя.

6.3. Индикаторный блок

Работа видеоусилителя описана в разделе 6.2.

В качества индикатора используется электронно-лучевая трубка специальной конструкции, в которой прямоугольный экран расположен несимметрично относительно электронного луча. Это позволяет полнее использовать площадь экрана при секторной ра­звертке луча.

Устройство развертки формирует в отклоняющих катушках ли­нейно нарастающие импульсы тока, модулированные, по амплитуде о частотой азимутального сканирования антенны.

Устройство синхронизации служит для формирования следую­щих калибрационных и управляющих сигналов:

- импульсов управления схемой развертки;

- импульсов подсвета линии развертки;

- калибрационных меток дальности.

Работа устройства синхронизации начинается с прихода импульса от передатчика.

6.4. Связь локатора с бортовым навигационным вычислителем

При наличии на борту самолета специализированного нави­гационного вычислителя возможна коррекция очисляемых текущих координат самолета по данным PIC.

В вычислитель вводятся данные о путевой скорости, сноса и курса, координаты начала и конца маршрута, а также коорди­наты радиолокационного ориентира. Вычислитель по этим данным рассчитывает наклонную дальность и курсовой угол до ориентира и выдает их на экране РИС в виде светящегося кольца и линии курсового угла. Реальное отражение от ориентира не будет сов­падать с рассчитанным из-за наличия ошибок вычисления. Разни­ца показаний используется как поправка к счислимым координатам ориентира и, соответственно, координатам самолета.

7. КОНТРОЛЬНЫЕ ВОПРОСЫ

1) Назначение РДС;

2) Основные ТТХ РЛС;

3) Особенности работы РЛС в режиме "Земля";

4) Особенности работы РЛС в режиме "Метео";

5) Особенности работы РЛС в режиме "Контур";

6) Особенности работы РЛС в режиме "Снос";

7) Способ формирования широкого и узкого луча диаграммы направ­ленности антенны;

8) Особенности построения приемоиндикаторной части РЛС;

9) Совместная работа РЛС и навигационного вычислителя;

10) Конструктивные особенности РЛС.