Скачать .docx Скачать .pdf

Реферат: Система линейных уравнений

Содержание

Введение

1. Основные понятия

2. Система n линейных уравнений с n неизвестными. Правило Крамера

3. Однородная система п линейных уравнений, с n неизвестными

4. Метод Гаусса решения общей системы с линейных уравнений

5. Критерий совместности общей системы линейных уравнений

Заключение

Список литературы

Введение

Многие теоретические и практические вопросы приводят не к одному уравнению, а к целой системе уравнений с несколькими неизвестными. Особенно важен случай системы линейных уравнений , т.е. системы m уравнений 1ой степени сn неизвестными:


a11 x1 + … + a1n xn = b1 ;

a21 x1 + … + a2n x n = b2 ;

………………………………

am 1 x 1 + … + amn xn = bm .

Здесь x1 , …, xn – неизвестные, а коэффициенты записаны так, что индексы при них указывают на номер уравнения и номер неизвестного. Значение систем 1-й степени определяется не только тем, что они простейшие. На практике часто имеют дело с заведомо малыми величинами, старшими степенями которых можно пренебречь, так что уравнения с такими величинами сводятся в первом приближении к линейным. Не менее важно, что решение систем линейных уравнений составляет существенную часть при численном решении разнообразных прикладных задач.

Способы решения систем линейных уравнений – очень интересная и важная тема. Системы уравнений и методы их решения рассматриваются в школьном курсе математики, но недостаточно широко. А для того, чтобы перейти к исследованию данной темы, также нужно было познакомиться с темой матриц и определителей. Этот же материал вообще в школьной программе не изучается. В процессе знакомства с данной работой приобретаются навыки, с помощью которых в последующем решение систем линейных уравнений станет намного проще, понятнее и быстрее.

Цель моей работы заключается в том, чтобы изучить различные способы решения систем линейных уравнений для применения их на практике.

1. Основные понятия

В самом общем случае система линейных уравнений имеет следующий вид:


a11 x1 + a12 x2 + …+ a1n xn = b1 ;

a21 x1 + a22 x2 + …+ a2n xn = b2 ; (1)

……………………………………

am 1 x 1 + am 2 x 2 + …+ amn xn = bm ;

где х1 , х2 , …, х n - неизвестные, значения которых подлежат нахождению. Как видно из структуры системы (1), в общем случае число неизвестных не обязательно должно быть равно числу уравнений самой системы. Числа а11 , а12 , …, а mn называются коэффициентами системы , а b 1 , b 2 , …, bm - её свободными членами. Для удобства коэффициенты системы а ij (i =1, 2,..., m ; j = 1, 2,..., n ) и свободные члены bi (i =1, 2,..., m ) снабжены индексами. Первый индекс коэффициентов а ij соответствует номеру уравнения, а второй индекс – номеру неизвестной х i , при которой коэффициент поставлен. Индекс свободного члена bi соответствует номеру уравнения, в которое входит bi .

Дадим определения некоторых понятий, необходимых при изучении системы уравнений. Решением системы уравнений (1) называется всякая совокупность чисел α 1 , α 2 , αn , которая будучи поставлена в систему (1) на место неизвестных х1 , х2 , …, х n , обращает все уравнения системы в тождества. Система уравнений называется совместной , если она имеет хотя бы одно решение, и несовместной , если не имеет решений. Совместная система уравнений называется определенной , если она имеет одно единственное решение, и неопределенной , если она имеет по крайней мере два различных решения.

Две системы уравнений называются равносильными или эквивалентными , если они имеют одно и тоже множество решений.

2. Система n линейных уравнений с n неизвестными. Правило Крамера

Пусть дана система n линейных уравнений с n неизвестными:


a11 x1 + a12 x2 + …+ a1n xn = b1 ;

a21 x1 + a22 x2 + …+ a2n xn = b2 ; (2)

……………………………………

an 1 x 1 + an 2 x 2 + …+ ann xn = bn ;

Определителем системы (2) называется определитель, составленный из коэффициентов а ij .

a11 a12 … a1n

= a21 a22 … a2n

…………………………

an1 an2 … ann

Рассмотрим случай, когда ∆ ≠ 0. Докажем, что в этом случае система (2) является определенной, т.е. имеет одно единственное решение. Как и ранее, через А ij будем обозначатьалгебраическое дополнение элемента а ij в определителе ∆.

Умножим каждое уравнение системы (2) на алгебраические дополнения элементов i -го столбца определителя , т.е. первое уравнение умножим на А1 i , второе – на А2 i и т.д., наконец, последнее уравнение – на А ni , а затем все полученные уравнения системы сложим. Врезультатебудемиметь


(a11 x1 + a12 x2 + …+ a1i xi + …+ a1n xn ) A1i + (a21 x1 + a22 x2 + …+ a2i xi +

+ …+ a2n xn ) A2i + …+ (an1 x1 + an2 x2 + …+ ani xi + …+ an xnn ) Ani = b1 A1i + b2 A2i + …+ bn Ani

или, сгруппировав члены относительно известных x 1 , x 2 , …, xn , получим

(a11 A1i + a21 A2i + …+ an1 Ani ) x1 + … +

+ (a1i A1i + a2i A2i + …+ ani Ani ) xi + … +

+ (a1n A1i + a2n A2i + …+ ann Ani ) xn =

= b1 A1i + b2 A2i + …+ bn Ani . (3)

Коэффициент при неизвестной х i равен определителю ∆, а коэффициенты при всех других неизвестных равны нулю. Свободный член уравнения (3) отличается от коэффициента при х1 тем, что коэффициенты а1 i , а2 i , …, а ni заменены свободными членами b 1 , b 2 , …, bn уравнения (2). Следовательно, выражение b 1 A 1 i + b 2 A 2 i + …+ bn Ani есть определитель i -го порядка, отличающийся от определителя только i -м столбцом, которыйзамененстолбцом свободных членов. Обозначив этот определитель xi , будем иметь

a11 a12 … b1 … a1 n

xi = a 21 a 22 b 2 a 2 n . (3)

………………………………

an 1 an 2 bn ann

Таким образом, уравнение (3) можно записать в виде

х =∆ xi ,

откуда при ∆ ≠ 0

х = ——

Придавая индексу i значения 1, 2, …, n , получаем:


х1 = ——;

х2 = ——;

(4)

………………

х n = ——.

Рассмотренный метод решения системы уравнений называется правилом Крамера , а формулы (4) – формулами Крамера .

3. Однородная система п линейных уравнений, с n неизвестными

Линейное уравнение называется однородным, если его свободный член равен нулю. Система линейных уравнений называется однородной, если все входящие в нее уравнения являются линейными однородными уравнениями.

Однородная система п линейных уравнений с п неизвестными имеет вид:


а11 х1 + а12 х2 + …+ а1 n хn = 0;

а21 х1 + а22 х2 + …+ а2 n хn = 0; (5)

…………………………………

а n 1 х1 + а n 2 х2 + …+ а nn хn = 0.

Непосредственной проверкой убеждаемся в том, что однородная система линейных уравнений (5) имеет нулевое решение:

х1 = 0, х2 = 0,..., хп = 0.

Таким образом, однородная система линейных уравнений (5) всегда

совместна. Поэтому важно выяснить, при каких условиях она является определенной. Покажем, что однородная система п линейных уравнений с п неизвестными имеет ненулевые решения тогда и только тогда, когда определитель ее равен нулю.

В самом деле, пусть D = 0. Так как однородная система уравнений является частным случаем неоднородной системы, то к ней применимо правило Крамера. Но для однородной системы все D xi = 0, так как каждый из этих определителей содержит столбец из нулей (bi = 0 ). Поэтому система, равносильная системе (3), будет иметь вид

D x 1= 0, D x 2= 0;..., D x n= 0

Из этой системы следует, что однородная система (5) имеет единственное нулевое решение, если Δ 0; если же D = 0, то из условий (3) следует, что она имеет бесчисленное множество решений.

4. Метод Гаусса решения общей системы с линейных уравнений

Практическое значение правила Крамера для решения системы n линейных уравнений с п неизвестными невелико, так как при его применении приходится вычислять п +1 определителей n -го порядка: D , D x 1 , D x 2 , …, D xn . Более удобным является так называемый метод Гаусса. Он применим и в более общем случае системы линейных уравнений, т. е. когда число уравнений не совпадает с числом неизвестных.

Итак, пусть дана система, содержащая m линейных уравнений с п неизвестными:

а11 х1 + а12 х2 + …+ а1 n хn = b1 ;

а21 х1 + а22 х2 + …+ а2 n хn = b2 ; (6)

. ……………………………………

аm1 х1 + аm2 х2 + …+ аm n хn = bm

Требуется найти все решения системы уравнений (6). Будем производить над системой элементарные преобразования: исключение из системы уравнения вида

1 + 0х2 + …+ 0хn = 0 ( 7)

и прибавление к обеим частям одного из уравнений системы соответствующих частей другого уравнения, умноженных на любое число l .

Очевидно, что если мы проделаем над уравнениями системы (6) любое из приведенных выше преобразований, то получим систему, равносильную исходной. При необходимости систему (6) будем подвергать еще одному виду преобразований – перенумерации переменных и уравнений. Идея этого преобразования заключается в следующем. Если, например, возникает необходимость, чтобы в каком-то уравнении системы (например, в k - м) неизвестная x 1 стояла на первом месте, то в результате перенумерации соответствующее уравнение запишется в виде

aki x1 +. .. + ak2 x2 + … + ak1 xi +. .. + akn xn = bk ,

т. е. вместо прежней неизвестной хi мы будем писать х1 , а вместо x 1 – х i Метод Гаусса решения системы (6) заключается в последовательном исключении переменных.

Если среди уравнений системы есть хотя бы одно уравнение вида

0 xl + 0 x 2 +... + 0 xn = b , (8)


причем b 0, то совершенно очевидно, что ни одна система значений х1 , х2 ..., хп не удовлетворяет этому уравнению, а следовательно, и системе в целом, поэтому система несовместна.

Пусть теперь система (6) не содержит уравнений вида (7) или (8). Это значит, что в каждом уравнении системы хотя бы один из коэффициентов отличен от нуля. Пусть a 11 0 (в противном случае, применив элементарные преобразования, мы сможем добиться, чтобы первый коэффициент первого уравнения был отличен от нуля). Оставив первое уравнение без изменения, исключим из всех уравнений системы (6),начиная со второго, неизвестную х1 . Для этого из второго уравнения вычтем первое, умноженное на a 21 /a 11 , затем из третьего уравнения вычтем также первое, но уже умноженное на a 31 /a 11 , и так до последнего уравнения. В результате этих преобразований мы получим равносильную систему

а11 х1 + а12 х2 + … + а1 n хn = b1;

а′22 х2 + …+ а′2 n хn = b′2;

………………………… (9)

а′m2 х2 + …+ а′m n хn = b′m

Заметим, что в системе (9) число уравнений может быть и меньше m , так как среди них могут оказаться уравнения вида (7), которые, как мы условились ранее, можно отбросить.

Пусть а22 0. Применим те же самые рассуждения и исключим из последних п – 2 уравнений системы (9) неизвестную х2 путем вычитания из третьего уравнения второго, умноженного наa 32 /a 22, из четвертого уравнения — второго, умноженного на a 34 /a 22 и т. д. В результате получим систему

а11 х1 + а12 х2 + а13 х3 + …+ а1 n хn = b1;

а′22 х2 + а′23 х3 + …+ а′2 n хn = b′2;

а′′33 х3 + …+ а″3 хn = b″3;

……………………………

а″m3 х3 +…+а″m n хn = b″m

.

Продолжая этот процесс, систему (6) приведем к равносильной системе вида


c11 х1 + c 12 х2 + c 13 х3 + …+ c 1 k х k +…+ c 1 n х n = d 1;

c 22 х2 + c 23 х3 + …+ c 2 k х k +…+ c 2 n х n = d 2;

c 33 х3 + …+ c 3 k х k +…+ c 3 n х n = d 3; (10)

………………………………………

ckk х k +…+ ckn х n = dk .

в которой коэффициенты c11, c 22,. .., ckk отличны от нуля.

Может оказаться, что в процессе преобразования на каком-то шаге в полученной системе окажется уравнение вида (8). В этом случае система (7) не имеет решений. Предположим теперь, что среди уравнений полученной системы нет уравнения вида (8). Тогда для решения системы (6) необходимо решить систему (9), что не составляет особого труда. Рассмотрим два возможных случая.

1. k = n (это частный случай, когда число уравнений совпадает с числом неизвестных). Тогда последнее уравнение системы (10) имеет вид спп хп = dn , откуда хп = dn / cnn . Подставив это значение в предпоследнее уравнение системы (7), имеющее вид

cn -1 n -1 xn -1 + cn -1 n xn = dn -1 , найдем значение неизвестной xn -1 и т. д.; наконец, из первого уравнения найдем неизвестную x 1 Таким образом, в случае k = п система уравнений (6) имеет единственное решение.

2. k < n . Тогда из последнего уравнения системы (10), найдем неизвестную xk , выраженную через неизвестные хk+1, хk+2,. ..xn :

xk = (dkk ck k +1 xk +1 – … – ckn xn )

Подставив это значение неизвестной в предпоследнее уравнение системы (10), найдем выражение для неизвестной хk-1, и т. д.; наконец, подставив значения неизвестных хk, хk-1,. ..x 2 в первое уравнение системы (10), получим выражение для неизвестной x1 . В результате указанная система уравнений (6) приводится к виду

x1 = d′1 + c′1 k+1 xk+1 + …+ c′1n xn ;

x2 = d′2 + c′2 k+1 xk+1 + …+ c′2n xn ; (11)

………………………………………

xk = d′k + c′k k+1 xk+1 + …+ ckn xn .

Неизвестные хk+1, хk+2 , …,хп называются свободными. Им можно придать различные значения и затем из системы (6) найти значения неизвестных х1, х2 , …,х k . Таким образом, в случае k < п совместная система уравнений (6) имеет бесчисленное множество решений.

Заметим, что если в процессе приведения системы (6) к системе (11) была произведена перенумерация неизвестных, то в системе (11) необходимо вернуться к их первоначальной нумерации.

На практике процесс решения системы уравнений облегчается тем, что указанным выше преобразованиям подвергают не саму систему, а матрицу, составленную из коэффициентов уравнений системы (6) и их свободных членов. При этом каждому элементарному преобразованию, проведенному над системой (6), соответствует преобразование над матрицей (12): вычеркивание строки, все элементы которой состоят из нулей, прибавление к элементам некоторой строки соответствующих элементов другой строки, умноженных на некоторое число, и перестановка двух столбцов матрицы (12).

Пример 1. Решить методом Гаусса систему уравнений


x 1 – 2 x 2 + x 3 + x 4 = –1;

3 x 1 + 2 x 2 – 3 x 3 – 4 x 4 = 2;

2 x 1 x 2 + 2 x 3 – 3 x 4 = 9;

x 1 + 3 x 2 – 3 x 3 x 4 = –1.

5. Критерий совместности общей системы линейных уравнений

Как уже было отмечено, под общей системой линейных уравнений мы понимаем систему (2) в которой число неизвестных необязательно совпадает с числом уравнений.

Пусть дана общая система линейных уравнений (2)и требуется установить признак существования решения этой системы, т.е. условия, при которых система (2)является совместной.

Из коэффициентов при неизвестных и свободных членов системы (2) составим матрицу

a11 a12 … a1n

A = a21 a22 … a2n

……………………

am1 am2 … amn

которую назовем основной матрицей системы (2), и матрицу

a11 a12 … a1n b1

B = a21 a22 … a2n b2

……………………… …… (13)

am 1 am 2 amn bm

которую назовем расширенной матрицей системы (2).

Теорема 2.1. Для того чтобы система (2) линейных неоднородных уравнений была совместной, необходимо и достаточно, чтобы ранг расширенной матрицы системы был равен рангу ее основной матрицы.

Доказательство. Необходимость. Пусть система (2) совместна и c 1 , c2 ,..., сп некоторое ее решение. Тогда имеют место равенства:


а11 с1 + а12 с2 + …+ а1 n сn = b1 ;

а21 с1 + а22 с2 + …+ а2 n сn = b2 ;

. ……………………………………

аm1 с1 + аm2 с2 + …+ аm n сn = bm

из которых следует, что последний столбец расширенной матрицы (13) есть линейная комбинация остальных ее столбцов с коэффициентами с1 , с2 ,..., сп . Согласно предложению 2, последний столбец матрицы В может быть вычеркнут без изменения ее ранга. При этом мы из матрицы В получим матрицу А. Таким образом, если ci, cz ,..., сп решение системы уравнении (2), то rangА = rangВ .

Достаточность. Пусть теперь rangA = rangВ. Покажем, что при этом система уравнений (2) совместна. Рассмотрим r базисных столбцов матрицы А. Очевидно, что они будут базисными столбцами и матрицы В. Согласно теореме о базисных строках и столбцах, последний столбец матрицы В можно представить как линейную комбинацию базисных столбцов, а следовательно, и как линейную комбинацию всех столбцов матрицы А, т.е.


b 1 = а11 с1 + а12 с2 + …+ а1 n сn;

b 2 = а21 с1 + а22 с2 + …+ а2 n сn;

. …………………………………

b m = аm1 с1 + аm2 с2 + …+ аm n сn

где c 1 , c 2 ,. .., сп коэффициенты линейных комбинаций. Таким образом, системе (14) удовлетворяют значения x 1 = c 1 ,..., хп = сп , следовательно, она совместна. Теорема доказана.

Доказанная теорема совместности системы линейных уравнений называется теоремой Кронекера – Капелли.

Пример 1. Рассмотрим систему

5 x 1 x 2 + 2 x 3 + x 4 = 7;

2 x 1 + x 2 – 4 x 3 – 2 x 4 = 1;

x 1 – 3 x 2 + 6 x 3 – 5 x 4 = 0.

Ранг основной матрицы этой системы равен 2, так как существует отличный от нуля минор второго порядка этой матрицы, а все миноры третьего порядка равны нулю. Ранг расширенной матрицы этой системы равен 3, так как существует отличный от нуля минор третьего порядка этой матрицы. Согласно критерию Кронекера – Капелли система несовместна, т.е. не имеет решений.

Используя критерий Кронекера – Капелли, проведем исследование системы двух линейных уравнений с двумя неизвестными x и y :

a1 x + b1 y = c1 ,

a2 x + b2 y = c2 . (13)

Основная матрица этой системы

a 1 b 1

a 2 b 2


имеет ранг r , причем 0 < r < 2.

Расширенная матрица

a 1 b 1 с1

a 2 b 2 с2

имеет ранг R , причем 0 < r < R . Очевидно, что r < R < r +1.

Имеют место следующие утверждения.

Пусть дана система двух линейных уравнений с двумя неизвестными (13). Тогда:

1. Если r = R = 0 , т.е. если все коэффициенты a 1 , a 2 , b 1 , b 2 , c 1 , c 2 равны нулю, то любая пара действительных чисел является решением системы (13).

2. Если r = 0, R = 1, т.е.a 1 = a 2 = b 1 = b 2 = 0 иc + c ≠ 0, то система (13) не имеет решений.

3. Если r =1, R = 1, то система (13) имеет бесконечно много решений, но не любая пара действительных чисел есть её решение.

4. Если r = 1, R = 2, то система (13) не имеет решений.

5. Если r = 2, R = 2, то система (13) имеет единственное решение, которое можно найти по правилу Крамера.

Справедливы и обратные утверждения.

1. Если система (13) имеет единственное решение, то r = R =2.

2. Если любая пара действительных чисел является решением системы (13), то r = R = 0.

3. Если система (13) не имеет решений, то r R , т.е. либо r =0 и

R = 1, либоr =1 иR = 2.

4. Если система (13) имеет бесконечно много решений, но не любая пара действительных чисел является её решением, то r = R = 1.

Приведём доказательство этих утверждений только в том случае, когда оба уравнения системы (13) являются уравнениями первой степени, т.е. когда выполняются условия a + b ≠ 0, a+ b ≠ 0. В этом случае каждое уравнение этой системы в отдельности определяет прямую на плоскости, где задана система координат xOy . Это дает возможность придать геометрический характер дальнейшим рассуждениям при исследовании системы (13)

Теорема 2.2. Пусть две прямые заданы уравнениями

a1 x + b1 y – c1 = 0,

a2 x + b2 y – c2 = 0, (14)

где a + b ≠ 0, a + b ≠ 0.

1. Для того, чтобы две прямые пересеклись, необходимо и достаточно, чтобы r = R = 2.

2. Для того, чтобы две прямые были параллельными, но не совпадали, необходимо и достаточно, чтобы r = 1, R = 2.

3. Для того, чтобы две прямые совпадали, необходимо и достаточно, чтобы r = R = 1.

Доказательство. Сначала докажем достаточность условий.

1. Если r = R = 2 , то система (14) имеет единственное решение, которое легко найти по правилу Крамера, а это означает, что прямые имеют одну общую точку, т.е. пересекаются.

2. Если r = 1, R = 2, то система (14) несовместна и поэтому прямые не имеют общих точек, т.е. параллельны и не совпадают.

3. Если r = R = 1, то все миноры второго порядка основной и расширенной матриц равны нулю, т.е.

a1 b1 = 0, c1 b1 = 0, a1 c1 = 0.

a2 b2 c2 b2 a2 c2

Эти условия можно переписать так:

a1 b2 = b1 a2 , (15)

c1 b2 = b1 c2 , (16)

a1 c2 = c1 a2 . (17)

Рассмотрим теперь все возможные случаи.

а) Если а1 = 0, то b 1 ≠ 0, так как a 1 + b 1 ≠ 0. Тогда из (15) следует, что а2 = 0, а так как a 2 + b 2 ≠ 0, то b 2 ≠ 0. Тогда из (16) находим, что c 1 / b 1 = c 2 / b 2 = α и при этом уравнения прямых примут вид

b 1 ( y α ) = 0, b 2 ( y α ) = 0. Поскольку b 1 ≠ 0, b 2 ≠ 0, то отсюда вытекает, что эти прямые совпадают с прямой y α = 0.

б) Если b 1 = 0 , то а1 ≠ 0, а из (15) тогда следует, что b 2 = 0 (причем

а2 ≠ 0 ). Тогда из (17) имеем c 1 / a 1 = c 2 / a 2 = β , и поэтому уравнения прямых примут вид а1 ( x β ) = 0, а2 ( x β ) = 0. Поскольку

а1 ≠ 0, а2 ≠ 0 , то отсюда вытекает, что эти прямые совпадают с прямой x β = 0.

в) Если а1 ≠ 0 иb 1 ≠ 0 , то из (15) вытекает, что а2 / a 1 = b 2 / b 1 = γ , а из (16) и (17) вытекает, что с2 = b 2 c 1 / b 1 = a 2 c 1 / a 1 . Т.е. получаем, что

а2 = γа1 , b 2 = γb 1 , c 2 = γc 1 , и поэтому уравнения прямых примут вид

a1 x + b1 y – c1 = 0, γ(a1 x + b1 y – c1 )= 0. Поскольку γ ≠ 0 , то отсюда вытекает, что эти прямые совпадают.

Теперь докажем необходимость условий. Доказательство проведём методом от противного.

1. Пусть прямые пересекаются. Докажем, что r = R = 2. Если бы оказалось, что r = 1, R = 2 , то по доказанному прямые были бы параллельны и не совпадали. Если бы оказалось, что r = R = 1 , то по доказанному прямые оказались бы совпавшими.

Следовательно, r = R = 2.

2. Пусть прямые параллельны. Докажем, что r = 1, R = 2. Если бы оказалось, что r = R = 2 , то по доказанному прямые оказались бы пересекающимися. Если бы оказалось, что r = R = 1 , то по доказанному прямые оказались бы совпавшими.

Следовательно, r = 1, R = 2.

3. Пусть прямые совпадают. Докажем, что r = R = 1 . Если бы оказалось, что r = R = 2 , то по доказанному прямые оказались бы пересекающимися. Если бы оказалось бы, что r = 1, R = 2, то по доказанному прямые были бы параллельны.

Следовательно, r = R = 1 .

Заключение

В данной работе я изучила пути решения систем линейных уравнений наиболее простые и быстрые, также весь материал я исследовала не только теоретически, но и практически, приводя некоторые примеры в тексте.

Список литературы

1. А. Дадаян. Алгебра и геометрия. / А.А. Дадаян, В.А. Дударенко.

2. Ф.Р. Гантмахер. Теория матриц (издание третье)./Ф.Р. Гантмахер.

3. Математический энциклопедический словарь.

4. Л. Андреева. Реферат по математике „Системы уравнений”. / Л. Андреева.

5. Д.К. Фадеев. „Сборник задач по высшей алгебре”./ Д.К. Фадеев, И.С. Саминский