Скачать .docx | Скачать .pdf |
Реферат: Переключательные функции одного и двух аргументов
БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ
Кафедра информатики
РЕФЕРАТ
На тему:
«Переключательные функции одного и двух аргументов »
МИНСК, 2008
1.Переключательные функции одного аргумента.
Существует четыре переключательные функции одного аргумента, которые приведены в табл. 1.
Таблица 1
Переключательные функции одного аргумента
x f(x) |
0 | 1 | Условное обозначение | Название функции |
f0 ( x) | 0 | 0 | 0 | Константа нуль |
f1 (x) | 0 | 1 | x | Переменная x |
f2 ( x) | 1 | 0 | Инверсия x | |
f3 ( x) | 1 | 1 | 1 | Константа единица |
Функция f0 (x) тождественно равна нулю. Она называется константой нуль и обозначается f0 (x)= 0.
Функция f1 (x) повторяет значения аргумента и поэтому тождественно равна переменной x .
Функция f2 (x) принимает значения, противоположные значениям аргумента: если x =0, то f2 (x) =1; если x =1, то f2 (x) =0. Эту функцию называют инверсией x или отрицанием x и вводят для нее специальное обозначение f2 (x) = .
Функция f3 (x) тождественно равна единице. Она называется константой единица и обозначается f3 (x)= 1.
2. Переключательные функции двух аргументов.
Существует шестнадцать различных переключательных функций двух аргументов, каждая из которых определена на четырех наборах. Эти функции представлены в табл. 2.
В число шестнадцати переключательных функций входят функции, рассмотренные в п.1:
f0 (x,y) = 0 — константа нуль;
f15 (x,y) = 1 — константа единица;
f3 (x,y) = x — переменная x ;
f5 (x,y) = y — переменная y ;
f12 (x,y) = — инверсия x;
f10 (x,y) = — инверсия y ;
Таблица 2
Переключательные функции двух аргументов
x | 0 | 0 | 1 | 1 | Название функции | Обозначение |
y | 0 | 1 | 0 | 1 | ||
f0 (x,y) | 0 | 0 | 0 | 0 | Константа нуль | 0 |
f1 (x,y) | 0 | 0 | 0 | 1 | Произведение (конъюнкция) | x∙y; x Ùy; x& y |
f2 (x,y) | 0 | 0 | 1 | 0 | Функция запрета по y | x D y |
f3 (x,y) | 0 | 0 | 1 | 1 | Переменная x | x |
f4 (x,y) | 0 | 1 | 0 | 0 | Функция запрета по x | y D x |
f5 (x,y) | 0 | 1 | 0 | 1 | Переменная y | y |
f6 (x,y) | 0 | 1 | 1 | 0 | Сумма по модулю 2 (логическая неравнозначность) | x Å y |
f7 (x,y) | 0 | 1 | 1 | 1 | Логическое сложение (дизъюнкция) | x+y; x Ú y |
f8 (x,y) | 1 | 0 | 0 | 0 | Операция Пирса (стрелка Пирса) | x ¯ y |
f9 (x,y) | 1 | 0 | 0 | 1 | Эквивалентность (логическая равнозначность) | x ~ y |
f10 (x,y) | 1 | 0 | 1 | 0 | Инверсия y | |
f11 (x,y) | 1 | 0 | 1 | 1 | Импликация от y к x | y ® x |
f12 (x,y) | 1 | 1 | 0 | 0 | Инверсия x | |
f13 (x,y) | 1 | 1 | 0 | 1 | Импликация от x к y | x ® y |
f14 (x,y) | 1 | 1 | 1 | 0 | Операция Шеффера (штрих Шеффера) | x ½ y |
f15 (x,y) | 1 | 1 | 1 | 1 | Константа единица | 1 |
Рассмотрим некоторые переключательные функции двух аргументов.
Функция f1 (x,y) называется конъюнкцией, или логическим умножением. Таблица истинности этой функции совпадает с таблицей умножения двух одноразрядных двоичных чисел. Можно ввести функцию n аргументов, соответствующую произведению n одноразрядных двоичных чисел. Такая переключательная функция равна единице тогда и только тогда, когда все ее аргументы равны единице. Для конъюнкции справедливы следующие соотношения:
x × 0 = 0;
x × 1 = x ;
x × x = x ;
x × y =y × x ;
x ×= 0.
Функция f7 (x,y) называется дизъюнкцией или логическим сложением. Эта функция равна нулю только в том случае, когда все ее аргументы равны нулю. Можно ввести функцию n аргументов, соответствующую логическому сложению n одноразрядных двоичных чисел. Такая переключательная функция равна нулю тогда и только тогда, когда все ее аргументы равны нулю. Для конъюнкции справедливы следующие соотношения:
x Ú 0 = x ;
x Ú 1 = 1;
x Ú x = x ;
x Ú y =y Ú x ;
x Ú= 1.
Таблица истинности функции f6 (x,y) совпадает с таблицей сложения двух одноразрядных двоичных чисел по модулю два. Можно ввести функцию n аргументов, соответствующую сумме по модулю два n одноразрядных двоичных чисел. Такая переключательная функция определяется следующим условием: она равна единице, если число аргументов, равных единице, нечетно, и равна нулю, если число таких аргументов четно. Приведем некоторые соотношения для суммы по модулю два:
x Å 0 = x ;
x Å 1 = ;
x Å x = 0;
x Å x Å x = x ;
x Å y = y Å x .
Рассмотренные шестнадцать функций двух аргументов (будем называть их элементарными) позволяют строить новые переключательные функции следующим образом:
· путем перенумерации аргументов;
· путем подстановки в функцию новых функций вместо аргументов.
Функцию, полученную из функций f 1 , f 2 , …, fk путем применения (возможно многократного) этих двух правил, будем называть суперпозицией функций f 1 , f 2 , …, fk . Например, имея элементарные функции инверсии, конъюнкции, дизъюнкции, импликации, запрета, сложения по модулю два, можно составить новую переключательную функцию:
f ( x , y , z ) = (( Ú y ) D z ) Å (( y ® z ) × x ).
Используя таблицы, определяющие элементарные функции, можно задавать в виде таблицы любую переключательную функцию, являющуюся суперпозицией этих функций.
Пример 1. Представить в виде таблицы функцию
f ( x , y , z ) = (( Ú y ) D z ) Å (( y ® z ) × x ).
Решение. Функцию f (x,y,z) будем представлять последовательно, записывая в столбцы табл. 1.5 промежуточные результаты, получаемые после выполнения каждой операции:
Таблица 3
Таблица истинности функции f ( x , y , z ) = (( Ú y ) D z ) Å (( y ® z ) × x ).
x | y | z | ( Ú y) | ( Ú y) D z) | (y ® z) | (y ® z) × x | (( Ú y) D z) Å ((y ® z) × x) | |
0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 |
0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 |
0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 |
1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 |
1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 |
3. Представление переключательной функции в виде многочленов.
1. Конституенты. В п. 2 был рассмотрен один из возможных способов представления переключательной функции – задание ее в виде таблицы истинности. В этом разделе будем решать обратную задачу, а именно представление переключательной функции, заданной таблицей истинности, через элементарные функции, образующие базис.
Рассмотрим переключательные функции, называемые конституентами.
Определение 1. Конституентой единицы называют переключательную функцию n аргументов, которая принимает значение, равное единице на одном единственном наборе аргументов.
Из определения следует, что число различных конституент единицы среди функций n аргументов равно 2n . Конституенты единицы обозначаются так: Ki (x1 , …, xn ) , где i – номер набора, на котором конституента равна единице. Например, запись K7 (x1 , x2 , x3 , x4 ) означает функцию четырех аргументов, равную единице на наборе (0111).
Конституента единицы может быть выражена через конъюнкцию всех аргументов, каждый из которых входит в произведение со знаком отрицания или без него. Приведенную выше конституенту единицы можно представить через конъюнкцию аргументов следующим образом:
K 7 ( x 1 , x 2 , x 3 , x 4 ) = .
Чтобы записать в виде произведения конституенту Ki ( x 1 , …, xn ), можно воспользоваться следующим правилом: записать n -разрядное двоичное число (n – число аргументов), равное i , и конъюнкцию n переменных; над переменными, места которых совпадают с позициями нулей в двоичном числе i , поставить знак отрицания.
Пример 2. Записать конституенту, равную единице на двенадцатом наборе для функции пяти переменных.
Решение. Пятиразрядное двоичное число, равное двенадцати, записывается в виде: 01100. Запишем произведение пяти аргументов, располагая их в порядке возрастания индексов: x 1 × x 2 × x 3 × x 4 × x 5 . Сопоставляя это произведение с двоичным числом 01100, определяем, что знаки отрицания необходимо поставить над первым, четвертым и пятым аргументами:
K 12 ( x 1 , x 2 , x 3 , x 4 , x 5 ) = .
Определение 3. Конституентой нуля называют переключательную функцию n аргументов, которая принимает значение, равное нулю, на одном единственном наборе аргументов.
Из определения следует, что число различных конституент нуля среди функций n аргументов равно 2n . Конституенты нуля обозначаются так: Mi ( x 1 , …, xn ) , где i – номер набора, на котором конституента равна нулю. Конституента нуля может быть выражена через дизъюнкцию всех аргументов, каждый из которых входит в произведение со знаком отрицания или без него.
Чтобы записать в виде произведения конституенту Mi ( x 1 , …, xn ), можно воспользоваться следующим правилом: записать n -разрядное двоичное число (n – число аргументов), равное i , и дизъюнкцию n переменных; над переменными, места которых совпадают с позициями единиц в двоичном числе i , поставить знак отрицания.
Пример 3. Записать конституенту нуля, равную нулю на двадцать пятом наборе для функции пяти переменных.
Решение. Пятиразрядное двоичное число, равное двадцати пяти, записывается в виде: 11001. Запишем дизъюнкцию пяти аргументов, располагая их в порядке возрастания индексов: x 1 Ú x 2 Ú x 3 Ú x 4 Ú x 5 . Сопоставляя это произведение с двоичным числом 11001, определяем, что знаки отрицания необходимо поставить над первым, вторым и пятым аргументами:
M 25 ( x 1 , x 2 , x 3 , x 4 , x 5 ) = .
2. Представление переключательной функции в виде полинома Жегалкина.
Теорема Жегалкина . Любая переключательная функция может быть представлена в виде полинома (многочлена), т. е. записана в форме
f(x1 , . . . , xn ) = ао Å a1 x1 Å a2 x2 Å … Å an xn Å an+1 x1 x2 Å … Å aN x1… xn ,
(1)
где a0 , a1 x1 , … a N — константы, равные нулю или единице;
Å — операция сложения по модулю два.
При записи конкретной переключательной функции в виде многочлена коэффициенты a0 , a1 x1 , … a N выпадают, так как члены, при которых коэффициенты равны нулю, можно опустить, а коэффициенты, равные единице, не писать.
Для доказательства теоремы Жегалкина предположим, что задана произвольная переключательная функция п аргументов f ( x 1 , . . . , xn ), равная единице на некотором числе наборов с номерами m 1 , … mp .
Покажем, что переключательная функция f ( x 1 , . . . , xn ) равна сумме конституент единицы, которые равны единице на тех же наборах, что и данная функция:
f(x1 , . . . , xn ) = Km1 Å Km2 Å . . . Å Kmp . (2)
Действительно, на каждом из наборов с номерами m 1 , … mp равна единице только одна конституента, стоящая в правой части выражения (2), а остальные равны нулю. Следовательно, на этих наборах и только на них правая часть выражения (2) принимает значение, равное единице.
Для того чтобы перейти от выражения (2) к виду (1), достаточно представить конституенты единицы в виде произведений и, используя соотношение , заменить все переменные с отрицаниями (так как отрицания в выражение (3.1) не входят). Пусть например, конституента единицы записана в виде
.
Тогда получим
Ki = (1 Å x 1 ) x 2 (1 Å x 3 ) x 4 x 5 .
Раскрывая скобки и приводя подобные члены в соответствии со свойствами операции сложения по модулю два, получаем запись заданной функции в форме (1), что и доказывает теорему.
Приведенное доказательство теоремы позволяет сформулировать правило представления любой переключательной функции в виде многочлена.
Чтобы переключательную функцию, заданную таблицей истинности, представить в виде полинома Жегалкина, достаточно записать функцию в виде суммы конституент единицы, равных единице на тех же наборах, на которых равна единице заданная функция. Затем все аргументы, входящие в полученное выражение с отрицанием, заменить с помощью соотношения , раскрыть скобки и привести подобные члены с учетом тождества;
x , если п нечетно,
x Å x Å . . . Å x = 0, если п четно.
Пример 3. Представить в виде полинома Жегалкина функцию f 58 ( x 1 , x 2 , x 3 ) .
Функция f 58 ( x 1 , x 2 , x 3 ) равна единице на втором, третьем, четвертом и шестом наборах, и может быть записана в виде суммы соответствующих конституент единицы:
f 58 ( x 1 , x 2 , x 3 ) = K 2 Å K 3 Å K 4 Å K 6 = .
Используя соотношение , получаем
f58 (x1 ,x2 ,x3 )=(1 Å x1 )x2 (1 Å x3 ) Å (1 Å x1 )x2 x3 Å x1 (1 Å x2 )(1 Å x3 ) Å x1 x2 (1 Å x3 ).
Приводя подобные члены, окончательно находим
f 58 ( x 1 , x 2 , x 3 )= x 1 Å x 2 Å x 1 x 2 Å x 1 x 3 .
3. Совершенная дизъюнктивная нормальная форма переключательной функции.
В общем виде переключательная функция п аргументов может быть задана таблицей истинности. Обозначим через f( i ) (i=0, … ,2n -1) значение функции на i-м наборе аргументов. Напомним, что каждая из величин f( i ) принимает значение нуль или единица. В соответствие i-му набору аргументов можно поставить конституенту единицы Ki , которая принимает значение, равное единице только на данном f ( i ) наборе. Умножим каждую конституенту единицы Ki на значение функции f( i ) и рассмотрим дизъюнкцию произведений fi Ki :
. (3)
Если подставить в выражение (3) значения f(i) , то получим дизъюнкцию конституент, которые равны единице на тех же наборах, что и заданная функция. Действительно, ввиду того, что 0×x =0 и 0Úх=х, члены выражения (2), в которых коэффициенты f ( i ) =0, можно опустить, а так как x × 1 = x , то коэффициенты f ( i ) = 1можно не писать. Тогда
где j1 , …,jm – номера наборов, на которых функция равна единице;
m – число таких наборов.
Определение 3. Дизъюнкция конституент единицы, равных единице на тех же наборах, что и заданная функция, называется совершенной дизъюнктивной нормальной формой переключательной функции.
Любую переключательную функцию f ( x 1 , . . . , xn ) (кроме константы ноль) можно представить в совершенной дизъюнктивной нормальной форме. Заметим, что любая переключательная функция имеет единственную совершенную дизъюнктивную нормальную форм у: это непосредственно следует из выражения (3).
Совершенную дизъюнктивную нормальную форму переключательной функции удобно находить в такой последовательности:
· выписать ряд произведений всех аргументов и соединить их знаками дизъюнкции; количество произведений должно равняться числу наборов, на которых заданная функция обращается в единицу;
· записать под каждым произведением набор аргументов, на котором функция равна единице, и над аргументами, равными нулю, поставить знаки отрицания.
Это правило называют иногда правилом записи переключательной функции по единицам.
Пример 4. Представить в совершенной дизъюнктивной нормальной форме переключательную функцию четырех аргументов f 23805 ( x 1 , x 2 , x 3 , x 4 ) (см. табл. 2).
Решение. Из табл. 2 видно, что переключательная функция принимает значения, равные единице, на следующих наборах аргументов:
0001, 0011, 0100, 0101, 1000, 1001, 1010, 1011, 1100, 1101, 1111.
Таким образом, совершенная дизъюнктивная нормальная форма функции f 23805 ( x 1 , x 2 , x 3 , x 4 ) будет состоять из одиннадцати дизъюнкций, каждая из которых представляет собой конъюнкцию четырех элементов:
4. Совершенная конъюнктивная нормальная форма переключательной функции.
Если заданная переключательная функция равна единице на большинстве наборов аргументов, то представление функции в совершенной дизъюнктивной нормальной форме может оказаться достаточно громоздким. В этих случаях удобнее использовать другую форму представления функции – совершенную конъюнктивную нормальную форму. Для представления функций в этой форме используется функция конституенты нуля.
Рассмотрим выражение
, (4)
где f ( i ) – значение переключательной функции на i -м наборе.
Ввиду справедливости соотношений 1Úx = 1 и 0 Ú х= х, при подстановке в выражение (4) значений функции f(i) , сомножители, у которых f(i) , == 1, можно опустить, а значения функции f(i) =0 не писать. Тогда
(5)
где j1 , j2 , …,jm –номера наборов, на которых функция равна нулю;
т - число таких наборов.
Определение 4. Произведение конституент нуля, которые равны нулю на тех же наборах, что и заданная функция, называется совершенной конъюнктивной нормальной формой.
Любая переключательная функция f ( x 1 , . . . , xn ) (кроме константы единицы) может быть представлена в совершенной конъюнктивной нормальной форме. Любая переключательная функция имеет единственную совершенную конъюнктивную нормальную форму.
Сформулируем правило представления переключательной функции в совершенной конъюнктивной нормальной форме. Чтобы представить переключательную функцию п аргументов в совершенной конъюнктивной нормальной форме, достаточно:
· выписать произведение дизъюнкций всех аргументов с количеством сомножителей, равным числу наборов, на которых заданная функция обращается в нуль;
· выписать под каждым сомножителем набор аргументов, на котором функция равна нулю, и над аргументами, равными единице, поставить знаки отрицания;
Это правило иногда называют правилом записи переключательной функции по нулям.
Пример 5. Представить в совершенной конъюнктивной нормальной форме функцию f 23805 ( x 1 , x 2 , x 3 , x 4 ) (см. табл. 2).
Решение. Из табл. 2 видно, что переключательная функция принимает значения, равные нулю, на следующих наборах аргументов:
0000, 0010, 0110, 0111, 1110.
Таким образом, совершенная конъюнктивная нормальная форма функции f 23805 ( x 1 , x 2 , x 3 , x 4 ) будет состоять из пяти конъюнкций, каждая из которых представляет собой дизъюнкцию четырех элементов:
ЛИТЕРАТУРА
1. Белоусов А.И., Ткачев С.Б. Дискретная математика: Учебник для ВУЗов / Под ред. В.С. Зарубина, А.П. Крищенко.– М.: изд-во МГТУ им. Н.Э. Баумана, 2001.– 744 с. (Сер. Математика в техническом университете; Вып XIX).
2. Горбатов В.А. Фундаментальные основы дискретной математики. Информационная математика.– М.: Наука, Физматлит, 2000.– 544 с.– ISBN 5-02-015238-2.
3. Зарубин В.С. Математическое моделирование в технике: Учеб. для ВУЗов / Под ред. В.С. Зарубина, А.П. Крищенко.– М.: Изд-во МГТУ им. Н.Э. Баумана, 2001.– 496 с. (Сер. Математика в техническом университете; вып. XXI, заключительный).