Скачать .pdf |
Книга: Вычислительные методы линейной алгебры
A x = b,
A m {Ab }
{Ab } A m
{Ab } A
m = 2
a 11x 1 + a 12x 2 = b 1 a 21x 1 + a 22x 2 = b 2
5x 1 + 7x 2 = 12,
7x 1 + 10x 2 = 17,
x 1 = 1 x 2 = 1 F
t = 2 β = 10 t
F β F
x 1 = 2. 4 x 2 = 0 12 16. 8
0 0. 2 1. 4 −1
F x 1 = 2. 4 x 2 = 0
F
x ∈ R m A m × m
,
kA k
kA k > 0 A 6= 0 kA k = 0 ⇔ A = 0
m × m
kA k
kA kα
kx kα kA kβ kx kα = kx kβ
E
E
Ax = b
∆A
b
A A + ∆A
x ∗
.
, .
(A + ∆A )−1 − A −1 = A −1 A (A + ∆A )−1 − A −1 (A + ∆A ) (A + ∆A )−1 = = A −1 (A − (A + ∆A )) (A + ∆A )−1 = −A −1 ∆A (A + ∆A )−1 .
δ (x ) 6 cond(A )k∆A k/ kA k δ (x ) 6 cond(,
cond(A ) = kA −1 k kA k
k∆A k → 0
cond(A ) = kA −1 k kA k
t t
O (2−t )
O (2t/ 2) O (2−t/ 2)
cond(A ) = kA −1 k kA k
cond(A ) ≥ 1 A A −1 = E ⇒ 1 = kE k = kA A −1 k > kA k kA −1 k = cond(A ) cond(c A ) = cond(A ) c cond(A B ) 6 cond(A ) cond(B ) cond(A −1 ) = cond(A )
max dii
cond( D D = diag(dii )
16i 6m
cond(A ) = kA k2 kA −1 k2
cond(A )
A = A ∗ > 0
i = 1,...,m
R m
,
.
b
.
εi
λl
A−1
A −1
ε “
δ
A x = b,
x
a ij
aij = 0 i > j (i < j )
U
U T U −1
U T U = UU T = E
|det(U )| = 1 1 = det(E ) = det(UU T ) =
det(U ) det(U T ) = det2 (U )
1
Pij
i j
i j P 24 5 × 5
0 0 0 1 0
0 A |
0 |
A |
|
i |
j |
A |
24 1 0 0 0 0
P =0 0 1 0 0
0 1 0 0 0
Pij
Qij (ϕ )
i j
Q 24 (ϕ ) 5 × 5
24 1 0 0 0 0
0 cosϕ 0 −sinϕ 0
Q (ϕ ) =0 0 1 0 0
0 sinϕ 0 cosϕ 0
0 0 0 0 1
Qij
P m
v 1 > 0,
e = (1, 0,..., 0)T
v 1 < 0.
,
u = v −σ kv ke P
.
u 1 u
P
y = αu + βs
Aij aij = 0 i > j + 1(i < j − 1)
“
“
,
α = 1. 2. 3
x 1 + 0. 99 x 2 = 1. 99,
0. 99 x 1 + 0. 98x 2 = 1. 97,
x 1 = 1 x 2 = 1
x 1 = 3 x 2 = −1. 0203
A = L U |
L U |
L Ux = b.
, .
LU
Ly = b
l 11y 1 = b 1 ,
l 21y 1+ l 22y 2 = b 2 ,
... ... ... ... ... ... ...,
l m −1, 1y 1+ l m −1, 2y 2+ ... + ... + l m −1,m −1y m −1 = b m −1,
l m 1y 1+ l m 2y 2+ ... + ... + l m,m − 1y m − 1+ l mm y m = bm .
y 1 = b 1/l 11
yi
Ux = y
u 11x 1+ u 12x 2+ u 13x 3+ ... + ... + u 1m x m = y 1, u 21x 2+ u 23x 3+ ... + ... + u 2m x m = y 2,
... ... ... ...,
u m −1,m −1x m −1+ u mm x m = y m −1
u mm x m = y m .
x m = y m /u mm
.
Q R QR
A
QRx = b,
Rx = Q T b.
m × m
,
Am
.
l mm u mm
Am
LDU
U
l ii = 1 u ii = 1 D |
A = LU |
A = LDU uii = 1 |
lii = 1 A = L 1D 1U 1 A = L 2D 2U 2 |
L 1D 1U 1 = L 2D 2U 2 |
U 1U 2−1 = D 1−1L −1 1L 2D 2 |
U 1U 2−1 |
D 1−1L −1 1L 2D 2 |
U 1 U 2
U 1U 2−1 = D = E ⇒ U 1 = U 2
D 1−1L −1 1L 2D 2 = E L −1 1L 2 = D 1D 2−1
L 1 L 2 L −1 1L 2 = E ⇒ L 1 = L 2
D 1 = D 2
a 11 a 12 ... ... ... ... a 1m
a 21 a 22 ... ... ... ... a 2m A... ... ... ... ... ... ...
... ... ... ... ... ... ...
= a m −1, 1 a m −1, 2 ... ... ... ... a m −1,m
am 1 am 2 ... ... ... ... amm
1 a (1) 1222 ... ... ... ... a 1(1) 2mm
0 a (1) ... ... ... ... a (1)
A (1) = L 1 D 1 A =... ... ... ... ... ... ... ,
... ... ... ... ... ... ...
0 a (1)m −1, 2 ... ... ... ... a (1)m − 1,m
0 a m (1) 2 ... ... ... ... ...a mm (1)
1/a 11 0 0 ... 0 1 0 0 ... 0
D 1 = 0 1 0 ... 0 L 1 k = 1 −a 21 1 0 A... (k 0 .
... ... ... ... ... ... ... ... ... ...
0 0 0 ... 1 −am 1 0 0 ... 1
k − −1)
1 ... 0 A (k − 1) = L D ...L D A = 0 |
a (1)12 ... 1 0 |
... ... 0 1 |
... ... a (kk −−11),k a (k −1) |
... ... ... ... |
... ... ... ... |
k a (1)1m 1,m ... a (k − 1) − a (k − 1) |
... 0 |
... 0 |
... 0 |
... a (mk k −1) |
... ... |
... ... ... a (mmk − 1) |
A (k −1) |
Dk |
k −1 k −1 1 1 k (kkk +11),k k (k,mk +11)
0 0 0 a − ... ... a − ,m
Dk = diag(1,
Lk
... ... ... ... ... ...
0 ... 1 0 ... 0
k 1 ... ... k (mk (kk +11)1),k ... ... 0
L =.
0 ... −a − 1 ... 0
... ... ... ... ... ...
0 ... −a − 0 ... 1
A (k ) = L k D k L k −1D k −1 ...L 1D 1A =
− − ,m
1 ... a 11,k 1 a 11,k ... a 11,m 1 a 1 11,m
... ... ... k (... k 11),k ... k (k ( k,m ...k 1)1) ,m 11 (k ... k
0 ... 1 a − ... a − a −1)
− − − − 0 ... 0 0 m (k ) 1,m 1 m
= 0 ... 0 1 ... a a (k ) − k,m
... ... ... ... ... ... ...
0 ... 0 0 ... a a (k )
− − −1,m
m −1
U
U = Dm Lm −1Dm −1 ...L 1 D 1 A =
− − 1,m
... ... ... ... ... ... ...
0 ... 1 a − ... a − a − 1)
1 ... a 11,k 1 a (kk 11,k 11),k ... a (kk (k,m 11k,m 1)1),m 111 m (a k (mk 111
− − − − ,m
= 0 ... 0 1 ... a a (k ) − k,m
... ... ... ... ... ... ...
0 ... 0 0 ... 1 a − 1)
− ,m
0 ... 0 0 ... 0 1
L −1 = Dm Lm −1Dm −1 ...L 1 D 1 A L −1
A = LU.
U
cond(U) = cond(L − 1 A ) = cond(Dm Lm −1Dm −1 ...L 1 D 1 A ) 6
cond(cond(Li ) cond(A )
=1
m
cond(Li ) > 1
cond(U ) D
i , |a (iii )| < 1
cond(
|aii , |a (iii )| > 1
cond(Di ) cond(U )
cond(A )
L i D i
“
a 11x 1 + a 12x 2 + ... + a 1m x m = b 1 a 21x 1 + a 22x 2 + ... + a 2m x m = b 2
..............................
a m 1x 1 + a m 2x 2 + ... + a mm x m = b m
U
xk
A
a i,n +1 = b i
k 1 m − 1
i k + 1 m + 1
r := a ik /a kk
j k + 1 m + 1
a ij := a ij − r a kj
j
i
k
x n := a n,n +1/a n,n
k n − 1 1
x k := a k,n +1 − P a kj x j !/a kk
n
j =k +1
k
Ux = y
cond(A )
Ux = y U
A
k xk
|a ln |(k ) = 6max6 |a ij |(k ) k l k n
k i,j m
k n
x ∗
x (1)
kr (1)k 6 ε x (1)
ε
A
A = QR,
Q R
A
a 25 a 35 a 45 a 55
a 15
12 12 cosϕ 1212 −sinϕ 1212 0 0 0 sinϕ cosϕ 0 0 0
Q (ϕ ) =0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
A 12 = Q 12A
12 a 1111 cosϕ 1212 −514131a 2121 sinϕ 1212 ·524232 · · a 1515 cosϕ 1212 − a 2525 sinϕ 12 a sinϕ + a cosϕ · · · a cosϕ + a sinϕ 12
A =a a · · · a a · · · a a · · ·
ϕ 12 A 12
a 11 sinϕ 12 + a 21 cosϕ 12 = 0.
A 1
Q 3 Q 4
A 4 = Q 4 · Q 3 · Q 2 · Q 1 A
A m × m
Am − 1 = Qm − 1 · ... · Q 1 · A = Q e · A,
e
Q A m −1
A = QR Q = Q e−1 R = Am −1
QR A
v =
m A
v 1 = (a 11,a 21,...,a m 1)T
P 1 m × m
a (1)12mm
a (1)
mm ·
·
a (1)
m − 1 v 2
,
A m −1
Q
Pi T i = 1,...,m − 1 Q
A = QR Q
R
Ax = b
Rx = Q T b
cond(A ) = cond(R )
A Qij i
j
b (1)ik = b ik cosϕ ij − a jk sinϕ ij
k = 1,...,m.
(1)
b jk = b ik sinϕ ij + a jk cosϕ ij
Q Am −1 = R
QR
A
QR
i k
i
i
R = Am − 1 A = Q R
i
A m −1
A m −1
QR
Qij
O (2m 3 )
QR
Pi m × m
A = A ∗
A = L U.
A = L U = A ∗ = U ∗ L ∗ ⇒ L U = U ∗ L ∗ ⇒ U (L ∗ )− 1 = L − 1 U ∗ .
U (L ∗ )− 1 = L − 1 U ∗ = D ⇒ U = D L ∗ ⇒ A = L D L ∗ .
,
D = diag(
A
L
k > i
i = 1
a 1j = a j 1 = l 11d 11l j 1,
LU
LU
QR A
l
QR
x (0) x ∗
A x = b
“ “ x (n )
kx (n ) − x ∗ k
O (m 2 )
B
b, n = 1, 2,...
x (n )
x ∗ n → ∞
x (n )
τn = τ
τn n = 1, 2,... B
B −1
x (n )
ε
n = n (ε )
.
ε
τn n = 1, 2,...
r (n ) n
τn = τ
r (n ) = Sr (n −1) = S Sr (n −2) ... = S n r (0).
S
S
kS k 6 1
kr (n )k → 0 n → ∞
S S
n → ∞ |µ k | < 1 ,
.
kr (n )k = kG −1J n G r (0)k 6 kG −1k kJ n k kG k kr (0)k → 0 n → ∞.
S
ε
n → ∞
B = E
S = E − τA
S max|µk | τ max|µk | k k
τ A = A ∗ > 0 A 0 < γ 1 6 λk 6 γ 2 k =
λk S
µk = 1 − τλk
0 < τ < 2/γ 2 |µk | = |1−τλk | < 1
0 < τ < 2/γ 2 τ = τ ∗
|µ ∗| = 0<τ< min2/γ 2 1max6k 6m |1 − τλ k |
τ
γ 1 < λ < γ 2 gλ (τ ) = 1−τλ
τ = τ ∗ |gλ (τ ∗)| 6 |gλ (τ )| γ 1 < λ < γ 2 0 < τ <
2/γ 2 0 < τ < 1/γ 2
|gγ 2 (τ )| 6 |gγ 1 (τ )| τ > 1/γ 1 |gγ 1 (τ )| 6 |gγ 2 (τ )|
1/γ 2 6 τ 6 1/γ 1 τ 0
|gγ 2 (τ 0 )| = |gγ 1 (τ 0 )|, τ 0
cond(A )
1
kS k → 1 ζ → ∞
aii =6 0 i = 1,...,m
(n +1)
B = diag(a 11 ,...,amm )
= b ⇒ x (n +1) = (E − B −1A )x (n ) + B −1b, A
,
.
x (0)
n := 0
x (1)
Ax = b ε
n
N
n > N
A Ax = b a ii =6 0
(n + 1)
i
+ ... |
= b 1 |
||
+ ... |
+ a 2m x m (n ) |
= b 2 |
...................................................
.
m = 2 (x 1 ,x 2 )
,
I
,
II
x (0)
n := 0
i 1 m
n := n + 1
Ax = b
x ∗
A = A ∗ > 0
.
Φ(x ) = (Ax − b,Ax − b ) x ∈ Rm
x ∗
F (x ) = F (x 1 ,x 2 ,...,xm ).
F (x )
x 1
ϕ 1(x 1) = F (x 1,x 2(n ),...,x m (n )),
x (1 n +1)
.
x 2
.
(n + 1)
A = A ∗ > 0
C = 0
a 1
A 1 (x (1)1 ,x (1)2 )
C
Ax = b
Ax = b A = A∗ > 0
k
k k n + 1
x (k n +1)
.
.
.
Xk −1 a ik x (in +1) + a kk x k (n +1) + Xm a ik x ni = b k .
i =1 i =k +1
A = A ∗ > 0
F (x ) x
grad x (n +1)
x (n +1) = x (n ) − α n gradF (x (n )), αn
x (n +1)
gradF (xn ) αn := αn / 2
x (n +1)
αn
αn N
x (n +1)
ε ε
“
,
“
,
αn |ϕ (αn )|
ϕ (α n ) = F (x (n +1)) = F (x (n ) − α n gradF (x (n ))).
αn A = A ∗ > 0
grad
.
αn
Ax = b A = A∗ > 0
A 0 = (x 01,x 02)
gradF (x 0 ) A 0A 1
A 0A 1
(x 11,x 12) A 1
A 0A 1
A = A ∗ > 0
n
,
n
,
.
.
.
,
x (n +1)
,
i
0 < ω < 1 1 < ω < 2
ω = 1
x (n ) = Sx (n −1) + c,
c
ε |
kr (n )k = kx (n ) − x ∗ k 6 ε kr (n )k = kx (n ) −x ∗ k |
x (n ) x ∗ |
v (n )
.
R m
µi S
1 > |µ 1 | > |µ 2 | > |µ 3 | > ... > |µm |,
µi
, .
kw (n )k = O ( |µ 1|n )
,
.
, .
,
n
.
kx (n ) − x (n −1)k µ 1
,
kv (n ) k 6 ε 1,
α β x (k +1) = S x (k ) + c
?
,
S = E − τA
0 < τ < 0. 4
α β
α β
α β
n
= 2
m × m
A ∗ A
A
A ∗
a ji
AA A −1
b =6 0
A m
λ ϕ 6= 0
A
m det (A − λE ) = 0.
A
ρ (A ) = max|λi |
i
A
trA
A
A
A
A
ajj ej = (0,..., 0, 1 , 0,..., 0) j |{z}
λ k λ j A λ k =6 λ j
λk ϕk k = 1,...,m
R m
R m
R m
A ∗ ψk k = 1,...,m
(ϕk ,ψj ) = 0, k =6 j.
A
A B
P B =
P −1 AP
P B = P ∗AP A B
, .
grad
α gradF y
F (x )
x
F (x ) = c
F (x ) = c x 0 =
.
max |a ij |
16i,j 6m
E
S (A ) = √trAA ∗
.
|β/α | <