Похожие рефераты Скачать .docx Скачать .pdf

Реферат: Вычисление координат центра тяжести плоской фигуры

Министерство общего и профессионального образования Российской федерации.

Уральский Государственный Технический Университет - УПИ.

Реферат

ВЫЧИСЛЕНИЕ КООРДИНАТ ЦЕНТРА ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ.

Выполнил:

Студент группы Х-149

Покровский П.В.

Проверил:

Преподаватель кафедры ВМ и УМФ

Пироговская Л. М.

Екатеринбург.

1999.

1. Координаты центра тяжести.

Пусть на плоскости Oxy дана система материальных точек

P1 (x1 ,y1 ); P2 (x2 ,y2 ); ... , Pn (xn ,yn )

c массами m1 ,m2 ,m3 , . . . , mn .

Произведения xi mi и yi mi называются статическими моментами массы mi относительно осей Oy и Ox.

Обозначим через xc и yc координаты центра тяжести данной системы. Тогда координаты центра тяжести описанной материальной системы определяются формулами:

Эти формулы используются при отыскании центров тяжести различных фигур и тел.

2. Центр тяжести плоской фигуры.

Пусть данная фигура, ограниченная линиями y=f1 (x), y=f2 (x), x=a, x=b, представляет собой материальную плоскую фигуру. Поверхностною плотность, то есть массу единицы площади поверхности, будем считать постоянной и равной d для всех частей фигуры.

Разобьем данную фигуру прямыми x=a, x=x1 , . . . , x=xn =b на полоски ширины Dx1, Dx2 , . . ., Dxn . Масса каждой полоски будет равна произведению ее площади на плотность d. Если каждую полоску заменить прямоугольником (рис.1) с основанием Dxi и высотой f2 (x)-f1 (x), где x, то масса полоски будет приближенно равна

(i = 1, 2, ... ,n).

Приближенно центр тяжести этой полоски будет находиться в центре соответствующего прямоугольника:

Заменяя теперь каждую полоску материальной точкой, масса которой равна массе соответствующей полоски и сосредоточена в центре тяжести этой полоски, найдем приближенное значение центра тяжести всей фигуры:

Переходя к пределу при , получим точные координаты центра тяжести данной фигуры:

Эти формулы справедливы для любой однородной (т.е. имеющей постоянную плотность во всех точках) плоской фигуры. Как видно, координаты центра тяжести не зависят от плотности d фигуры (в процессе вычисления d сократилось).

3. Координаты центра тяжести плоской фигуры

В предыдущей главе указывалось, что координаты центра тяжести системы материальных точек P1 , P2 , . . ., Pn c массами m1 , m2 , . . ., mn определяются по формулам

.

В пределе при интегральные суммы, стоящие в числителях и знаменателях дробей, перейдут в двойные интегралы, таким образом получаются точные формулы для вычисления координат центра тяжести плоской фигуры:

(*)

Эти формулы, выведенные для плоской фигуры с поверхностной плотностью 1, остаются в силе и для фигуры, имеющей любую другую, постоянную во всех точках плотность g.

Если же поверхностная плотность переменна:

то соответствующие формулы будут иметь вид

Выражения

и

называются статическими моментами плоской фигуры D относительно осей Oy и Ox.

Интеграл выражает величину массы рассматриваемой фигуры.

4. Теоремы Гульдена.

Теорема 1.

Площадь поверхности, полученной при вращении дуги плоской кривой вокруг оси, лежащей в плоскости этой кривой и не пересекающей ее, равна длине дуги кривой, умноженной на длину окружности, описанной центром тяжести дуги.

Теорема 2.

Объем тела, полученного при вращении плоской фигуры вокруг оси, не пересекающей ее и расположенной в плоскости фигуры, равен произведению площади этой фигуры на длину окружности, описанной центром тяжести фигуры.

II.Примеры.

1)

Условие: Найти координаты центра тяжести полуокружности X2 +Y2 =a2 , расположенной над осью Ox.

Решение: Определим абсциссу центра тяжести: ,

Найдем теперь ординату центра тяжести:

2)

Условие: Определить координаты центра тяжести сегмента параболы y2 =ax, отсекаемого прямой, х=а (рис. 2)

Решение: В данном случае поэтому

(так как сегмент симметричен относительно оси Ox)

3)

Условие: Определить координаты центра тяжести четверти эллипса (рис. 3)

полагая, что поверхностная плотность во всех точках равна 1.

Решение: По формулам (*) получаем:

4)

Условие:

Найти координаты центра тяжести дуги цепной линии .

Решение:

1Так как кривая симметрична относительно оси Oy, то ее центр тяжести лежит на оси Oy, т.е. Xc = 0. Остается найти . Имеем тогда длина дуги

Следовательно,

5)

Условие:

Пользуясь теоремой Гульдена найти координаты центра тяжести четверти круга

.

Решение:

При вращении четверти круга вокруг оси Ох получим полушар, объем которого равен

Согласно второй теореме Гульдена, Отсюда Центр тяжести четверти круга лежит на оси симметрии, т.е. на биссектрисе I координатного угла, а потому

III. СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1. Данко П.Е., Попов А.Г., Кожевникова Т.Я. «Высшая математика в упражнениях и задачах», часть 2, «Высшая школа», Москва, 1999.

2. Пискунов Н.С. «Дифференциальное и интегральное исчисления для втузов», том 2, «Наука», Москва, 1965

Похожие рефераты:

Применение интегралов к решению прикладных задач

Психологический словарь

Бернулли

Шпаргалки по геометрии, алгебре, педагогике, методике математики (ИГПИ)

Основы проектирования и конструирования

Приложения производной

Развитие логического мышления учащихся при решении задач на построение

Оборудование летательных аппаратов

Лекции по матану (III семестр) переходящие в шпоры

Электрические аппараты

Кинематика и динамика поступательного движения

Лекции по физике

О теории вероятностей

Формирование познавательной потребности у учащихся средствами информационных технологий

Оценка периметра многоугольника заданного диаметра

Курс лекций по теории вероятностей