Похожие рефераты | Скачать .docx | Скачать .pdf |
Реферат: Евклид
Реферат по математике
ученицы 7 «Б» класса ВЮ лицея
Берестовской Дарьи
Евклид
Евклид – древнегреческий математик (III века до н.э.) работал в Александрии и написал несколько трудов, которые стали основой для образования и использовались около 2200 лет.
Главный труд Евклида – «Начала» (по-другому «Элементы»). Все книги Евклида основываются на аксиомах – утверждениях, не требующих доказательств. Например, аксиома о точке. Вот ее формулировка: «Точка есть то, что не имеет частей и не имеет величины».
«Начала» Евклида, законченные около 325 года до н. э., оказали значительное влияние на развитие математики вплоть до 19 века. В его 13 книгах систематически изложены существенные разделы математики, являвшиеся итогом ее развития до Евклида. Труд был построен на основе аксиом, постулатов и определений. Пожалуй, самым главным и широко изучаемым постулатом является пятый (одиннадцатая аксиома). Вот его формулировка: «Если дана прямая и точка не лежащая на ней, то можно провести только одну прямую, проходящую через точку и не пересекающуюся с данной прямой».
Книги I-IV охватывали геометрию, их содержание восходило к трудам пифагорейской школы. В книге V разрабатывалось учение о пропорциях, которое примыкало к Евдоксу Книдскому. В книгах VII-IX содержалось учение о числах, представляющее разработки пифагорейских первоисточников. Книги X-XIII посвящены стереометрии и теории иррациональности. Личный вклад Евклида в «Начала», по-видимому, состоял главным образом в систематизации и логическом упорядочении разрозненных результатов его предшественников и современников, а его целью было дать такое связное убедительное изложение элементарной геометрии, чтобы каждое утверждение всего большого сочинения можно было свести к постулатам.
Начала Евклида оказали огромное влияние на развитие математики. Евклиду также принадлежат работы по астрономии, оптике и теории музыки.
г. Сумы 14.09.00
ученицы 7 «Б» класса ВЮ лицея Берестовской Дарьи Евклид Евклид – древнегреческий математик (III века до н.э.) работал в Александрии и написал несколько трудов, которые стали основой для образования и использовались около 2200 лет. Главный труд Евклида – «Начала» (по-другому «Элементы»). Все книги Евклида основываются на аксиомах – утверждениях, не требующих доказательств. Например, аксиома о точке. Вот ее формулировка: «Точка есть то, что не имеет частей и не имеет величины». «Начала» Евклида, законченные около 325 года до н. э., оказали значительное влияние на развитие математики вплоть до 19 века. В его 13 книгах систематически изложены существенные разделы математики, являвшиеся итогом ее развития до Евклида. Труд был построен на основе аксиом, постулатов и определений. Пожалуй, самым главным и широко изучаемым постулатом является пятый (одиннадцатая аксиома). Вот его формулировка: «Если дана прямая и точка не лежащая на ней, то можно провести только одну прямую, проходящую через точку и не пересекающуюся с данной прямой». Книги I-IV охватывали геометрию, их содержание восходило к трудам пифагорейской школы. В книге V разрабатывалось учение о пропорциях, которое примыкало к Евдоксу Книдскому. В книгах VII-IX содержалось учение о числах, представляющее разработки пифагорейских первоисточников. Книги X-XIII посвящены стереометрии и теории иррациональности. Личный вклад Евклида в «Начала», по-видимому, состоял главным образом в систематизации и логическом упорядочении разрозненных результатов его предшественников и современников, а его целью было дать такое связное убедительное изложение элементарной геометрии, чтобы каждое утверждение всего большого сочинения можно было свести к постулатам. Начала Евклида оказали огромное влияние на развитие математики. Евклиду также принадлежат работы по астрономии, оптике и теории музыки. г. Сумы 14.09.00 |
Похожие рефераты:
Развитие понятия "Пространство" и неевклидова геометрия
Евклідова і неевклідова геометрії
Шпаргалки по геометрии, алгебре, педагогике, методике математики (ИГПИ)
Использование компьютерных технологий в изучении наглядной геометрии
Изучение истории становления и развития методики преподавания математики в России
Психолого-педагогическое обоснование внеклассной работы по математике
Шпора к канд. минимуму по философии
Ответы на вопросы госэкзамена по философии философского факультета СПбГУ
Изучение геометрии на уроках математики в 5-6 классах
Развитие логического мышления учащихся при решении задач на построение