Скачать .docx | Скачать .pdf |
Реферат: Математический анализ
1.Счетные и несчетные множества. Счетность множества рациональных чисел.
Множество - совокупность некоторых объектов
Элементы множества - объекты составляющие множество
Числовые множества - множества элементами которых являются числа.
Задать множество значит указать все его элементы:
1 Способ: А={а: Р(а)} эти записи Читать- множество тех а таких что...
A={а-Р(а)} равноценны
Р(а) - предикат = высказывание об элементе, бывает ложно или истинно по отношению к кокретному элементу. Множество А состоит из тех а для которых предикат истина.
2 Способ : Конструирование из других множеств:
AÚB = {c: cÎA Ú cÎB}, AÙB = {c: cÎA Ù cÎB}, A\ B = {c: cÎA Ù сÏB}
U - универсальное множество (фиксированное)
U³A; U \ A = A’ = cA (A’ - дополнение множества A)
Свойства:
1. AÚ(BÚC)=(AÚB) ÚC - ассоциативность; AÚB=BÚA - коммутативность; AÚÆ=A; AÚU=U
2. AÚ (BÙC)=(AÚB) Ù(AÚC) & AÙ (BÚC)=(AÙB) Ú(AÙC) - дистрибутивность; АÙÆ=А
A” =A - закон исключающий третьего (AÚB)’=A’ÙB’; (AÙB)’=A’ÚB’; AÙA’= Æ
Иллюстрация свойств: Диаграммы Эйлера-Венна.
"=>" cÎ(AÚB)’ => cÏAÚB => cÏA & cÏB => cÎ A’ & cÎB’ => cÎA’ÙB’
"<=" cÎA’ÙB’ => cÎA’ & cÎB’ => cÏA & cÏB => cÏAÚB => cÎ(AÚB)’
Отображение множеств:
f:A®B (на множестве А задано отображение f со значением множества B)
aÎA; bÎB => b - образ элемента а при отображении f; a - прообраз элемента b при отображении f
Так как для каждого элемента из А ставится в соответствие элемент из В, значит А - область определения (Dom f=А), а область значенийB (Im f £B)
Для отображения задают: 1) способ 2) Dom 3) Im
Отображение f инъективно если f(x)=f(x’) => x=x’(разные переходят в разные)
Отображение f сурьективно если Im f =B(каждый переходит в каждый)
Если же отображение инъективно+сурьективно, то множества равномощны(содержат одинаковое кол-во элементов), а отображение биективно - взаимооднозначно.
Счетные множества - множества равномощные множеству натуральных чисел (N)
Теорема: Множество Q счетно.
Докозательство: Q=
Лемма 1 : " nÎN Z/n - счетно.
Каждому элементу из N надо взаимноднозначно сопоставить элемент Z/n:
10®0/n 5®-2/n
2®+1/n 6®+3/n
3®-1/n 7®-3/n
4®+2/n ...
Лемма 2 : Объединение счетного или конечного(не более чем счетного) числа счетных множеств - счетно.
А1={а11 , а12 , а13 ,...}
А2={а21 , а22 , а23 ,...}
А3={а31 , а32 , а33 ,...}
...
Применяем диагональную нумерацию (а11 - 1; а21 - 2; а12 - 3; а31 - 4; а22 - 5...) и таким образом взаимнооднозначно сопоставляем каждому элементу из таблицы его номер, значит объединение счетного или конечного числа счетных множеств - счетно.
Часть может быть равномощна целому: (-1,1) равномощен R (через полуокружность и лучи)
Из Леммы1 и Леммы 2 получаем: Множество рациональных чисел счетно
2. Определение действительного числа бесконечной десятичной дробью. Плотность Q в R.
Действительные числа - множество чисел вида [a0 ],а1 a2 а3 ... где а0 ÎZ а1 ,а2 ,а3 ,... Î{0,1,...,9}
Действительное число представляется в виде суммы целой и дробной части:
[ао ],а1 а2 а3 ...ак (0) = ао + а1 /10 + а2 /100 + ... +ак /10k = [ао ],а1 а2 а3 ...а’к (9), где а’к =ак-1
х=[хо ],х1 х2 х3 ...хк ...
у=[уо ],у1 у2 у3 ...ук ...
х’к - катое приближение икса с недостатком = [хо ],х1 х2 х3 ...хк
у”к - катое приближение игрека с избытком = [уо ],у1 у2 у3 ...ук + 1/10k
х’к+1 > х’к (х’к - монотонно растет)
у”к+1 £ у”k (у”k - не возрастает), т.к. у”к =[уо ],у1 у2 у3 ...ук + 1/10к
у”к+1 = [уо ],у1 у2 у3 ...ук ук+1 + 1/10к+1
у”к - у”к+1 = 1/10к - ук+1 + 1/10к+1 ³ 0
10 - ук+1 - 1 / 10к+1 ³ 0
9 ³ ук+1
Определение: 1) х > у <=> $ к: х’к > у”к
2) х = у <=> х’к не> у”к & у”к не> х’к
По определению получаем, что [1],(0)=[0],(9)
Свойства: 1)" х, у либо х<у, либо х>у, либо х=у
2) х>у & у>z => х>z
3) х не> х
Док-во (2): х>у у>z
х’к>у”к у’m>z”m
n=max{k;m}
х’n³х’к>у”к³у”n у’n³ у’m>z”m³z”n
у”n>у’n => х’n>z”n
Определение: Если АÌR и " х,уÎR $ аÎА: х<а<у, то А плотно в R
Теорема: Q плотно в R.
Доказательство: х > у х’к > у”к х ³ х’к у”к ³ у
х ³ х’к / 2 + х’к / 2 > х’к / 2 + у”к / 2 > у”к / 2 + у”к / 2 > у
Видим: х > х’к / 2 + у”к / 2 > у, где (х’к / 2 + у”к / 2)ÎQ
3.Несчетность множества действительных чисел.
Теорема: R несчетно.
Доказательство от противного:
1«х1 =[х1 ], х11 х12 х13 ... |
2«х2 =[х2 ], х21 х22 х23 ... | Пусть здесь нет девяток в периоде
3«х3 =[х3 ], х31 х32 х33 ... |
... | (*)
к«хк =[хк ], хк1 хк2 хк3 ... |
... |
Найдем число которого нет в таблице:
с=[с], с1 с2 с3 ...
[с]¹[х1 ] => с¹х1
с1 Ï {9;х21 } => с¹х2
с2 Ï {9;х32 } => с¹х3
...
ск Ï {9;хк+1к } => с¹хк
Таким образом С - число которое отсутствует в таблице (*)
5.Теорема Дедекинда о полноте R
Пусть 1) 0¹АÍR; 2) " aÎA, " bÎB: а<b; 3) АÈB=R, тогда $! сÎR: " aÎA, " bÎB: а£с£b
Замечания: 1) для Q и I не выполняется (между двумя иррациональными всегда одно рациональное следует из теоремы о плотности Q в R)
2) А называют нижним множеством сечения (нижний класс), В называют верхним множеством сечения (верхний класс)
Доказательство:
" aÎA, " bÎB: а<b => A ограничено сверху => $ SupA=m => "bÎB: b³m => B ограничено снизу =>$ InfB=n, m£n
Докажем, что m = n:
Пусть m<n, тогда из теоремы о плотности Q в R следует, что $ сÎQ: m<c<n => cÏА & cÏВ - невозможно по свойству 3 отсюда и из того, что m£n
следует, что m=n если обозначим m=n через c, то получим а£с£b
Докажем, что с единственное(от противного):
Пусть $с’¹с,с’>с (с’<с), так как c=n=InfB=m=SupA=>по опр-нию. "с’>с (с’<с) найдется такое b(a), что b<c’ (a>c’)-противоречие с "aÎA, "bÎB: а£с£b
8.Лемма о зажатой последовательности (Лемма о двух милиционерах)
Если $n0 : "n>n0 xN £yN £zN и $ Lim xN =x, $ Lim zN =z, причем x=z, то $ Lim yN =y => x=y=z.
Доказательство: "n>n0 xN £yN £zN
Возьмем произвольно Е>0, тогда $ n’: "n>n’ xN Î(х-Е,х+Е) & $ n”: "n>n” zN Î(х-Е,х+Е) => "n>max{n0 ,n’,n”} yN Î(x-E,x+E)
4. Верхние и нижние грани числовых множеств.
Определение: АÌR mÎR, m - верхняя (нижняя) грань А, если " аÎА а£m (а³m).
Определение: Множество A ограничено сверху (снизу), если существует такое m, что " аÎА, выполняется а£m (а³m).
Определение: SupA=m, если 1) m - верхняя грань A
2) " m’: m’<m => m’ не верхняя грань A
InfA = n, если 1) n - нижняя грань A
2) " n’: n’>n => n’ не нижняя грань A
Определение : SupA=m называется число, такое что: 1) " aÎA a£m
2) "e>0 $ aE ÎA, такое, что aE >a-e
InfA = nназывается число, такое что: 1) 1) " aÎA a³n
2) "e>0 $ aE ÎA, такое, что aE <a+e
Теорема: Любое, непустое ограниченное сверху множество АÌR, имееет точную верхнюю грань, причем единственную.
Доказательство:
Построим на числовой прямой число m и докажем что это точная верхняя грань А.
[m]=max{[a]:aÎA} [[m],[m]+1]ÇA¹Æ=>[m]+1 - верхняя грань A
Отрезок [[m],[m]+1] - разбиваем на 10 частей
m1 =max[10*{a-[m]:aÎA}]
m2 =max[100*{a-[m],m1 :aÎA}]
...
mк =max[10K *{a-[m],m1 ...mK-1 :aÎA}]
[[m],m1 ...mK , [m],m1 ...mK + 1 /10K ]ÇA¹Æ=>[m],m1 ...mK + 1/10K - верхняя грань A
Докажем, что m=[m],m1 ...mK - точная верхняя грань и что она единственная:
"к: [m’K ,m”K )ÇA¹0; "к "аÎА: а<m”K
Единственность(от противного):
аÎА, пусть а>m”K => $ к: а’K >m”K => а³а’K >m”K - это противоречит ограниченности => a£m
Точная верхняя грань:
Пусть l<m, тогда $ к: m’K >l”K , но так как "к [m’K ,m”K ) ÇA¹0 => $ аÎ[m’K ,m”K ) => а>l =>l - не верхняя грань.
Теорема: Любое, непустое ограниченное снизу множество АÌR, имееет точную нижнюю грань, причем единственную.
Рассмотрим множество B{-а: аÎА}, оно ограничено сверху и не пусто => $ -SupB=InfA
6.Бесконечно малые и бесконечно большие последовательности. Их свойства.
Определение: Последовательность аN называется бесконечно малой (бм) если ее предел равен нулю ("Е>0 $ n0 : n>n0 |аN |<Е)
Теорема: Сумма (разность) бм последовательностей является бм последовательностью.
Доказательство: Пусть Lim aN =Lim bN =0, cN =aN +bN , dN =aN -bN . Так как вне любой эпсилон-окрестности точки 0 (в частности окрестности Е/2) лежит конечное число членов последовательности aN , т.е. $ n’: "n>n’: |aN |<Е/2. Аналогично $ n”: "n>n”: |bN |<Е/2. При n>max{n’,n”} выполнены оба неравен ства |aN |<Е/2 & |bN |<Е/2 => при любом n> max{n’,n”} имеем: |cN |=|aN +bN |£|aN |+|bN |<E/2 + E/2 = E => |dN |=|aN -bN | £ |aN |+|bN |<E/2 + E/2 = E
Теорема: Произведение бм и ограниченной последовательности - бм последовательность.
Доказательство: Пусть aN - бм посл-ть, bN - ограниченная посл-ть zN =aN *bN .
Т.к. bN - ограниченная посл-ть, значит $ такое с: |bN |£с¹0
Т.к. aN - бм посл-ть, значит вне любой Е-окрестности точки 0 (в частности Е/с)лежит конечное число членов посл-ти aN , т.е. $ n0 : "n>n0 |aN |<Е/с.Таким образом "n>n0 : |zN |=|aN *bN |=|aN |*|bN |<Е/с * с=Е
Следствие: произведение бм посл-тей - тоже бм посл-ть
Теорема: Пусть aN - бм. Если $ n’: "n>n’ последовательностьть |bN |£aN => bN - бм
Доказательство: aN - бм => $ n”: "n>n”: |aN |<Е. Для n>=max{n’,n”} |bN |£|aN |<Е
Определение: Последовательность аN называется бесконечно большой (бб) если "Е>0 $ n0 : n>n0 |аN |>Е)
Теорема: Если aN - бм, то 1/aN - бб последовательностьть, обратное тоже верно.
Доказательство:
"=>" aN -бм=>вне любой эпсилон-окрестности точки 0 (в частности 1/Е) находится конечное число членов посл-ти, т.е. $n0 : "n>n0 |aN |<1/E =>1/|aN |>Е.
"<=" 1/|aN | - бб последовательность => "Е>0 $ n0 : "n>n0 1/|aN |>1/Е => |aN |<Е
Теорема: Пусть aN - бб. Если $ n’: "n>n’ последовательность bN ³|aN | => bN - бб.
Доказательство: aN - бб => $ n”: "n>n” |aN |>Е. Для n>max{n’,n”} bN ³|aN |>Е
7.Арифметика пределов
Предложение: Число а является пределом последовательности aN если разность aN -a является бм (обратное тоже верно)
Докозательство: Т.к. Lim aN =a, то |aN -a|<Е. Пусть aN =aN -a. |aN |=|aN -a|<Е
Обратное: Пусть aN =aN -a, т.к. aN - бм => |aN |£Е. |aN |=|aN -a|<Е
Теорема: Если Lim xN =x, Lim yN =y, то:
1. $ Lim (xN +yN ) и Lim (xN +yN )=х+у
2. $ Lim (xN *yN ) и Lim (xN *yN )=х*у
3. "n yN ¹0 & y¹0 => $ Lim (xN /yN ) и Lim(xN /yN )=х/у
Доказательство:
Пусть xN =х+aN , aN - бм; yN =у+bN , bN - бм
1) (xN +yN )-(х+у)=aN +bN (По теореме о сумме бм: aN +bN - бм => (xN +yn )-(х+у)-бм, дальше по предложению)
2) xN *yN - х*у = х*aN +у*bN +aN *bN (По теоремам о сумме бм посл-тей и * бм посл-тей на огр. посл-ти получаем: xN *yN - х*у - бм, дальше по предл-нию)
3) xN /yN - х/у = (у*aN -х*bN ) / (у*(у+bN ))= (у*aN -х*bN ) * 1/у * 1/уN доказательство сводится к доказательству утверждения: если уn - сходящаяся не к 0 посл-ть, то 1/уN тоже сходящаяся последовательность: Lim уN =y => по определению предела получаем $ n0 : "n>n0 |уn-у|<у/2 (Е=y/2), что равносильно неравенству: у-у/2<уN <у/2+у, откуда получаем: |уN |³уN >у/2.|уN |>у/2=>1/|уN |<2/у => "n: 1/|уN |£max{2/у, 1/у1 , 1/у2 ,...1/уno }
Теорема: Если хN сходится к х, yN сходится к у и $ n0 : "n>n0 последовательность хN £уN , то х£у
Доказательство(от противного): Пусть х>у. Из опр. предела "E>0 (в частности Е<(у-х)/2): $n’: "n>n’ |xN -x|<E и $n”: "n>n” |yN -y|<E. Получаем "n>max{n’,n”} все члены посл-ти xN будут лежать в Е-окрестности точки х, а все члены посл-ти уN будут лежать в Е-окрестности точки у, причем
(х-Е,х+Е)Ç(у-Е,у+Е)=Æ. И т.к мы предположили, что х>у, то "n>max{n’,n”}: хN >уN - противоречие с условием => х£у.
5. Определение предела последовательности и его единственность.
Определение: Пусть даны два множества Х и У. Если каждому элементу хÎХ сопоставлен по определенному правилу некоторый элемент уÎУ, то говорят, что на множестве Х определена функция f и пишут f:Х®У или х® (f(х)| хÎХ).
Определение: Последовательность-это ф-ция определенная на мн-ве N, со значениями во мн-ве R f:N®R. Значение такой ф-ции в (.) nÎN обозначают аN .
Способы задания:
1) Аналитический: Формула общего члена
2) Рекуррентный: (возвратная) формула: Любой член последовательности начиная с некоторого выражаетс через предидущие. При этом способе задани обычно указывают первый член (или нсколько начальных членов) и формулу, позволющкю определить любой член последовательности через предидущие. Пример: а1 =а; аN+1 =аN + а
3) Словесный: задание последовательности описанием: Пример: аN = n-ый десятичный знак числа Пи
Определение: Число а называется пределом последовательности аN , если "e>0$ n0: "n>n0 выполняется неравенство |аN -a|<e. Обозначение Lim aN =a.
Если не существует числа а , являющегося пределом посл-ти, то говорят что последовательность расходится, если существует, то сходится (к числу а ).
Геометрически существование предела последовательности означает, что любой интервал вида (а-e,а+e), называемый эпсилон-окрестностью точки а , содержит все члены последовательности аN начиная с некоторого номера, или что то же самое, вне любой эпсилон-окрестности точки а находится ко нечное число членов последовательности аN .
Определение: Число а назывется пределом посл-ти аN если вне всякой окрестности точки а содержится конечное число членов последова тельности.
Теорема: Сходящаяся последовательность имеет только один предел.
Доказательство(от противного):
Пусть последовательность аN имеет предел а и предел с , причем а ¹ с . Выберем такой эпсилон, чтобы пересечение эпсилон-окрестностей точек а и с бы ло пусто. Очевидно достаточно взять эпсилон меньше |а-с |/2. Вне окрестности точки а содержится конечное число членов последовательности => в ок рестности точки с содержится конечное число членов последовательности - противоречие с условием того, что с - предел последовательности.
Теорема: Сходящаяся последовательность ограничена.
Доказательство:
Пусть последовательность аN сходится к числу а . Возьмем какое-либо эпсилон, вне эпсилон-окрестности точки а лежит конечное число членов последо вательности, значит всегда можно раздвинуть окрестность так, чтобы все члены последовательности в нее попали, а это и означает что последователь ность ограничена.
Замечания: 1) Обратное не верно (аn=(-1)N , ограничена но не сходится)
2) Если существует предел последовательности аN , то при отбрасывании или добавлении конечного числа членов предел не меняется.
Порядковые свойства пределов:
Теорема о предельном переходе: Если Lim xN =x, Lim yN =y, $n0 : "n>n0 хN £yN , тогда x£y
Доказательство(от противного):
Пусть х>у => по определению предела $ n0 ’: "n>n0 ’ |хN -х|<E(берем Е<|х-у|/2): & $ n0 ”: "n>n0 ” |yN -y|<E. "n>max{n0 ’, n0 ”}: |хN -х|<|х-у|/2 & |уN -у|<|х-у|/2, т.е. получаем 2 интервала (у-Е,у+Е) & (х-Е,х+Е)], причем (у-Е,у+Е)Ç(х-Е,х+Е)=Æ. "n>max{n0 ’, n0 ”} хN Î(х-Е,х+Е) & уN Î(у-Е,у+Е) учитывая, что х>у получаем: "n>max{n0 ’, n0 ”} хN >yN - противоречие с условием.
Теорема: Если $n0 : "n>n0 aN £bN £cN и $ Lim aN =a, $ Lim cN =c, причем a=c, то $ Lim bN =b => a=b=c.
Доказательство: Возьмем произвольно Е>0, тогда $ n’: "n>n’ => cN <(a+E) & $ n”: "n>n” => (a-E)<aN . При n>max{n0 ,n’,n”} (a-E)<aN £bN £cN <(a+E), т.е. " n>max{n0 ,n’,n”}=>bN Î(a-E,a+E)
9. Предел монотонной последовательности
Определение: Последовательность называется монотонно возрастающей (убывающей) если " n1 >n2 (n1 <n2 ): xN1 ³xN2 (xN1 £xN2 ).
Замечание: Если xN1 строго больше (меньше) xN2 , тогда посл-ть называется строго монотонно возрастающая (убывающая) в случае нестрогости неравенства последовательность называется нестрого возрастающей (убывающей).
Теорема: Всякая ограниченная монотонная последовательность сходится.
Доказательство: Пусть хN ограниченная монотонно возрастающая последовательность. Х={xN : nÎN}
По теореме о существовании точной верхней грани у ограниченного множества имеем: $ SupX=x, "Е>0 $xE : (х-Е)<хE => $ n0 xNo >(х-E). Из монотон ности имеем: "n>n0 xN ³xNo >(x-E), получили xN £x=SupX, значит "n>n0 xN Î(x-E,х]<(x-E,x+E)
10.Лемма о вложенных промежутках
Определение: Пусть а,bÎR и а<b. Числовые множества вида 1-5 - называются числовыми промежутками:
1) Mножество хÎR: а£х£b (а<х<b) - называется отрезком (интервалом)
2) Mножество хÎR: а£х<b (а<х£b) - открытый справа (слева) промежуток
3) Mножество хÎR: а<х & x<b - открытый числовой луч
4) Mножество хÎR: а£х & х£b - числовой луч
5) Mножество хÎR - числовая прямая
Определение: Число b и а (если они существуют) называются правым и левым концами отрезка (далее промежутка), и его длина равна b-a
Лемма: Пусть aN монотонно возрастает, bN монотонно убывает, "n aN £bN и (bN -aN )-бм, тогда $! с: "n cÎ[aN ,bN ] (с Ç[aN ,bN ])
Доказательство:
aN £bN £b1 aN монтонно возрастает & aN £b1 => $ Lim aN =a
a1 £aN £bN bN монтонно убывает & a1 £bN => $ Lim bN =b
aN £a b£bN aN £bN => a£b
Lim (bN -aN )=b-a=0(по условию)=>a=b
Пусть c=a=b, тогда aN £c£bN
Пусть с не единственное: aN £c’£bN , с’¹с
aN £c£bN =>-bN £-c£-aN => aN -bN £c’-c£bN -aN => (По теореме о предельном переходе) => Lim(aN -bN )£Lim(c’-c)£Lim(bN -aN ) => (a-b)£Lim(c`-c)£(b-a) =>
0£lim(c`-c)£0 => 0£(c`-c)£0 => c’=c => c - единственное.
Перефразировка Леммы: Пусть имеется бесконечнаz посл-ть вложенных друг в друга промежутков (промежуток 1 вложен в промежуток 2 если все точки промежутка 1 принадлежат промежутку 2: [a1,b1],[a2,b2],...,[an,bn]..., так что каждый последующий содержится в предыдущем, причем длины этих промежутков стремятся к 0 при n®¥ lim(bN -aN )=0, тогда концы промежутков aN и bN стремятся к общему пределу с (с разных сторон).
42.Локальный экстремум. Теорема Ферма и ее приложение к нахождению наибольших и наименьших значений.
Определение: Пусть задан промежуток I=(a;b), точка x0 Î(a;b). Точка x0 , называется точкой локалниого min(max), если для всех xÎ(a;b), выполняется
f(x0 )<f(x) (f(x0 )>f(x)).
Лемма: Пусть функция f(x) имеет конечную производную в точке x0 . Если эта производная f‘(x0 )>0(f‘(x0 )<0), то для значений х, достаточно близких к x0 справа, будет f(x)>f(x0 ) (f(x)<f(x0 )), а для значений x, достаточно близких слева, будет f(x)<f(x0 ) (f(x)>f(x0 )).
Доказательство: По определению производной,.
Если f‘(x0 )>0, то найдется такая окрестность (x0 -d,x0 +d) точки x0 , в которой (при х¹x0 ) (f(x)-f(x0 ))/(x-x0 )>0. Пусть x0 <x<x+d, так что х-х0 >0 => из предыдущего неравенства следует, что f(x)-f(x0 )>0, т.е. f(x)>f(x0 ). Если же x-d<x<x0 и х-х0 <0, то очевидно и f(x)-f(x0 )<0, т.е. f(x)<f(x0 ). Ч.т.д.
Теорема Ферма: Пусть функция f(x) определена в некотором промежутке I=(a;b) и во внутренней точке x0 этого промежутка принимает наибольшее (наименьшее) значение. Если функция f(x) дифференцируема в точке x0 , то необходимо f‘(x0 )=0.
Доказательство: Пусть для определенности f(x) принимает наибольшее значение в точке x0 . Предположение, что f‘(x0 )¹0, приводит к противоречию: либо f‘(x0 )>0, и тогда (по лемме) f(x)>f(x0 ), если x>x0 и достаточно близко к x0 , либо f‘(x0 )<0, и тогда f(x)>f(x0 ), если x<x0 и достаточно близко к x0 . В обоих случаях f(x0 ) не может быть наибольшим значением функции f(x) в промежутке I=(a;b) => получили противоречие => теорема доказана.
Следствие: Если существует наибольшее (наименьшее) значение функции на [a;b] то оно достигается либо на концах промежутка, либо в точках, где производной нет, либо она равна нулю.
43.Теоремы Ролля, Лагранжа, Коши (о среднем значении).
Теорема Ролля
Пусть 1) f(x) определена и непрерывна в замкнутом промежутке [a;b]
2) сущестует конечная производная f’(x), по крайней мере в отткрытом промежутке (a;b)
3) на концах промежутка функция принимает равные значения: f(a)=f(b)
Тогда между a и b найдется такая точка c (a<c<b ), что f’(с)=0.
Доказательство: f(x) непрерывна в замкнутом промежутке [a;b] и потому, по второй теореме Вейерштрасса (Если f(x), определена и непрерывна в замкну том промежутке [a;b], то она достигает в этом промежутке своих точных верхней и нижней границ), принимает в этом промежутке как свое наибольшее значение M, так и свое наименьшее значение m.
Рассмотрим два случая:
1) M=m. Тогда f(x) в промежутке [a;b] сохраняет постоянное значение: неравенство m£f(x)£M в этом случае "x дает f(x)=M => f’(x)=0 во всем промежутке, так что в качестве с можно взять любую точку из (a;b).
2) M>m. По второй теореме Вейерштрасса оба эти значения функцией достигаются, но, так как f(a)=f(b), то хоть одно из них достигается в некоторой точ ке с между a и b . В таком случае из теоремы Ферма (Пусть функция f(x) определена в некотором промежутке I=(a;b) и во внутренней точке x0 этого промежутка принимает наибольшее (наименьшее) значение. Если функция f(x) дифференцируема в точке x0 , то необходимо f‘(x0 )=0) следует, что произ водная f’(с) в этой точке обращается в нуль.
Теорема Коши:
Пусть 1) f(x) и g(x) непрерывны в замкнутом промежутке [a;b] & g(b)¹g(a)
2) сущестуют конечные производные f’(x) и g’(x), по крайней мере в отткрытом промежутке (a;b)
3) g’(x)¹0 в отткрытом промежутке (a;b)
Тогда между a и b найдется такая точка c (a<c<b ), что
Доказательство: Рассмотрим вспомогательную функцию h(x)=[f(x) - f(a) -*(g(x) - g(a))]
Эта функция удовлетворяет всем условиям теоремы Ролля:
1) h(x) непрерывна на [a;b], как комбинация непрерывных функций
2) сущестует конечная производная h’(x) в (a;b), которая равна h’(x)=f’(x) -*g’(x)
3) прямой подстановкой убеждаемся h(a)=h(b)=0
Вследствие этого в промежутке (a;b) существует такая точка с , что h’(x)=0 => f’(c) -*g’(c) или f’(c) =*g’(c).
Разделив обе части равенства на g’(x) (g’(x)¹0) получаем требуемое равенство.
Теорема Лагранжа:
Пусть 1) f(x) определена и непрерывна в замкнутом промежутке [a;b]
2) сущестует конечная производная f’(x), по крайней мере в отткрытом промежутке (a;b)
Тогда между a и b найдется такая точка c (a<c<b ), что
Доказательство: По теореме Коши, полагая g(x)=x, имеем:
Промежуточное значение с удобно записывать в виде с=а+q(b-a), где qÎ(0;1). Тогда принимая x0 =a, (b-a)=h, мы получаем следующее следствие:
Следствие: Пусть f(x) дифференцируема в интервале I=(a;b), x0 ÎI, x0 +hÎI, тогда $ qÎ(0;1): f(x0 +h)-f(x0 )=f’(x0 +qh)*h ([x0 ;x0 +h] h>0, [x0+ h;x0 ] h<0)
11. Подпоследовательности. Теорема Больцано-Вейерштрасса.
Определение: Пусть аN некоторая числовая посл-ть и kN -строго возрастающая посл-ть N чисел. В результате композиции ф-ций n®aN и n®kN получа ем посл-ть aKn -которая наз. подпосл-тью посл-ти aN =>подпосл-сть - это либо сама посл-ть либо исходная посл-ть, из которой выбросили часть членов.
Теорема: Если Lim аN =а, то и Lim аKn =а.
Доказательство: Вне любой Е-окрестности точки а лежит конечное число членов последовательности аn и в частности последовательности.
Доказательство: Пусть для заданного Е нашлось n0 : "n>n0 |аN -а|<Е, ввиду того что kN ®¥ существует и такое n’, что при всех n>n’ kN >n0 тогда при тех же значениях n будет верно |аKn -а|<Е
Теорема Больцано-Вейерштрасса: Из всякой ограниченной последовательности можно выделить сходящуюся подпоследовательность.
Доказательство: хN - ограничена => "n: а£хN £b. Поделим промежуток [a,b] пополам, хотя бы в одной его половине содержится бесконечное множество членов посл-ти хN (в противном случае и во всем промежутке содержится конечное число членов посл-ти, что невозможно). Пусть [а1 ,b1 ] - та половиа, которая содержит бесконечное число членов посл-ти. Аналогично выделим на промежутке [а1 ,b1 ] промежуток [а2 ,b2 ] также содержащий бесконечное число членов посл-ти хN . Продолжая процесс до бесконечности на к -том шаге выделим промежуток [аK ,bK ]-также содержащий содержащий бесконеч ное число членов посл-ти хN . Длина к -того промежутка равна bK -аK = (b-a)/2K , кроме того она стремится к 0 при к®¥ и аK ³аK+1 & bK £bK+1 . Отсюда по лемме о вложенных промежутках $! с: "n аN £c£bN .
Теперь построим подпоследовательность:
хN1 Î[а1 ,b1 ]
хN2 Î[а2 ,b2 ] n2 >n1
. . .
хNK Î[аK ,bK ] nK >nK-1
а£хNk £b. (Lim aK =LimbK =c из леммы о вложенных промежутках)
Отсюда по лемме о зажатой последовательности Lim хNk =c - ч.т.д.
12.Верхний и нижний пределы последовательности.
xN - ограниченная последовательность =>"n аN £хN £bN
хNK ®х, так как хNK -подпоследовательность => "n а£хN £b =>а£х£b
х - частичный предел последовательности хN
Пусть М - множество всех частичных пределов.
Множество М ограничено (а£М£b) => $ SupM & $ InfM
Верхним пределом посл-ти xN называют SupM¹Sup{xN }: пишут Lim xN
Нижним предел ом посл-ти xn называют InfM¹Inf{xN }: пишут lim xN
Cуществование нижнего и верхнего пределов вытекает из определения.
Достижимость:
Теорема: Если хN ограничена сверху (снизу), то $ подпосл-ть хNK : предел которой равен верхнему (нижнему) пределу хN .
Доказательство: Пусть х=SupM=верхний предел хN
$ х’ÎМ: х-1/к<х’ (следует из того что х - SupМ), т.к. х’ÎМ => $ подпоследовательность хNS ®х’ => "Е>0 (в частности Е=1/к) $ s0 : "s>s0 =>
х’-1/к<хNS <х’+1/к
х -1/к-1/к<х’-1/к<хNS <х’+1/к<х+1/к (т.к.х-1/к<х’ и х’<х=SupМ)
х-2/к<хNS <х+1/к
Берем к=1: х-2<хNS <х+1, т.е $ s0 : "s>s0 это неравенство выполняется берем член посл-ти хNS с номером больше s0 и нумеруем его хN1
k=1: х-2/1<хN1 <х+1/1
k=2: х-2/2<хN2 <х+1/2 n1 <n2
...
k=k: х-2/к<хNK <х+1/к nK-1 <nK
При к®¥ хNK ®х
13.Фундаментальные последовательности .
Определение: Последовательность {аN } - называется фундаментальной, если "Е>0 $ n0 : "n>n0 и любого рÎN выполнено неравенство |аN +р-аN |<Е. Геометрически это означает что "Е>0 $ n0 , такой что расстояние между любыми двумя членами посл-ти, с большими чем n0 номерами, меньше Е.
Критерий Коши сходимости посл-ти : Для того, чтобы данная посл-ть сходилась необходимо и достаточно, чтобы она являлась фундаментальной.
Доказательство:
Необходимость: Пусть Lim xN =x, тогда "Е>0 $ n0 : "n>n0 |хN -х|<Е/2. n>n0 , n’>n0 |хN -хN’ |=|хN -х+х-хN’ |<|хN -х|+|х-хN’ |<Е/2+Е/2<Е
Достаточность: Пусть хN - фундаментальная
1) Докажем что хN ограничена: Е1 =1998 $ n0 : |хN -хN’ |<Е, n>n0 , n’>n0
"n>n0 |хN -хN0 |<Е1 х N0 -1998<хN <х N0 +1998 => хN - ограничена
2) По теореме Больцано-Вейерштрасса
$ подпосл-ть хNK ®х. Можно выбрать к настолько большим, чтобы |хNK -х|<Е/2 и одновременно nк >n0 . Следовательно (из фунд-ти) |хN -хNK |<Е/2 =>
|хNK -х|<Е/2 => х-Е/2<хNK <х+Е/2 => |хN -хNK |<Е/2 => хNK -Е/2<хN <хNK +Е/2 => х-Е<хN <х+Е => |хN -х|<Е
14.Бином Ньютона для натурального показателя.Треугольник Паскаля.
Формула Ньютона для бинома:
nÎN
Разложение Паскаля
(Записав коэффициенты в виде пирамиды - получим треугольник Паскаля)
...
*: к=0,1,...,n
Доказательство(по индукции):
1) n=0 - верно (1+х)0 =1 =>(1+х)0 =
2) Пусть верно для n: докажем что это верно и для n+1:
= Ч.т.д
16.Последовательности (во всех пределах n ®¥ )
1) Lim= 0 (p>0)
- это означает что, мы нашли такое n0 =: "n>n0 ||<E
2) Lim=1
xN = - 1
=1+xN
n=(1+xN )n
n=
xN 2 <2/(n-1)
При n®¥®0 => xN ®0 (Лемма о зажатой последовательности)=>Lim=Lim (1+xN )=1+0=1
16.Последовательность (1+1/n)n и ее предел.
xN =; yN =; zN =yN +
xN монотонно возрастает: докажем:
xN =(1+1/n)n =1+ n/1!*1/n + n*(n-1)/2!*1/n2 +... < 1 + 1/1! + 1/2!+...+1/n! = yN =>yN <zN <3
Воспользуемся неравенством Бернулли (1+x)n ³1+nx, x>-1) (доказывается по индукции):
x=1/n => (1+1/n)n ³1+n/n=2
Получили: 2 £ xN <3 => xN - ограничена, учитывая что xN - монотонно возрастает => xN - сходится и ее пределом является число е .
17. Последовательности (во всех пределах n ®¥ )
1) Lim=1, a>0
a) a³1:
xN =xN+1 ==> $ Lim xN =x
xN+1 =xN *
xN =xN+1 *
xN =xN+1 *xN *(n+1)
Lim xN =Lim (xN+1 *xN *(n+1)) => x = x*x => x = 1
б) 0<a<1 b=1/a xN =
Lim=1 b=1/a =>= 1/=> Lim= 1/1 = 1
2) Lim = 0, a>1
xN =xN+1 =
т.к. Lim= Lim=Lim=1
=> $ n0 : "n>n0 xn+1/xn<1 => СТ x=limxn
xN+1 =xN *
Lim xN+1 = Lim xN * => x = x*1/a => x=0
Докажем, что если xN ®1 => (xN )a ®1:
a) "n: xN ³1 и a³0
(xN ) [ a ] £(xN )a <(xN )[ a ]+1 => по лемме о зажатой посл-ти, учитывая что Lim (xN )[ a ] =Lim (xN )[ a ]+1 =1 (по теореме о Lim произведения) получаем Lim (xN )a =1
б) "n: 0<xN <1 и a³0
yN =1/xN => yn>1 Lim yN =lim1/xN =1/1=1 => (по (а)) Lim (yN )a =1 => lim 1/(xN )a =1 => Lim (xN )a =1
Объединим (а) и (б):
xN ®1 a>0
xN1 ,xN2 ,...>1 (1)
xM1 ,xM2 ,...<1 (2)
Вне любой окрестности точки 1 лежит конечное число точек (1) и конечное число точек (2) => конечное число точек xN .
в) a<0
(xN )a =1/(xN )- a a<0 => -a>0 => по доказанному для a>0 получаем, Lim 1/(xN )- a = 1 => Lim (xN ) a = 1
1 5. Доказательство формулы e=...
yN =; zN =yN +
1) yN монотонно растет
2) yN <zN
3) zN -yN ®0
4) zN монотонно убывает
Доказателство:
zN -zN+1 = yN + - yN+1 -= +-=
2=y1 <yN <zN <z1 =3
e = Lim yN = Lim zN - по лемме о вложенных промежутках имеем: yN <e <zN = yN + 1/(n*n!)
Если через qN обозначить отношение разности e - yN к числу 1/(n*n!), то можно записать e - yN = qN /(n*n!), заменяя yN его развернутым выражением получаем e = yN + qN /(n*n!), qÎ(0,1)
Число e иррационально:
Доказательство(от противного): Пусть e =m/n, mÎZ, nÎN
m/n = e = yN + qN /(n*n!)
m*(n-1)!= yN *n! + qN /n, где (m*(n-1)! & yN *n!)ÎZ, (qN /n)ÏZ => противоречие
23. Определения предела функции по Коши и по Гейне. Их эквивалентность.
Определение по Коши: f(x) сходится к числу А при х®х0 если "Е>0 $d>0: 0<|х-х0 |<d & хÎDf => |f(x)-А|<Е
Определение по Гейне: f(x) сходится к числу А при х®х0 если " последовательности хN ®х0 , хN ¹х0 f(xN )®А
Теорема: Два определения эквивалентны:
Д-во: Для эквивалентности определений достаточно доказать, что из сходимости по Коши следует сходимость по Гейне и из сходимости по Гейне следует сходимость по Коши.
1) (К)=>(Г)
"Е>0 $d>0: 0<|х-х0 |<d & хÎDf => |f(x)-А|<Е - определение Коши
хN ®х0 , хN ¹х0 , т.к. хN ®х0 => $ n0 : "n>n0 0<|xN -x0 |<Е (Е=d) => 0<|xN -x0 |<d => по определению Коши |f(xN )-А|<Е
2) (Г)=>(К) Воспользуемся законом логики: Если из отрицания B следует отрицание А, то из А следует В:
Таким образом нам надо доказать что из отрицания (К) => отрицание (Г)
Отрицание (К): $ Е>0: "d >0 $ x: 0<|x-x0 |<d => |f(x)-A|³E
Отрицание (Г): $ хN ®х0 , хN ¹х0 : |f(xN )-A|³E
$ хN ®х0 , хN ¹х0 => $ n0 : "n>n0 0<|xN -x0 |<Е (Е=d) => по отрицанию определения Коши |f(xN )-А|³Е
Для ф-ции х®f(х) определенной на интервале (а,+¥), определяется предел при хN ®¥ следующим образом: limf(х) при хN ®¥ = Limf(1/t) t®+0
(если последний существует). Таким же образом определяются Lim f(х) при хN ®-¥ = Lim f(1/t) t®-0 и хN ®¥ = lim f(1/t) t®0
24. Односторонние пределы. Классификация разрывов. Определение непрерывности.
Lim(х0 ±|h|) при h®0 - называется односторонним правым (левым пределом) ф-ции f(x) в точке х0
Теорема: Пусть интервал (x0 -d,x0 +d)\{x0 } принадлежит области определения ф-ции для некоторго d>0. Тогда Lim f(x) в точке х0 существует <=> когда cуществуют правый и левый предел f(x) в точке х0 и они равны между собой.
Необходимость: Пусть предел f(х) существует и равен А => "Е>0 $d >0: -d<х-х0 <d => |f(х)-А|<Е, т.е. $ такое d, что как только х попадает в d-окрестность точки x0 сразу f(х) попадает в интервал (f(х)-А,f(х)+А). Если х попадает в интервал (0, x0 +d) => x попадает в интервал (x0 -d,x0 +d) => f(х) попадает в интервал (f(х)-А,f(х)+А) => правый предел существует и он равен А. Если х попадает в интервал (x0 -d,0) => x попадает в интервал (x0 -d,x0 +d) => f(х) попадает в интер вал (f(х)-А,f(х)+А) => левый предел существует и он равен А.
Достаточность: Lim (х0 ±|h|) при h®0: Lim(х0 +|h|) = Lim(х0 -|h|)=А
"Е>0 $d’ >0: 0<х-х0 <d’ => |f(х)-А|<Е
"Е>0 $d” >0: -d”<х-х0 <0 => |f(х)-А|<Е
Получили "Е>0 $ 0<d=min{d’,d”}: -d <х-хо<d => |f(х)-А|<Е
Определение: Функция f(x) называется непрерывной в точке х0 если при х®х0 Lim f(х)=f(х0 ). Заменяя в определениях предела фнкции по Коши и по Гейне А на f(х0 ) получаем определения по Коши и по Гейне непрерывности ф-ции f(x) в точке х0. Поскольку в опр-нии по Коши нер-во |f(х)-f(х0 )|<Е выполнено и при х=х0 => в определении можно снять ограничение х¹х0 => получим второе равносильное определение:
Определение 2: Функция f(x) называется непрерывной в точке х0 , если "Е>0 $d>0: -d <х-хо<d => |f(х)-f(а)|<Е
Аналогично сняв ограничение х¹х0 - получим определение по Гейне:
Определение 3: Функция f(x) называется непрерывной в точке х0 , если " посл-ти хN ®х0 , f(xN )®f(a)
Если при х®х0 limf(х)¹f(х0 ), то говорят что функция f(x) имеет разрыв в точке х0 . Это происходит если:
а) f(х) неопределена в точке х0
б) Предел f(х) в точке х0 не существует
в) f(х) определена в х0 и limf(х) в точке х0 существует но равенство Дшь f(х)=f(а) не выполняется
Различают:
1) точки разрыва I рода, для которых существуют конечные односторонние пределы (либо они неравны друг другу либо равны, но неравны f(х0 )
2) точки разрыва II рода - не существует хотя бы один односторонний предел.
Если правый и левый предел в х0 совпадают, то х0 называют устранимой точкой разрыва.
Если хотя бы один из односторонних пределов равен бесконечности, то х0 - точка бесконечного разрыва.
Пусть x0 - точка разрыва, x0 называется изолированной, если в некоторой окрестности этой точки других точек разрыва нет.
Если значение правого (левого) предела в точке х0 совпадает со значением f(x0 ), то f(x) называется непрерывной справа (слева).
Если предел f(x) справа (слева) в точке х0 не существует, а предел слева (справа) существует и равен значению f(х0 ), то говорят что функция f(x) имеет в точке х0 разрыв справа (слева). Такие разрывы называют односторонними разрывами f(x) в точке х0 .
Функция х®f(x) называется непрерывной на множестве Х если она непрерывна в каждой точке х этого множества.
26. Арифметика пределов функций. Порядковые свойства пределов.
Теорема: Все пределы в точке х0 : Пусть ф-ции f:Х®R и g:Х®R (ХÍR) таковы, что Lim f(x)=F, Lim g(x)=G, тогда
1) Lim f(x) ± Lim g(x) = F±G
2) Lim f(x)*Lim g(x) = F*G
3) Если G¹0 и g(x)¹0 Limf (x) / Lim g(x) = F/G
Доказательство:
1) "Е>0(в частности Е/2) $d’>0: -d’<х-х0 <d’ => |f(х)-F|<Е & $d”>0: -d”<х-х0 <d” => |g(х)-G|<Е
Получили "Е>0 $ 0<d=min{d’,d”}: -d<х-х0 <d =>-Е/2 - Е/2<f(х)-F+g(х)-G<Е/2 + Е/2 => |(f(х)+g(х))-(F+G)|<Е
2) Пусть посл-ть хN ®х0 (хN ¹х0 , xN ÎX), тогда в силу определения предела по Гейне имеем: при n®¥ Lim f(xN )=F & Lim g(xN )=G по теореме об арифметике пределов посл-тей получаем: при n®¥ Lim f(xN )*g(xN )=Lim f(xN )*Lim g(xN )= F*G => по определению предела по Гейне при х®х0 Lim f(x)*Lim g(x)=F*G
3) Пусть посл-ть хN ®х0 (хN ¹х0 , xN ÎX), тогда в силу определения предела по Гейне имеем: при n®¥ Lim f(xN )=F & Lim g(xN )=G по теореме об арифметике пределов посл-тей получаем: при n®¥ Lim f(xN )/g(xN )=Lim f(xN )/Lim g(xN )=F/G => по определению предела по Гейне при х®х0 Lim f(x)/Lim g(x)=F/G, G¹0 и g(x)¹0.
Порядковые свойства пределов:
Теорема: Если " хÎX: f(x)£g(x), при х®х0 A=Lim f(x), B=Lim g(x), то A£B
Доказательство(от противного):
Пусть A>B => из определения предела следует (берем 0<Е<|A-B|/2): $d’>0: |х-х0 |<d’ => |f(x)-A|<E & $d”>0: |х-х0 |<d” => |g(х)-B|<Е.
Получили, что $ 0<d=min{d’;d”}: |х-х0 |<d => |f(x)-A|<|A-B|/2 & |g(х)-B|<|A-B|/2, учитывая что А>В и что (А-Е,А+Е)Ç(В-Е,В+Е)=Æ, получаем что для
хÎ(х0 -d, х0 +d) f(x)>g(x) - противоречие с условием.
Теорема: Если " хÎX: f(x)£g(x)£h(x) и при х®х0 Lim f(x)=А=Lim h(x), то Lim g(x)=А
Доказательство:
"Е>0 $d’>0: |х-х0 |<d’ => A-E<f(x) & $d”>0: |х-х0 |<d” => h(х)<A+Е.
Получили, что $ 0<d=min{d’;d”}: |х-х0 |<d => A-E<f(x) & h(x)<A+E, так как " хÎX: f(x)£g(x)£h(x) => A-E<f(x)£g(x)£h(x)<A+E => A-E<g(x)<A+E
27. Непрерывность тригонометрических функций. Предел (Sin x)/x при х ®0.
1) Sin x:
Lim Sin x = Sin x0 (при х®х0 )
|Sin x-Sin x0 |=2*|Sin((x-x0 )/2)|*|Cos((x+x0 )/2)| < 2*|(x-x0 )/2|=|x-x0 | => -|x-x0 |<Sin x-Sin x0 <|x-x0 | при х®х0 => -|x-x0 |®0 & |x-x0 |®0 => (по теореме о порядковых св-вах предела) (Sin x-Sin x0 )®0
2) Cos x:
Lim Cos x = Cos x0 (при х®х0 )
Cos x = Sin (П/2 - x) = Sin y; Cos x0 = Sin (П/2 - x0 ) = Sin y0
|Sin y-Sin y0 |=2*|Sin((y-y0 )/2)|*|Cos((y+y0 )/2)| < 2*|(y-y0 )/2|=|y-y0 | => -|y-y0 |<Sin y-Sin y0 <|y-y0 | при y®y0 -|y-yo|®0 & |y-yo|®0 => (Sin y-Sin y0 )®0 => производим обратную замену: [Sin (П/2 - x)-Sin(П/2 - x0 )]®0 => (Cos x-Cos x0 )®0
3) Tg x - непрерывная ф-ция исключая точки х = П/2 +2Пк, кÎZ
4) Ctg x - непрерывная ф-ция исключая точки х = Пк, кÎZ
Теорема: Lim (Sin x)/x=1 (при х®0), 0<x<П/2
Доказательство:
Составляем нер-во для площадей двух треугольников и одного сектора (Sсект=х*R2 ) откуда и получаем Sinx<x<Tgx, 0<x<П/2. => Cos x < (Sin x)/x < 1. Используем теорему о порядковых св-ах предела ф-ции: Lim Cos x£Lim (Sin x)/x£1 при x®0, 0<x<П/2. Испльзуем непрерывность Сos1£Lim (Sin x)/x£1 => Lim (Sin x)/x =1, 0<x<П/2
28.Теорема о промежуточном значении непрерывной функции.
Определение: Пусть а,bÎR и а<b. Числовые множества вида 1-5 - называются числовыми промежутками:
1) Mножество хÎR: а£х£b (а<х<b) - называется отрезком (интервалом)
2) Mножество хÎR: а£х<b (а<х£b) - открытый справа (слева) промежуток
3) Mножество хÎR: а<х & x<b - открытый числовой луч
4) Mножество хÎR: а£х & х£b - числовой луч
5) Mножество хÎR - числовая прямая
Теорема: Пусть f(x) непрерывна на [a,b] и с - произвольное число лежащее между f(а) и f(b), тогда существует х0 Î[a,b]: f(х0 )=c.
Доказательство: g(х)=f(х)-с (g(x) - непрерывна). g(а)*g(b)<0
Поделим промежуток [a,b] пополам, если в точке деления g((а+b)/2)=0, то полагая х0 =(а+b)/2 видим что теорема доказана (g(х0 )=f(х0 )-с=0 => f(х0 )=с). Пусть в точке деления функция g(x) в ноль не обращается, тогда выбираем из двух полученных промежутков тот, для которого g(а1 )*g(b1 )<0, делим его пополам если в точке деления функция g(x) обращается в ноль => теорема доказана. Пусть в точке деления функция g(x) в ноль не обращается, тогда выбираем из двух полученных промежутков тот для которого g(а2 )*g(b2 )<0... продолжая процесс до бесконечности мы либо получим на каком-либо шаге что ф-ция g(x) обращается в ноль, что означает что теорема доказана, либо получим бесконечное число вложенных друг в друга промежутков. Для n -го промежутка [aN ,bN ] будем иметь: g(aN )<0, g(bN )>0, причем длина его равна bN -aN =(b-a)/2n ®0 при n®¥. Построенная посл-ть промежутков удов летворяет условию Леммы о вложенных промежутках => $ точка x0 из промежутка [a,b], для которой Lim aN =Lim bN = x0 . Покажем, что x0 -удовлетворяет требованию теоремы: g(aN )<0, g(bN )>0 => переходим к пределам: Lim g(aN )£0, Lim g(bN )³0, используем условие непрерывности: g(x0 )£0 g(x0 )³0 => g(x0 )=0 => f(х0 )-c=0 => f(х0 )=c
Следствие: Если функция f(x) непрерывна на промежутке Х, то множество У=f(Х)={f(х):хÎХ} также является промежутком (Непрерывная ф-ция перево дит промежуток в промежуток.)
Доказательство: Пусть у1 ,у2 ÎУ; у1 £у£у2 , тогда существуют х1 ,х2 ÎХ: у1 =f(х1 ), у2 =f(х2 ). Применяя теорему к отрезку [х1 ,х2 ]ÍХ (если х1 <х2 ) и к отрезку
[х2 ,х1 ]ÍХ (если х2 <х1 ) получаем, что у=f(с) при некотором с => У - удовлетворяет определению промежутка.
29. Предел суперпозиции функций. Непрерывность суперпозиции непрерывных функций
Определение: Суперпозицией (композицией) двух функций f и g называется функция f(g(x)) - определенная для всех х принадлежащих области опреде ления ф-ции g таких что значения ф-ции g(x) лежат в области определения ф-ции f.
Теорема: Если Lim g(x)=b (при x®a) и f - непрерывна в точке b, то Lim f(g(x))=f(b) (при x®a)
Доказательство:
Пусть xN : xN ¹a - произвольная посл-ть из области определения ф-ции х®f(g(x)), сходящаяся к а, тогда последовательность yN : yN =g(xN ) сходится к b в силу опр. по Гейне. Но тогда Lim f(yN )=f(b) (n®¥) в силу опр. непрерывности ф-ции f по Гейне. Т.о. Lim f(g(xN ))=Lim f(yN )=f(b) (n®¥). Заметим что в посл-ти yN - некоторые (и даже все члены) могут оказаться равными b. Тем не менее в силу нашего замечания о снятии ограничения yN ¹b в определении непрерывности по Гейне мы получаем f(yN )®f(b)
Следствие: Пусть функция g непрерывна в точке x0 , а функция f непрерывна в точке у0 =g(x0 ), тогда ф-ция f(g(x)) непрерывна в точке х0 .
30. Обращение непрерывной монотонной функции.
Определение: Функция f обратима на множестве Х если уравнение f(х)=у однозначно разрешимо относительно уÎf(Х).
Определение: Если функция f обратима на множестве Х. То функция однозначно сопоставляющая каждому уо такое х0 что f(х0 )=у0 - называется обратной к функции f.
Теорема: Пусть строго возрастающая (строго убывающая) ф-ция f определена и непрерывна в промежутке Х. Тогда существует обратная функция f’,
определенная в промежутке Y=f(Х), также строго возрастающая (строго убывающая) и непрерывная на Y.
Доказательство: Пусть f строго монотонно возрастает. Из непрерывности по следствию из Теоремы о промежуточном значении следует, что значения непрерывной функции заполняют сплошь некоторый промежуток Y, так что для каждого значения у0 из этого промежутка найдется хоть одно такое значение х0 ÎХ, что f(х0 )=у0 . Из строгой монотонности следует что такое заначение может найтись только одно: если х1 > или <х0 , то соответственно и f(х1 )> или <f(х0 ). Сопоставля именно это значение х0 произвольно взятому у0 из Y мы получим однозначную функцию: х=f’(у) - обратную функции f. Функция f`(y) подобно f(x) также строго монотонно возрастает. Пусть y’<y” и х’=f`(у’), х”=f`(у”), так как f` - обратная f => у’=f(х’) и у”=f(х”) Если бы
было х’>х”, тогда из возрастания f следует что у’>у” - противоречие с условием, если х’=х”, то у’=у” - тоже противоречие с условием.
Докажем что f` непрерывна: достаточно доказать, что Lim f`(у)=(у0 ) при у®у0 . Пусть f`(у0 )=х0 . Возьмем произвольно Е>0. Имеем "уÎУ: |f`(у)-f`(у0 )|<Е <=> х0 -Е<f`(у)<х0 +Е <=> f(х0 -Е)<у<f(х0 +Е) <=> f(х0 -Е)-у0 <у-у0 <f(х0 +Е)-у0 <=> -d’<у-у0 <d”, где d’=у0 -f(х0 -Е)>у0 -f(х0 )=0, d”=f(х0 +Е)-у0 >f(х0 )-у0 =0,
полагая d=min{d’,d”} имеем: как только |у-у0 |<d => -d’<у-у0 <d” <=> |f`(у)-f`(у0 )|<Е
Непрерывность степенной функции с рациональным показателем:
Определение: Степенной функцией с Q показателем называется функция хM/N - где mÎZ, nÎN. Очевидно степенная функция явл-ся cуперпозицией непре рывных строго монотонно возрастающих ф-ций хM и х1/M => ф-ция хM/N - непрерывна при х>0. Если х=0, то хM/N = 1, а следовательно непрерывна.
Рассмотрим ф-цию хN , nÎN: она непрерывна так как равна произведению непрерывных функций у=х.
n=0: хN тождественно равно константе => хN - непрерывна х-N =1/хN , учитывая что:
1) 1/х - непрерывная функция при х¹0
2) хN (nÎN) - тоже непрерывная функция
3) х-N =1/хN - суперпозиция ф-ий 1/х и хN при х¹0
По теореме о непрерывности суперпозиции ф-ций получаем: х-N - непрерывная при х¹0, т.о. получили что хM mÎZ - непрерывная ф-ция при х¹0. При х>0ф-ция хN nÎN строго монотонно возрастает и ф-ция хN непрерывна=>$ функция обратная данной, которая также строго монотонно возрастает (при m>0), очевидно этой функцией будет функция х1/N
Тригонометрические функции на определенных (для каждой) промежутках обратимы и строго монотонны =>имеют непрерывные обратные функции => обратные тригонометрические функции - непрерывны
31. Свойства показательной функции на множестве рациональных чисел.
Определение: Показательная функция на множестве рациональных чисел: Функция вида аX , а>0, а¹1 xÎQ.
Свойства: для mÎZ nÎN
1) (аM )1/N = (а1/N )M
(аM )1/N =(((а1/N )N )M )1/N = ((а1/N )N*M )1/N = (((а1/N )M )N )1/N = (а1/N )M
2) (аM )1/N =b <=> аM =bN
3) (аM*K )1/N*K =(аM )1/N
(аM*K )1/N*K =b <=> аM*K =bN*K <=> аM =bN <=> (аM )1/N =b
Из свойств для целого показателя вытекают св-ва для рационального если обозначить: aM/N =(аM )1/N =(а1/N )M ,a-M/N =1/aM/N , а0 =1
Св-ва: x,yÎQ
1) aX * aY = aX+Y
aX * aY =b; x=m/n, y=-k/n => aM/N * 1/aK/N = b => aM/N = b * aK/N => aM = bN * aK => aM-K = bN => a(M-K)/N = b => aX+Y = b
2) aX /aY = aX-Y
3) (aX )Y =aX*Y
(aX )Y =b; x=m/n, y=k/s => (aM/N )K/S =b => (aM/N )K =bS => (a1/N )M*K =bS => (aM*K )1/N =bS => aM*K =bS*N => a(M*K)/(S*N) =b => aX*Y =b
4) x<y => aX <aY (a>1) - монотонность
z=y-x>0; aY =aZ+X => aY -aX =aZ+X -aX =aX *aZ -aX =aX *(aZ -1) => если aZ >1 при z>0, то aX <aY .
z=m/n => aZ =(a1/N )M => a1/N >1 => (a1/N )M >1 => aX *(aZ -1)>1, (a>1 n>0)
5) при x®0 aX ®1 (xÎR)
Т.к. Lim a1/N =1 (n®¥), очевидно, что и Lim a-1/N =Lim1/a1/N =1 (n®¥). Поэтому "Е>0 $n0 : "n>n0 1-E<a-1/N <a1/N <1+E, а>1. Если теперь |x|<1/n0 , то
a-1/N <aX <a1/N => 1-E<aX <1+E. => Lim aX =1 (при x®0)
32.Определение и свойства показательной функции на множестве действительных чисел.
Определение: Показательная функция на множестве действительных чисел: Функция вида аX , а>0, а¹1 xÎR.
Свойства: x,yÎR.
1) aX * aY = aX+Y
xN ®x, yN ®y => aXn * aYn = aXn+Yn => Lim aXn * aYn = Lim aXn+Yn => Lim aXn * lim aYn = Lim aXn+Yn => aX * aY = aX+Y
2) aX / aY = aX-Y
3) (aX )Y =aX*Y
xN ®x, yK ®y => (aXn )Yk = aXn*Yk => (n®¥) (aX )Yk =aX*Yk =>(k®¥) (aX )Y =aX*Y
4) x<y => aX <aY (a>1) - монотонность.
x<x’ x,x’ÎR; xN ®x x’N ®x’ xN ,x’N ÎQ => xN <x’N => aXn < aX’n => (n®¥) aX £aX’ - монотонна
x-x`>q>0 => aX-X’ ³ aQ >1 => aX-X’ ¹1 => aX<aX’ - строго монотонна
5) при x n®0 aX ®1
Т.к. Lim a1/N =1 (n®¥), очевидно, что и Lim a-1/N =Lim1/a1/N =1 (n®¥). Поэтому "Е>0 $n0 : "n>n0 1-E<a-1/N <a1/N <1+E, а>1. Если теперь |x|<1/n0 , то
a-1/N <aX <a1/N => 1-E<aX <1+E. => Lim aX =1 (при x®0)
6) aX - непрерывна
Lim aX =1 (n®0) из (5) - это означает непрерывность aX в точке 0 => aX -aXo = aXo (aX-Xo - 1) при х®x0 x-x0 n®0 => aX -x0 n®1 => при х®x0 lim(aX - aXo )=
Lim aXo *Lim(aX-Xo - 1) = x0 * 0 = 0 => aX - непрерывна
33.Предел функции (1+x)1/X при x ® 0 и связанные с ним пределы.
1) Lim (1+x)1/X = e при x®0
У нас есть Lim (1+1/n)n = e при n®¥
Лемма: Пусть nK ®¥ nK ÎN Тогда (1+1/nK )Nk ®e
Доказательство:
"E>0 $k0 : "n>n0 0<e-(1+1/n)n <E => nK ®¥$ k0 : "k>k0 => nK >n0 => 0<e-(1+1/nk )Nk <E
Lim (1+xK )1/Xk при x®0+:
1/xK =zK +yK , zK ÎN => 0£yK <1 => (1+1/zK+1 )Zk <(1+xK )1/Xk < (1+1/zK )Zk+1 =(1+1/zK )Zk *(1+1/zK )=>(1+1/zK+1 )Zk =(1+1/zK+1 )Zk+1 )/(1+1/zK+1 ) => (1+1/zK+1 )Zk+1 /(1+1/zK+1 ) < (1+xK )1/Xk < (1+1/zK )Zk *(1+1/zK ) k®¥ учитывая, что: (1+1/zK )®1 (1+1/zK+1 )®1 => получаем:
e£Lim (1+xK )1/Xk £e => Lim (1+xK )1/Xk =e => Lim (1+x)1/X =e при x®0+
Lim (1+xK )1/Xk при x®0-:
yK =-xK ®0+ => доказываем аналогично предыдущему => получаем Lim (1+x)1/X =e при x®0-
Видим что правый и левый пределы совпадают => Lim (1+x)1/X =e при x®0
2) n®¥ lim (1+x/n)N = (lim (1+x/n)N/X )X = eX
3) x®xa aÎR - непрерывна
xa =(eLn x ) a =ea *Ln x
непр непр непр непр
x®Ln x®a*Ln®a *Ln x => x®ea *Ln x
4) x®0 Lim (Ln (1+x))/x = Lim Ln (1+x)1/X = Ln e = 1
4’) x®0 Lim LogA (1+x)1/X = 1/Ln a
5) x®0 Lim (eX -1)/x = {eX -1=t} = Lim t/Ln(1+t) => (4) = 1/1 = 1
5’) x®0 Lim (aX -1)/x = Ln a
6) x®0 Lim ((1+x)a -1)/x = Lim ([e a *Ln (1+x) -1]/[a*Ln(1+x)]*[a*Ln (1+x)]/x = 1*a*1= a
34.Теорема Вейрштрасса об ограниченности непрерывной функции на отрезке.
Функция х®f(x) называется непрерывной на множестве Х если она непрерывна в каждой точке х этого множества.
Теорема: Функция непрерывная на отрезке [a,b], является ограниченной на этом отрезке (1 теорема Вейрштрасса) и имеет на нем наибольшее и наимень шее значение (2 теорема Вейрштрасса).
Доказательство: Пусть m=Sup{f(x):xÎ[a,b]}. Если f не ограничена сверху на [a,b], то m=¥, иначе mÎR. Выберем произвольную возрастающую посл-ть (сN ), такую что Lim cN =m. Т.к. "nÎN: cN <m то $ xN Î[a,b]: cN <f(xN )£m. xN - ограничена => $ xKn ®a. Т.к. a£xКn £b => aÎ[a,b].
Для mÎR - по теореме о том, что предел произвольной подпосл-ти равен пределу посл-ти получаем cKn ®m.
Для m=+¥ - по Лемме о том что всякая подпосл-ть бб посл-ти явл-ся бб посл-тью получаем cKn ®m. Переходя к пределу в нер-вах cKn <f(xKn )£m, получим
Lim f(xKn )=b n®¥, но в силу непрерывности ф-ции f имеем Lim f(xKn )=f(a) => f(a)=m - что и означает что функция f ограничена сверху и достигает верхней
граница в точке a. Существование точки b=Inf{f(x):xÎ[a,b]} доказывается аналогично.
35. Равномерная непрерывность. Ее характеризация в терминах колебаний.
Определение: "Е>0 $d>0: "х’,х”: |х’-х”|<d => |f(x’)-f(x”)|<Е => функция называется равномерно непрерывной
Отличие от непрерывности состоит в том, что там d зависит от Е и от х”, то здесь d не зависит от х”.
Определение: Ф-ция f - не равномерно непрерывна, если $ Е>0 "d >0: $ х’,х”: |х’-х”|<d => |f(x’)-f(x”)|³Е>0
Рассмотрим множество {|f(x’)-f(x”)|:|x’-x”|<d, x’,x”ÎI}, IÍDf.
Верхняя точная граница этого множества обозначаемое Wf(d) называется колебанием функции f на множестве I вызванное колебаниями аргумента:
1/х - Wf(d) = +¥; Sin x - Wf(d) = 1
Таким образом равномерно непрерывную функцию можно определить по другому: "Е>0 $ d>0: Wf(d)£Е Lim Wf(d)=0 d®0
36.Теорема Кантора о равномерной непрерывности непрерывной функции на отрезке.
Теорема: Если f непрерывна на [a,b], то она равномерно непрерывна на [a,b].
Доказательство(от противного):
Пусть f не равномерно непрерывна на [a,b]=>$Е>0 "d>0 $х’,х”: |х’-х”|<d=>|f(x’)-f(x”)|³Е. Возьмем d =1/к, кÎN $хK , х’K Î[a,b]: |хK -х’K |<1/к |f(xK )-f(x’K )|³E
Т.к хK - ограничена => из нее по теореме Больцано-Вейерштрасса можно выделить подпосл-ть xKs сходящуюся к х0 . Получаем: |хKs -х’Ks |<1/к
хKs -1/k<х’Ks <хKs -1/k по Лемме о зажатой посл-ти х’Ks ®х0 kS ®¥ |f(xKs )-f(x’Ks )|³E кS ®¥ => 0³E - противоречие с условием.
37.Определение производной и дифференциала.
Касательная в точке x0 к функции x®f(x): возьмем еще одну точку х соединим x0 и х - получим секущую. Касательной назовем предельное положение секущей при х®x0 , если это предельное положение существует. Т.к. касательная должна пройти ч/з точку (x0 ,f(x0 ) => уравнение этой касательной (если она не вертикальна) имеет вид y=k*(x-x0 )+f(x0 ). Необходимо только опр-ть наклон k касательной. Возьмем произвольное число Dх¹0 так, чтобы x0 +DхÎХ. Рассмотрим секущую МО М, МО (x0 ,f(x0 )), М(x0 +Dх,f(x0 +Dх)). Уравнение секущей имеет вид: у=к(Dх)(х-x0 )+f(x0 ), где k=f((x0 +Dх)-f(x0 ))/Dх - наклон секущей. Если существует Lim к(Dх) при Dх®0, то в качестве искомого наклона k возьмем это предел. Если Lim к(Dх)=¥ при Dх®0, то перепишем уравнение секу щей в виде x=(1/k(Dх))*(y-f(x0 ))+x0 перейдя к пределам при Dх®0, получим x=x0 (Lim x=Lim x0 Dх®0 => x = Lim x0 )
Определение: Производным значением функции f в точке х0 называется число f’(х0 )=Lim (f(x0 +Dх)-f(x0 ))/ Dх x®x0 , если этот предел существует.
Геометрически f’(х0 ) - это наклон невертикальной касательной в точке (x0 ,f(x0 )). Уравнение касательной y=f’(x0 )*(x-x0 )+f(x0 ) . Если Lim (f(x0 +Dх)-f(x0 ))/Dх=¥Dх®0, то пишут f`(x0 )=¥ касательная в этом случае вертикальна и задается уравнением х=x0 . f`(x0 )=lim(f(x0 +Dх)-f(x0 ))/Dх x®x0 =>(f(x0 +Dх)-f(x0 ))/Dх=f’(x0 )+a(x), a(x)®0 при x®x0 . f(x0 +Dх)-f(x0 )=f`(x0 )*Dх+a(x)*Dх учитывая, что x0 +Dх=x и обозначая a(x)*Dх через o(x-x0 ) получим f(x)=f’(x0 )*(x-x0 )+f(x0 )+o(x-x0 ). Необхо димо заметить, что o(x-x0 ) уменьшается быстрее чем (x-x0 ) при x®x0 (т.к. o(x-x0 )/(x-x0 )®0 при x®x0 )
Определение: Ф-ция f называется дифференцируемой в точке x0 если $сÎR: в некоторой окрестности точки x0 f(x)=С(x-x0 )+f(x0 )+o(x-x0 )
Теорема: Функция диффференцируема в точке x0 <=> $ f’(x0 )
Доказательство:
<=: f(x)=f’(x0 )*(x-x0 )+f(x0 )+o(x-x0 ) => f`(x0 )=C
=>: f(x)=C(x-x0 )+f(x0 )+o(x-x0 ) => (f(x)-f(x0 ))/(x-x0 )=C+o(x-x0 )/(x-x0 )=C+a(x), a(x)®0 при x®x0 .
Переходим к пределу при x®x0 => Lim (f(x)-f(x0 ))/(x-x0 )=C+0=C => Слева записано производное значение ф-ции f => по определению C=f`(x0 )
Определение: Если функция х®f(x) дифференцируема в точке x0 , то линейная функция Dх®f’(x0 )*Dх называется дифференциалом функции f в точке x0 и
обозначается df(x0 ). (диф-ал ф-ции х®х обозначают dx). Т.о. df(x0 ):Dх®f`(x0 )*Dх и dх:Dх®Dх. Отсюда df(x0 )=f’(x0 )*dх => df(x0 )/dх: Dх®f`(x0 )*Dх/Dх=f’(x0 ) при Dх¹0. В силу этого пишут также f’(x0 )=df(x0 )/dх - обозначение Лейбница. График диф-ла получается из графика касательной переносом начала коор динат в точку касания.
Теорема: Если ф-ция f диф-ма в точке x0 , то f непрерывна в точке x0 .
Докозательство: f(x)=f(x0 )+f’(x0 )*(x-x0 )+o(x-x0 )®f(x0 ) при x®x0 => f непрерывна в точке x0 .
Определение: Нормаль к ф-ции f в точке x0 : это прямая перпендикулярная касательной к ф-ции f в точке x0 . Учитывая что тангенс угла наклона нормали равен tg(90+угол наклона касательной)= -Ctg(наклона касательной), получаем уравнение нормали: y=-1/f’(x0 )*(x-x0 )+f(x0 )
38. Арифметика диф-цирования. Производные тригонометрических функций.
Теорема: Пусть ф-ции f и g дифференцируемы в точке x0 , тогда ф-ции f+g, f*g и f/g (при g(x0 )¹0) дифференцируемы в точке x0 и:
1) (f+g)’(x0 )=f’(x0 )+g’(x0 )
2) (f*g)’(x0 )=f’(x0 )*g(x0 )+f(x0 )*g’(x0 )
3) (f/g)’(x0 )=(f’(x0 )*g(x0 )-f(x0 )*g’(x0 ))/g(x0 )2
Доказательство:
1) Df(x0 )=f(x0 +Dx)-f(x0 )
Dg(x0 )=g(x0 +Dx)-g(x0 )
D(f+g)(x0 )=Df(x0 )+Dg(x0 )=f(x0 +Dx)-f(x0 )+g(x0 +Dx)-g(x0 )
D(f+g)(x0 )/Dx=(f(x0 +Dx)-f(x0 )+g(x0 +Dx)-g(x0 ))/Dx=(f(x0 +Dx)-f(x0 ))/Dx+(g(x0 +Dx)-g(x0 ))/Dx®f’(x0 )+g’(x0 ) при Dx®0
2)D(f*g)(x0 )=f(x0 +Dx)*g(x0 +Dx)-f(x0 )*g(x0 )=(f(x0 )+Df(x0 ))*(g(x0 )+D(x0 ))-f(x0 )*g(x0 )=g(x0 )*Df(x0 )+f(x0 )*Dg(x0 )+Df(x0 )*Dg(x0 ) D(f*g)(x0 )/Dx=g(x0 )*(Df(x0 )/Dx)+f(x0 )*(Dg(x0 )/Dx)+(Df(x0 )/Dx)*(Dg(x0 )/Dx)*Dx®f’(x0 )*g(x0 )+f(x0 )*g’(x0 ) при Dx®0
3) Ф-ция g - дифференцируема в точке x0 => Ф-ция g - непрерывна в точке x0 => "Е>0 (Е=|g(x0 )|/2) $d>0: |Dx|< d => |g(x0 +Dx)-g(x0 )|<|g(x0 )|/2.
g(x0 )-|g(x0 )|/2<g(x0 +Dx)<g(x0 )+|g(x0 )|/2. Рассматривая функцию g при таких x (|Dx|<d) видим что g(x0 +Dx)¹0.
Рассмотрим разность (1/g(x0 +Dx)-1/g(x0 ))/ Dx = -(g(x0 +Dx)-g(x0 ))/Dx*g(x0 +Dx)*g(x0 ) ® -g’(x0 )/g(x0 )2 при Dx®0
(f/g)’(x0 )=(f*1/g)’(x0 ) => (2) = f’(x0 )*1/g(x0 )+f(x0 )*(1/g)’(x0 )=f`(x0 )*1/g(x0 )+f(x0 )*(-g’(x0 )/g(x0 )2 )=(f’(x0 )*g(x0 )-f(x0 )*g’(x0 ))/g(x0 )2
Теорема: Пусть f=Sin(x), g=Cos(x)
1) Sin’(x0 ) = Cos (x0 )
2) Cos’(x0 ) = -Sin (x0 )
Доказательство:
1) Df/Dx=(Sin(x0 +Dx)-Sin(x0 ))/Dx = Sin(Dx/2)/(Dx/2) * Cos(x0 +Dx/2) ® Сos x0 при Dx®0
2) Dg/Dx=(Cos(x0 +Dx)-cos(x0 ))/Dx=Sin(Dx/2)/(Dx/2)*-Sin(x0 +Dx/2) ® -Sin x0 при Dx®0
Производные Tg и Ctg выводятся непосредственно из производных для Sin и Cos по формулам дифференцирования.
39. Производная суперпозиции.Производные степенной, показательной и логарифмической функции.
Теорема: Пусть функция g диф-ма в точке x0 , а ф-ция f диф-ма в точке y0 =g(x0 ), тогда ф-ция h(х)=f(g(х)) диф-ма в точке x0 и h’(x0 )=f`(y0 )*g’(x0 )
Доказательство:
Dy=y-y0 , Dx=x-x0 , Df(y0 )=f’(y0 )*Dy+o(Dy), Dg(xo)=g’(xo)*Dx+o(Dx), y=g(x0 +Dx)
Dh(x0 )=f(g(x0 +Dx))-f(g(x0 ))=f(y)-f(y0 )=f’(y0 )*Dy+o(Dy)=f’(y0 )*(g(x0 +Dx)-g(x0 ))+o(Dg)==f’(y0 )*(g’(x0 )*Dx+o(Dx))+o(Dy)= f’(y0 )*g’(x0 )*Dx+f’(y0 )*o(Dx)+o(Dy)
Dh(x0 )/Dx=f’(y0 )*g’(x0 )+r, r=f`(y0 )*o(Dx)/Dx+o(Dy)/Dx
r=f`(y0 )*o(Dx)/Dx+o(Dy)/Dx=f`(y0 )*(a(x)*Dx)/Dx+(a’(x)*Dy)/Dx=f’(y0 )*a(x)+a’(x)*Dy/Dx®f’(y0 )*0 + 0*g’(y0 ) при Dx®0 (a(x)®0 a’(x)®0)
Производная:
1) xa =a*xa -1
Lim (Dy/Dx)=lim((x+Dx)a -xa )/Dx = Lim xa-1 * ((1+Dx/x)a-1 )/Dx/x. Используя замечательный предел x®0 Lim ((1+x)a -1)/x=a, получим Dx®0
Lim xa-1 *Lim((1+Dx/x)a-1 )/Dx/x = a*xa-1
2) (aX )’=aX *Ln a (x®aX )’=(x®eX *Ln a)’
x®eX *Ln a - композиция функций x®еX и x®x*Ln a обе непрерывны на R => (x®aX )’=(x®е X *Ln a)’=(x®еX *Ln a)’*(x®x*Ln a)’=aX *Ln a
Д-во : (eX )’=eX
Lim(Dy/Dx)=Lim(eX+ D X -eX )/Dx=LimeX *(eD X -1)/Dx, используя зам-ный предел при x®0 Lim(eX -1)/x=1, получим при Dx®0 Lim(Dy/Dx)=eX
3) (LogA (x))’=1/x*Ln a
Lim(Dy/Dx) = Lim (LogA (x+Dx) - LogA (x))/Dx = Lim 1/x*LogA (1+Dx/x)/Dx/x, используя замечательный предел при x®0 Lim LogA (1+x)/x=1/Ln a, получим
Lim (Dy/Dx) = Lim 1/x*Lim LogA (1+Dx/x)/Dx/x=1/x*Ln a
40. Производная обратной функции. Производные обратных тригонометрических функций.
Предложение: Если производная обратной функции g для ф-ции f существует в точке y0 , то g’(y0 )=1/f’(x0 ), где y0 =f(x0 )
Доказательство: g(f(x))=x g’(f(x))=1
g’(f(x0 ))=g’(f(x0 ))*f’(x0 )=1, g’(f(x0 ))=g(y0 )=1/f’(x0 )
Теорема: Пусть ф-ция f строго монотонно и непрерывно отображает (a,b) в (а,b) тогда $ обратная ей ф-ция g, которая строго монотонно и непрерывно отображает (а,b) в (a,b). Если f диф-ма в точке x0 Î(a,b) и f’(x0 )¹0, то g диф-ма в точке y0 =f(x0 ) и g’(y0 )=1/f’(x0 )
Доказательство:
Возьмем произвольную последовательность сходящуюся к y0 : yN ®y0 , yN ¹y0 => $ посл-ть xN : xN =g(yN ), f(xN )=yN
g(yN )-g(y0 )/yN -yO = xN -xO /f(yN )-f(yO ) = 1/f(yN )-f(yO )/xN -xO ® 1/f’(xo) при n®¥, получили при xN ®xO g(yN )-g(yO )/yN -yO ®1/f’(xO ) => g’(уO )=1/f’(xO )
Производные:
1) x®Arcsin x по теореме имеем Arcsin’x=1/Sin’y, где Sin y=x при условии, что Sin’y<0, получаем (используя производную синуса): Arcsin’x=1/Cos y, т.к. Arcsin: [-1,1]®[-П/2,П/2] и Cos:[-П/2,П/2]®[0,1], то Cos y³0 и, значит Arcsin’x = 1/Cos y = 1/(1-Sin2 y)1/2 = 1/(1-x2 )1/2
2) x®Arccos’x = -1/(1-x2 )1/2
3) x®Arctg’x = 1/1+x2
4) x®Arcctg’x= -1/1+x2
41.Производные и дифференциалы высших порядков.
Определение: Если ф-ция f диф-ма в некоторой окрестности точки xO , то ф-ция f’(x):x®f’(x) в свою очередь может оказаться диф-мой в точке xO или даже в некоторой ее окрестности. Производная ф-ции f’(x) - называется второй производной (или производной порядка 2) ф-ции f в точке xO и обознача ется f”(x). Аналогично определяется третья и четвертая производная и так далее. Для единообразия обозначаем через fN (xO ) - производную порядка n функции f в точке xO и при n=0 считаем f0 (xO )=f(xO ).
Замечание: Cуществование производной порядка n требует того чтобы существовала производная пордка (n-1) уже в некоторой окрестности точки xO (следует из теоремы о связи диф-ти и непрерывности), в таком случае функция x®fN-1 (x) непрерывна в точке xO , а при n³2 все производные порядка не выше (n-2) непрерывны в некоторой окрестности точки xO .
Определение: Дифференциалом ф-ции f порядка n в точке xO называют функцию dх®fN (x)*dх и обозначают dN f(x). Таким образом dN f(x):dх®fN (x)dxN .
Так как fN (x)dхN :dх®fN (x)dxN , то dN f(x)=fN (x)dхN. В силу этого соотношения производную fN (x) обозначают также dN f(x)/dхN
Инвариантность:
Пусть функции у=f(х) и х=g(t) таковы, что из них можно составить сложную функцию у=f(g(t)). Если существуют производные у’(х) и х’(t) то cуществует производная у’(t)=у’(х)*х’(t). Если х считать независимой переменной, то диф-ал dy=y’(х)dx. Перейдем к независимой переменной t, учитывая что у’(t)=у’(х)*х’(t): dy=y’(t)dt=y’(x)*х’(t)dt. x’(t)dt=dх => dy=y’(t)dt=у’(х)*х’(t)*dt=у’(x)dх - видим что при переходе к новой независимой переменной форма дифференциала может быть сохранена - это свойство называют инвариантностью формы первого дифференциала.
Пусть функции у=f(х) и х=g(t) таковы, что из них можно составить сложную функцию у=f(g(t)) Если существуют производные у’(х) и х’(t) то существует производная у’(t)=у’(х)*х’(t) и по доказанному ее первый диф-ал по t можно написать в форме dy=y’(х)dх, где dх=x’(t)dt. Вычисляем второй диф-ал по t: d2 y=d(y’(x)dx)=dy’(x)dx+y’(x)d(dx). Снова пользуясь инвариантностью первого диф-ла dy’(x)=у”(х2 )dx => d2 y=у”(х2 )dx2 x+y’(x)*d2 x, в то время как при независимой переменной х второй диф-ал имел вид д2 y=у’(х2 )*dx2 x => неинвариантность формы второго диф-ла.
Формула Лейбница:
f(x)=u(x)*v(x)
Доказательство по индукции.
1) n=0 верно
2) Предположим для n - верно => докажем для (n+1)
Если для u и v $(n+1) производные, то можно еще раз продифференцировать по х - получим:
Объединим теперь слагаемые обеих последних сумм, содержащие одинаковые произведения производных функций u и v (сумма порядков производ ных в таком произведении, как легко видеть, равна всегда (n+1)). Произведение u0 *vN+1 входит только во вторую сумму с коэффициентом С0 N =1. Произведение uN+1 *v0 входит только в первую сумму с коэффициентом СN N =1. Все остальные произведения входящие в эти суммы имеют вид uK *vN+1-K . Каждое такое произведение встречается в первой сумме с номером k = i-1, а во второй i=k. Сумма соотв. коэффициентов будет =>
получаем fN+1 (x)=u0 *vN+1 ++ uN+1 *v0 =
44. Нахождение промежутков постоянства монотонности функции и ее экстремумов.
Теорема: Пусть f(x) непрерывна в замкнутом промежутке [a;b] и диф-ма в открытом промежутке (a;b), если f’(x)=0 в (a;b), то f(x)-const в [a;b].
Докозательство:
Пусть x£b, тогда в замкнутом промежутке в [a;x] по теореме Лагранжа имеем: f(x)-f(a)=f’(a+q(x-a))(x-a) 0<q<1 => т.к. по условию f’(x)=0 в (a;b), то f’(a+q(x-a))=0 => f(x)=f(a)=Const для все хÎ(a;b).
Теорема: Пусть f(x) непрерывна в замкнутом промежутке [a;b] и диф-ма в открытом промежутке (a;b), тогда:
1) f монотонно возрастает(убывает) в нестрогом смысле в (a;b) <=> f’(x)³0(f’(x)£0) в (a;b).
2) Если f’(x)>0(f’(x)<0) в (a;b) и f непрерывна в [a;b], то f строго возрастает(убывает) в [a;b].
Доказательство:
1) Пусть f непрерывна на [x’,x”] x’, x”Î(a;b), тогда по теореме Лагранжа (f(x”)-f(x’))/(x”-x’)=f’(c), сÎ(x’,x”). По условию имеем f’(x)³0(f’(x)£ 0) в (a;b) => f’(c)³0(f’(c)£ 0) => f(x”)³f(x’)( f(x”)£f(x’)) => f(x) возрастает(убывает) в нестрогом смысле в (a;b).
2) Используя аналогичные (1) рассуждения, но заменяя неравенства на строгие получим (2).
Следствие: Если xO -критическая точка непрерывной ф-ции f. f’(x) в достаточно малой d-окр-ти точки xO имеет разные знаки, то xO -экстремальная точка.
Достаточное условие экстремума: (+)®xO ®(-) => локальный min, (-)®xO ®(+) => локальный max
46. Выпуклые множества Rn. Условие Иенсена. Выпуклые функции.Неравенство Йенсена.
Определение: Множество М выпукло <=> если " А,ВÎМ [А,В]ÌМ
[А,В]ÌМ => [А,В]={А+t(В-А):tÎ[0,1]} => А(1-t)+tВÎМ
[А,В]ÌМ => А,ВÎМ; l1 =1-t, l2 =t => l1 +l2 =1 l1 ,l2 ³0 => l1 А+l2 ВÎМ
Рассмотрим точки: А1 ,А2 ,...АN ÎМ l1 ,l2 ³0 S(i=1,n): lI = 1
Докажем что S(i=1,n): lI *АI ÎМ
Д-во: По индукции:
1) n=1, n=2 - верно
2) Пусть для (n-1) - верно => докажем для n:
а) lN =1 => приравниваем l1 =...=l N-1 =0 => верно
б) lN <1 l1 *А1 +...+ lN-1 *А N-1 + l N *А N = (1-l N )((l1 /1-l N )*А1 +...+(lN-1 /1-l N )*А N-1 ) + l N *А N = (1-l N )*B + l N *А N
BÎМ - по индуктивному предположению А N ÎМ - по условию=>(1-l N )*B + l N *А N ÎМ Ч.т.д
График Гf = {(x,f(x)):хÎDf}, Надграфик UPf={(x,y):y>f(x)}
Определение: Функция f выпукла <=> UPf - множество выпукло.
Условие Йенсена: АI ÎМ lI ³0 S(i=1,n): lI =1 => S(i=1,n): lI *АI ÎМ, xI ³0, f(xI )£yI => S(i=1,n): lI *АI = (SlI *xI ;SlI *yI ) => f(SlI *xI )£SlI *yI
Неравенство Йенсена: АI ÎМ lI ³0 SlI =1f(SlI *xI )£SlI *f(xI )
47.Критерий выпуклости дифференцируемой функции.
Теорема: Пусть f определена в интервале (a;b), тогда следующие условия эквивалентны: 1) f - выпукла в (a;b) ~ 2) "x’,xO ,x”Î(a;b) x’<xO <x” =>
(f(xO )-f(x’))/(xO -x’)£(f(x”)-f(xO ))/(x”-xO ). Геометрический смысл: при сдвиге вправо угловой коэффициент секущей растет.
Доказательство:
“=>” AB: k=(y-f(x’))/(xO -x’)³(f(xO )-f(x’))/(xO -x’) => y³f(xO ); AB: k=(f(x”)-y)/(x”-xO )£(f(x”)-f(xO ))/(x”-xO ) =>y£f(xO )
(f(xO )-f(x’))/(xO -x’)£(f(x”)-f(xO ))/(x”-xO )
“<=”