Скачать .docx | Скачать .pdf |
Реферат: Синтез оптимальных уравнений
БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ
Механико-математический факультет
Кафедра теоретической механики и робототехники
Курсовая работа
Тема: Синтез оптимальных уравнений
Студента 3-го курса 13 группы
Павловского Сергея Александровича
Научный руководитель
Лютов Алексей Иванович
Минск 2001г.
ОГЛАВЛЕНИЕ
Г л а в а I. Введение ................................................................................................ 2
§ 1. Задача об оптимальном быстродействии.................................................... 2
1.Понятие об оптимальном быстродействии.................................................. 2
2.Задача управления........................................................................................ 3
3.Уравнения движения объекта....................................................................... 5
4.Допустимые управления............................................................................... 6
§ 2. Об основных направлениях в теории оптимальных процессов.................. 7
5.Метод динамического программирования.................................................. 7
6.Принцип максимума..................................................................................... 9
§ 3. Пример. Задача синтеза............................................................................... 12
7.Пример применения принципа максимума............................................... 12
8.Проблема синтеза оптимальных управлений............................................ 14
Г л а в а II. Линейные оптимальные быстродействия ..................................... 15
§ 4 Линейная задача оптимального управления............................................... 15
9.Формулировка задачи................................................................................ 15
10.Принцип максимума................................................................................. 16
11.Принцип максимума — необходимое и достаточное условие
оптимальности............................................................................................... 17
12.Основные теоремы о линейных оптимальных быстродействиях........... 18
§ 5. Решение задачи синтеза для линейных задач второго порядка................ 18
13.Упрощение уравнений линейного управляемого объекта...................... 18
Г л а в а III. Синтез оптимальных управлений для уравнения второго
порядка .......................................................................................................... 20
§ 6. Решение задачи синтеза в случае комплексных собственных значений...... 20
14.Задача синтеза для малых колебаний маятника...................................... 20
Список используемой литературы....................................................................... 23
Г л а в а I
ВВЕДЕНИЕ
Управляемые объекты прочно вошли в нашу повседневную жизнь и стали обиходными, обыденными явлениями. Мы видим их буквально на каждом шагу: автомобиль, самолёт, всевозможные электроприборы, снабжённые регуляторами (например, электрохолодильник), и т. п. Общим во всех этих случаях является то, что мы можем «управлять» объектом, можем в той или иной степени влиять на его поведение.
Обычно переход управляемого объекта из одного состояния в другое может быть осуществлён многими различными способами. Поэтому возникает вопрос о выборе такого пути, который с некоторой (но вполне определённой) точки зрения окажется наиболее выгодным. Это и есть (несколько расплывчато сформулированная) задача об оптимальном управлении.
§ 1. Задача об оптимальном быстродействии
1.
Понятие об управляемых объектах.
Рассмотрим прямолинейное движение автомобиля. В каждый момент времени состояние автомобиля можно характеризовать двумя числами: пройденным расстоянием s и скоростью движения v.
Эти две величины меняются с течением времени, но не самопроизвольно, а сообразно воле водителя, который может по своему желанию управлять работой двигателя, увеличивая или уменьшая развиваемую этим двигателем силу F.
Таким образом, мы имеем три связанных между собой параметра: s
,v
,F
,показанных на схеме (рис. 1). Величины s
,v
,характеризующие состояние автомобиля, называют его фазовыми координатами
,а величину F
– управляющим параметром
.
Если мы будем рассматривать движение автомобиля по плоскости (а не по прямой), то фазовых координат будет четыре (две «географические» координаты и две компоненты скорости), а управляющих параметров – два (например, сила тяги двигателя и угол поворота руля). У летящего самолёта можно рассматривать шесть фазовых координат (три пространственные координаты и три компоненты скорости) и несколько управляющих параметров (тяга двигателя, величины, характеризующие положение рулей высоты и направления, элеронов).
Разумеется, в проводимом ниже математическом исследовании мы будем иметь дело не с самими реальными объектами, а с некоторой математической моделью. Сказанное выше делает естественным следующее математическое описание управляемого объекта. Состояние
объекта задаётся (в каждый момент времени) n
числами x
1
,
x
2
,…,
xn
,
которые называются фазовыми координатами
объекта. Движение
объекта заключается с математической точки зрения в том, что его состояние с течением времени изменяется, т. е. x
1
,
x
2
,…,
xn
являются переменными величинами (функциями времени). Движение объекта происходит не самопроизвольно. Им можно управлять; для этого объект снабжён «рулями», положение которых характеризуется (в каждый момент времени) r
числами u
1
,
u
2
,…,
ur
; эти числа называются управляющими параметрами
. Рулями можно «манипулировать», т. е. по своему желанию менять (конечно, в допустимых пределах) управляющие параметры u
1
,
u
2
,…,
ur
.
Иначе говоря, мы можем по желанию выбрать функции u
1
(
t),
u
2
(
t),…,
ur
(
t),
описывающие изменение управляющих параметров с течением времени. Мы будем предполагать (как это обычно и бывает), что, зная фазовое состояние объекта в начальный момент времени и выбрав управляющие функции u
1
(
t),
u
2
(
t),…,
ur
(
t)
(для t>
t
0
), мы можем точно и однозначно рассчитать поведение объекта для всех t>
t0
,т. е. можем найти функции x
1
(
t),
x
2
(
t),…,
xn
(
t),
характеризующие изменение фазовых координат с течением времени. Таким образом, изменение фазовых координат x
1
,
x
2
,…,
xn
уже не зависит непосредственно от нашего желания, но на движение объекта мы всё же можем в той или иной мере воздействовать, выбирая по своему желанию управляющие функции u
1
(
t),
u
2
(
t),…,
ur
(
t)
.
Управляемый объект, о котором только что шла речь, в теории автоматического управления принято изображать так, как это показано на рис. 2. Величины u 1 , u 2 ,…, ur (управляющие параметры) часто называют также «входными переменными», а величины x 1 , x 2 ,…, xn (фазовые координаты) – «выходными переменными». Говорят ещё, что «на вход» объекта поданы величины u 1 , u 2 ,…, ur , а «на выходе» мы получаем величины x 1 , x 2 ,…, xn . Разумеется, на рис. 2 показано лишь условное обозначение управляемого объекта и никак не отражено его «внутреннее устройство», знание которого необходимо, чтобы выяснить, каким образом, зная управляющие функции u 1 ( t), u 2 ( t),…, ur ( t) , можно вычислить изменение фазовых координат x 1 ( t), x 2 ( t),…, xn ( t) .
Величины u 1 , u 2 ,…, ur удобно считать координатами некоторого вектора u= (u 1 , u 2 ,…, ur ), также называемого управляющим параметром (векторным). Точно так же величины x 1 , x 2 ,…, xn удобно рассматривать как координаты некоторого вектора (или точки) x= (x 1 , x 2 ,…, xn ) в n – мерном пространстве с координатами x 1 , x 2 ,…, xn . Эту точку называют фазовым состоянием объекта, а n – мерное пространство, в котором в виде точек изображаются фазовые состояния, называется фазовым пространством рассматриваемого объекта. Если объект таков, что его фазовое состояние характеризуется только двумя фазовыми координатами x 1 , x 2 (см. рис. 1), то мы будем говорить о фазовой плоскости . В этом случае фазовые состояния объекта изображаются особенно наглядно.
Итак, в векторных обозначениях рассматриваемый управляемый объект можно изобразить так, как показано на рис. 3. Входящая величина u=
(u
1
,
u
2
,…,
ur
) представляет собой управляющий параметр, а выходная величина x=
(x
1
,
x
2
,…,
xn
) представляет собой точку фазового пространства (или, иначе, фазовое состояние объекта).
Как сказано выше, чтобы полностью задать движение объекта, надо задать его фазовое состояние x0
=
(x
0
1
,
x
0
2
,…,
x
0
n
) в начальный момент времени t0
и выбрать управляющие функции u
1
(
t),
u
2
(
t),…,
ur
(
t)
(для t
>t
0
), т. е. выбрать векторную функцию u(
t)=
u
1
(
t),
u
2
(
t),…,
ur
(
t)
). Эту функцию u(
t)
мы будем называть управлением
. Задание начального фазового состояния x0
и управления u(
t)
однозначно определяет дальнейшее движение объекта. Это движение заключается в том, что фазовая точка x
(t)=
(x
1
(
t),
x
2
(
t),…,
xn
(
t)
), изображающая состояние объекта, с течением времени перемещается, описывая в фазовом пространстве некоторую линию, называемую фазовой траекторией
рассматриваемого движение объекта (случай n=
2 изображён на рис. 4). Очевидно, что эта линия исходит из точки x
0
, поскольку x
(t
0
)=x
0
.
Пару векторных функций (u( t), x( t) ), т. е. управление u( t) и соответствующую фазовую траекторию x( t) , мы будем называть в дальнейшем процессом управления или просто процессом .
Итак, резюмируем. Состояние управляемого объекта
в каждый момент времени характеризуется фазовой точкой
x=
(x
1
,
x
2
,…,
xn
). На движение объекта можно воздействовать при помощи управляющего параметра
u=
(u
1
,
u
2
,…,
ur
). Изменение величин u,
x
с течением времени мы называем процессом
; процесс (u(
t),
x(
t)
) составляется из управления
u(
t)
и фазовой траектории
x(
t)
. Процесс полностью определяется, если задано управление u(
t)
(при t
>t
0
) и начальное фазовое состояние x
0
=
x(
t
0
)
.
2. Задача управления. Часто встречается следующая задача, связанная с управляемыми объектами. В начальный момент времени t 0 объект находится в фазовом состоянии x 0 ; требуется выбрать такое управление u( t) , которое переведёт объект в заранее заданное конечное фазовое состояние x 1 (отличное от x 0 ; рис. 5). При этом нередко бывает, что начальное состояние x 0 заранее не известно. Рассмотрим один из наиболее типичных примеров. Объект должен устойчиво работать в некотором режиме (т. е. находиться в некотором фазовом состоянии x 1 ). В результате тех или иных причин (например, под воздействием неожиданного толчка) объект может выйти из рабочего состояния x 1 и оказаться в некотором другом состоянии x 0 . При этом точка x 0 , в которую может попасть объект, заранее не известна, и мы должны уметь так управлять объектом, чтобы из любой точки x 0 (или хотя бы из точек x 0 достаточно близких к x 1 ) вернуть его в рабочее состояние x 1 (рис. 6).
Такое управление часто осуществляется человеком (оператором), который следит за приборами и старается выбирать управление, поддерживающее объект в требуемом рабочем режиме.
Однако в современных условиях высокого развития техники оператор зачастую не может успешно справиться с этой задачей ввиду сложности поведения объекта, большой быстроты протекания процессов и т. п. Поэтому чрезвычайно важно создать такие приборы, которые сами, без участия человека, управляли бы работой объекта (например, в случае выхода объекта из рабочего состояния возвращали бы его в это рабочее состояние). Такие приборы («регуляторы», «автоматические управляющие устройства» и т. п.) сейчас очень распространены в технике, их изучением занимается теория автоматического управления.
Первым устройством этого рода был центробежный регулятор Уатта, сконструированный для управления работой паровой машины (см. рис. 9). Схема этого регулятора показана на рис. 7. В общем случае (рис. 8) на вход регулятора подаются фазовые координаты объекта.
![]() |
Обычно требуется, чтобы переходный процесс (т. е. процесс перехода из начального фазового состояния x 0 в предписанное состояние x 1 , рис. 5) был в определённом смысле «наилучшим», например, чтобы время перехода было наименьшим или чтобы энергия, затраченная в течение переходного процесса, была минимальной и т. п. Такой «наилучший» переходный процесс называется оптимальным процессом . Термин «оптимальный процесс» требует уточнения, т. к. необходимо разъяснить, в каком смысле понимается оптимальность. Если речь идёт о наименьшем времени перехода, то такие процессы называются оптимальными в смысле быстродействия . Иначе говоря, процесс, в результате которого объект переходит из точки x 0 в точку x 1 (рис. 5), называется оптимальным в смысле быстродействия, если не существует процесса, переводящего объект из x 0 в x 1 за меньшее время (здесь и далее предполагается, что x 1 ≠x 0 ). Разумеется, желательно, чтобы регулятор не просто возвращал объект в рабочее состояние, а делал это наилучшим образом, например, в смысле быстродействия (т. е. возвращал объект в рабочее состояние за кратчайшее время). В связи с этим в теории автоматического управления рассматриваются весьма различные регуляторы. Рассмотрение регуляторов приводит к тому, что уменьшение времени переходного процесса связано с усложнением конструкции регулятора; поэтому, усложняя конструкцию регулятора, можно лишь приближаться к «идеальному», «оптимальному» регулятору, который во всех случаях осуществляет переходный процесс за кратчайшее время. В точности же «оптимального» регулятора, по-видимому, осуществить нельзя. Однако такой вывод является ошибочным, т. к. сейчас уже создали математический аппарат, рассчитывающий такие регуляторы. Можно предполагать, что оптимальные регуляторы будут играть важную роль в технике будущего.
3.
Уравнения движения объекта.
Начнём с рассмотрения одного простого примера. Пусть G
– тело, которое может совершать прямолинейное движение (рис. 10). Массу этого тела будем предполагать постоянной и равной m
, а его размерами будем пренебрегать (т. е. будем считать G
материальной точкой.) Координату тела G
(отсчитываемую от некоторой точки O
той прямой, по которой оно движется) будем обозначать через x
1
.
При движении тела G
его координата x
1
меняется с течением времени. Производная
представляет собой скорость движения тела G
. Будем предполагать, что на тело G
действуют две внешние силы: сила трения ─
и упругая сила ─ kx
1
и что, кроме того, тело G
снабжено двигателем. Развиваемую двигателем силу воздействия на тело G
обозначим через u
. Таким образом, по второму закону Ньютона движение телаG
с течением времени будет описываться дифференциальным уравнением
Обозначив скорость движения через x2
(т. е. положив ), мы сможем записать этот закон движения в виде следующей системы дифференциальных уравнений:
(1.1)
Здесь величины x 1 , x 2 являются фазовыми координатами тела G , а величина u – управляющим параметром, т. е. мы имеем объект, схематически изображённый на рис. 11.
Уравнения (1.1) представляют собой закон изменения фазовых координат с течением времени (с учётом воздействия управляющего параметра), т. е. представляют собой закон движения фазовой точки в фазовой плоскости.
Мы рассмотрели лишь один частный случай, но можно было бы указать целый ряд других примеров, в которых закон движения объекта описывается дифференциальными уравнениями. Чаще всего (см.(1.1)) эти уравнения дают выражения производных от фазовых координат через сами фазовые координаты и управляющие параметры, т. е. имеют вид
(1.2)
где f 1 , f 2 ,…, fn – некоторые функции, определяемые внутренним устройством объекта.
В дальнейшем мы сосредоточим своё внимание именно на таких объектах (рис. 2), закон движения которых описывается системой дифференциальных уравнений вида (1.2). В векторной форме систему (1.2) можно записать в виде
(1.3)
где x ─ вектор с координатами x 1 ,…, xn , u – вектор с координатами u 1 ,…, ur и, наконец, f (x, u ) – вектор, координатами которого служат правые части системы (1.2).
Разумеется, невозможно решить систему дифференциальных уравнений (1.2) (т. е. найти закон движения объекта), не зная каким образом будут меняться с течением времени управляющие параметры u 1 , u 2 ,…, ur . Напротив, зная поведение величин u 1 , u 2 ,…,ur , т. е. зная управляющие функции u 1 (t), u 2 (t),…, ur (t) для t >t 0 мы сможем из системы уравнений
(1.4)
или, что то же самое, из векторного уравнения
(1.5)
однозначно определить движение объекта (при t >t 0 ), если нам известно начальное фазовое состояние объекта (в момент t=t 0 ). Иначе говоря, задание управления u(t) и начального фазового состояния x 0 однозначно определяет фазовую траекторию x(t) при t >t 0 , что согласуется со сделанными ранее (стр. 1) предположениями о свойствах объекта.
Тот факт, что задание начального фазового состояния (в момент t=t
0
) позволяет из системы (1.4) однозначно определить фазовую траекторию x(t), t
>t
0
,
вытекает из теоремы о существовании и единственности решений системы дифференциальных уравнений.
Предположим, что, зная начальное фазовое состояние x
0
и управление u(t)=(u
1
(t),…, ur
(t)),
мы определили фазовую траекторию x(t)
(с помощью системы (1.4)). Если мы изменим управление u(t)
(сохранив то же начальное состояние x
0
), то получим некоторую другую траекторию, исходящую из той же точки x
0
; вновь изменим управлениеu(
t)
– получим ещё одну траекторию и т. д. Таким образом, рассматривая различные управления u(
t)
, мы получим много траекторий, исходящих из точки x
0
(рис. 12). (Разумеется, это не противоречит теореме единственности в теории дифференциальных уравнений, так как, заменяя функции u
1
(
t),…,
ur
(
t)
другими функциями, мы переходим от системы дифференциальных уравнений относительно фазовых координат x
1
,…,
xn
.
)
Напомним, что задача оптимального быстродействия заключается в отыскании такого управления u( t) , для которого фазовая траектория x( t) , соответствующая этому управлению в силу уравнения (1.5), проходит через точку x 1 и переход из x 0 вx 1 осуществляется за кратчайшее время. Такое управление u( t) будем называть оптимальным управлением (в смысле быстродействия) ; точно так же соответствующую траекторию x( t) буде называть оптимальной траекторией .
4. Допустимые управления. Обычно управляющие параметры u 1 ,…, ur не могут принимать совершенно произвольные значения, а подчинены некоторым ограничениям. Так, например, в случае объекта, описанного на стр. 4, естественно предположить, что сила u , развиваемая двигателем, не может быть как угодно большой по величине, а подчинена ограничениям α ≤u ≤β , где α и β – некоторые постоянные, характеризующие двигатель. В частности, при α= ─1, β= 1 мы получаем ограничение ─1≤u ≤1, которое означает, что двигатель может развивать силу, направленную вдоль оси x 1 как в положительном, так и в отрицательном направлении, но не превосходящую единицы по абсолютной величине.
Для объектов, содержащих r управляющих параметров u 1 ,…, ur , в приложениях часто встречается случай, когда эти параметры могут произвольно меняться в следующих пределах:
α 1 ≤u 1 ≤ β 1 , α 2 ≤u 2 ≤β 2 ,…, α r ≤ur ≤βr .
Иначе говоря, каждая из величин u 1 , u 2 ,…, u r в уравнениях (1.2) представляет собой отдельный управляющий параметр, область изменения которого не зависит от значений остальных
управляющих параметров и задаётся неравенствами
α i ≤ui ≤β i , i= 1,…,r. (1.6)
Заметим, что при r =2 точки u= (u 1 , u 2 ), координаты которых подчинены неравенствам (1.6), заполняют прямоугольник; при r= 3 неравенства (1.6) определяют в пространстве переменных u 1 , u 2 , u 3 прямоугольный параллелепипед; в случае произвольного r говорят, что неравенства (1.6) определяют r-мерный параллелепипед.
В общем случае будем считать, что в соответствии с конструкцией объекта и условиями его эксплуатации задано в пространстве переменных u
1
,…,
ur
некоторое множество U
и управляющие параметры u
1
,
u
2
,…,
ur
должны в каждый момент времени принимать лишь такие значения, чтобы точка u=
(u
1
,
u
2
,…,
ur
) принадлежала множеству U
. Иначе говоря, разрешается рассматривать лишь такие управления u(
t)
, что u(
t)
U
для любого t
. Множество U
в дальнейшем будем называть областью управления
. Область управления U
не всегда будет параллелепипедом; она может иметь геометрически более или менее сложный характер, так как в силу конструкции объекта между управляющими параметрами u
1
,
u
2
,…,
ur
могут существовать связи, выражаемые, например, уравнениями вида φ(u
1
,
u
2
,…,
ur
)=0 или неравенствами ψ(u
1
,
u
2
,…,
ur
)≤0. Так, если параметры u
1
,
u
2
характеризуют векторную величину на плоскости, модуль которой не превосходит единицы, а направление произвольно, то эти параметры подчинены только одному условию
(u 1 )2 +(u 2 )2 ─1≤0 (1.7)
и область управления U представляет собой круг. В дальнейшем будем предполагать, что указание области управления входит в математическое определение объекта, т. е. что для математического задания управляемого объекта надо указать закон его движения (1.2) и область управления U .
Наконец, сделаем ещё одно, весьма существенное предположение о характере управлений. Именно, будем предполагать, что «рули», положения которых характеризуются управляющими параметрами u 1 , u 2 ,…, ur , безынерционны, так что мы можем, если нужно, мгновенно переключать эти «рули» из одного положения в другое, т. е. менять скачком значения управляющих параметров u 1 , u 2 ,…, ur . В соответствии с этим будем рассматривать не только непрерывные, но и кусочно-непрерывные управления u( t) . Кроме того, будем предполагать, что каждое рассматриваемое управление u( t) непрерывно на концах отрезка t 0 ≤t ≤t 1 , на котором оно задано, т. е. что все точки разрыва, если они есть, расположены на интервале t 0 <t <t 1 . Для удобства условимся называть допустимым управлением всякую кусочно-непрерывную функцию u (t ), t 0 ≤t ≤t 1 , со значениями в области управления U , непрерывную справа в точках разрыва (для определённости нам так удобно предполагать) и непрерывную в концах отрезка [t 0 ; t 1 ], на котором она задана.
Задача об оптимальных быстродействиях уточняется теперь следующим образом:
Среди всех допустимых управлений u= u( t), под воздействием которых управляемый объект (1.3) переходит из заданного начального фазового состояния x 0 в предписанное конечное состояние x 1 , найти такое, для которого этот переход осуществляется за кратчайшее время
§ 2. Об основных направлениях в теории оптимальных процессов
5. Метод динамического программирования. Для управляемого объекта, описанного в предыдущем параграфе, мы рассмотрим задачу об оптимальном переходе ─ в смысле быстродействия ─ из фазового состояния x в фазовое состояние x 1 . При этом конечную фазовую точку x 1 будем считать фиксированной, а в качестве начальной точки x будем рассматривать различные точки фазового пространства. Мы будем предполагать в этом пункте, что для рассматриваемого управляемого объекта выполняется следующая гипотеза:
Г и п о т е з а 1. Какова бы ни была отличная от x 1 точка x фазового пространства, существует оптимальный (в смысле быстродействия) процесс перехода из точки x 0 в точку x 1 (рис. 6).
Время, в течение которого осуществляется оптимальный переход из точки x 0 в точку x 1 , обозначим через T( x ). В дальнейших рассуждениях будет удобно вместо T( x ) ввести функцию ω (x ), отличающуюся от неё знаком
ω (x )= ─T(x ). (1.8)
Так как каждая точка x фазового пространства имеет координаты x 1 ,…, xn , то ω (x )= ─T( x ) является функцией от n переменных, т. е. ω (x )= ω (x 1 ,…, xn ). Поэтому имеет смысл говорить о непрерывности этой функции (по совокупности переменных x 1 ,…, xn ) и о дифференцируемости этой функции по каждой из переменных x 1 ,…, xn .
А также будем предполагать, что для рассматриваемого управляемого объекта выполняется следующая гипотеза:
Г и п о т е з а 2. Функция
ω
(x
) непрерывна и всюду, кроме точки
x
1
, имеет непрерывные частные производные
Пусть теперь x 0 ─ произвольная отличная от x 1 точка фазового пространства, а u 0 ─ произвольная точка области U . Предположим, что объект находится в момент t 0 в фазовом состоянии x 0 и движется в течение некоторого времени под воздействием постоянного управления u= u 0 . Фазовую траекторию объекта при этом движении обозначим через y (t)=(y 1 ( t),…, yn ( t )). Таким образом, фазовая траектория y( t ) при t> t 0 удовлетворяет уравнениям
(1.9)
(см. (1.2), (1.3)) и начальному условию
y (t 0 )=x 0 . (1.10)
Если мы будем двигаться из точки x
0
до точки y(
t
) (по рассматриваемой фазовой траектории), то затратим на это движение время t
─ t
0
. Двигаясь затем из точки y(
t
) оптимально, мы затратим на движение от точки y
(t
) до точки x
1
время T(
y(
t
)). В результате мы совершим переход из точки x
0
в точку x
1
, затратив на этот переход время (t
─t
0
)+T
(y
(t)). Но так как оптимальное время движения от точки x
0
до точки x
1
равно T
(x
0
), т. е. равно T
(y
(t
0
)), то T
(y(t
0
))≤(t
─t
0
)+T
(y
(t
)). Заменяя функцию T
через ω
(см. (1.8)) и разделив обе части неравенства на положительную величину t
─t
0
, получаем отсюда и поэтому, переходя к пределу при t→
t
0
, находим
│при
≤1. (1.11)
Но производная, указанная в левой части этого неравенства, вычисляется по формуле полной производной Поэтому согласно (1.9) и (1.10) неравенство (1.11) принимает вид
Точки x
0
, u
0
здесь были произвольными. Таким образом, для любой (отличной от
x
1
) точки
x фазового пространства и любой точки
u области управления
U выполнено соотношение
(1.12)
Пусть теперь (u (t ), x (t )) ─ оптимальный процесс, переводящий объект из фазового состояния x 0 в состояние x 1 , и t 0 ≤t ≤t 1 ─ отрезок времени, в течение которого это оптимальное движение происходит, так что x (t 0 )=x 0 , x (t 1 )=x 1 и t 1 =t 0 + T (x 0 ). Движение по рассматриваемой оптимальной траектории от точки x 0 до точки x (t ) осуществляется в течение времени t ─t 0 , а движение от точки x (t ) до точкиx 1 ─ в течение времени T (x 0 ) ─ (t ─t 0 ). Быстрее, чем за время T (x 0 ) ─ (t ─t 0 ), из точки x (t ) попасть в точку x 1 невозможно. Итак, T (x 0 ) ─ (t ─t 0 ) есть время оптимального движения из точки x (t ) в точку x 1 , т. е. T (x (t ))=T (x 0 ) ─ (t ─t 0 ). Заменив здесь T через ω , т. е. ω (x (t ))=ω (x 0 ) + t ─t 0 ) и взяв производную по t , получаем
t
0
≤t
≤t
1
. (1.13)
Таким образом, для каждого оптимального процесса в течение всего движения выполняется равенство (1.13).
Если мы теперь введём в рассмотрение функцию
B
(x, u
(t
))=, (1.14)
То соотношения (1.12) и (1.13) могут быть записаны следующим образом:
B (x, u )≤1 для всех точек x ≠x 1 и u ; (1.15)
B (x, u )≡1 для любого оптимального процесса (u (t ), x (t )). (1.16)
Итак, справедлива следующая
Т е о р е м а 1.1. Если для управляемого объекта, описываемого уравнением (1.5) и предписанного конечного состояния x 1 выполнены гипотезы 1 и 2, то имеют место соотношения (1.15) и (1.16) (оптимальность понимается в смысле быстродействия).
Эта теорема и составляет сущность метода динамического программирования для рассматриваемой задачи. Эту теорему можно сформулировать и несколько иначе. Написав соотношение (1.16)
Для t =t 0 , получим B (x 0 , u (t 0 ))=1, т. е. для любой точки x 0 (отличной от x 1 ) найдётся в U такая точка u (а именно u= u (t 0 )), что B (x 0 , u )=1. В сопоставлении с неравенством (1.15) получаем соотношение
для любой точки x
≠x
1
. (1.16*
)
Метод динамического программирования (1.15), (1.16) (или, что то же самое, (1.16* ), (1.16)) содержит некоторую информацию об оптимальных процессах и потому может быть использован для их разыскания. Однако он имеет ряд неудобств. Во-первых, применение этого метода требует нахождения не только оптимальных управлений, но и функции ω (x ), так как эта функция входит в соотношения (1.15) ─ (1.16* ). Во-вторых, уравнение Беллмана (1.16* ) (или соотношения (1.15), (1.16)) представляет собой уравнение в частных производных относительно функции ω , осложнённое к тому же знаком максимума. Указанные обстоятельства сильно затрудняют возможность пользования методом динамического программирования для отыскания оптимальных процессов в конкретных примерах. Но самым главным недостатком этого метода является предположение о выполнении гипотез 1 и 2. Ведь оптимальные управления и функция ω нам заранее не известны, так что гипотезы 1 и 2 содержат предположение о неизвестной функции, и проверить выполнение этих гипотез по уравнениям движения объекта невозможно. Этот недостаток можно было бы считать не особенно существенным, если бы после решения оптимальной задачи этим методом оказалось, что функция ω (x ) действительно является непрерывно дифференцируемой. Но дело заключается в том, что даже в простейших, линейных задачах оптимального управления функция ω (x ) не является, как правило, всюду дифференцируемой. Тем не менее, методом динамического программирования можно нередко пользоваться как ценным эвристическим средством.
6. Принцип максимума. Продолжим теперь рассуждения предыдущего пункта, предположив функцию ω (x ) уже дважды непрерывно дифференцируемой (всюду, кроме точки x 1 ). Итак, будем предполагать, что выполнена следующая
Г и п о т е з а 3. функция
ω
(x
) имеет при
x≠
x
1
вторые непрерывные производные
i,
j=
1,2,…,n
, а функции
fi
(x,
u
) ─ первые непрерывные производные
где
i,
j=
1,2,…,n.
Пусть (u(
t),
x(
t)
), t
0
≤t
≤t
1
, ─ оптимальный процесс, переводящий объект (1.2) (или (1.3)) из фазового состояния x
0
в состояние x
1
. Фиксируем некоторый момент времени t
, t
0
≤t
≤t
1
, и рассмотрим функцию B
(x,
u
(t
))=переменного x.
В силу гипотезы 3 вытекает, что функция B
(x,
u
(t
)) всюду, кроме точки x
1
, имеет непрерывные производные по переменным x
1
,x
2
,…,xn
:
(1.17)
В частности, так как x (t )≠x 1 (поскольку t <t 1 ), то функция B (x, u (t )) имеет вблизи точки x =x (t ) непрерывные производные по переменным x 1 ,x 2 ,…,xn . Далее, мы имеем в силу (1.15), (1.16) B (x, u (t ))≤1 для любого x≠ x 1 ; B (x, u (t ))=1 при x= x (t ).
Эти два соотношения означают, что функция B (x, u (t )) достигает в точке x =x (t ) максимума, и потому её частные производные по x 1 ,…, xn обращаются в нуль в этой точке:
(1.18)
Кроме того, дифференцируя функцию по t,
находим
Поэтому соотношение (1.18) может быть переписано в следующем виде:
(1.19)
Заметим теперь, что в формулы (1.15), (1.16), (1.17) и (1.19) сама функция ω
не входит, а входят только её частные производные . Поэтому мы введём для удобства следующие обозначения:
(1.20)
Тогда функция B (см. (1.14)) записывается таким образом:
B
(x
(t
), u
(t
))=
и соотношение (1.16) принимает вид
, для оптимального процесса (x
(t
), u
(t
)), t
0
≤t
<t
1
. (1.21)
Кроме того, согласно (1.15)
для любой точки u
U
и всех t
0
≤t
<t
1
. (1.22)
Наконец, соотношения (1.19) записываются следующим образом:
(1.23)
Итак, если (u (t ), x (t )), t 0 ≤t <t 1 , ─ оптимальный процесс, то существуют такие функции ψ 1 (t ), ψ 2 (t ),…, ψ n (t ) (они определяются равенствами (1.20)), что имеют место соотношения (1.21), (1.22), (1.23).
Рассмотрение левых частей соотношений (1.21), (1.22) подсказывает нам, что целесообразно ввести в рассмотрение следующую функцию:
(1.24)
зависящую от 2n+ r аргументов ψ 1 , ψ 2 ,…, ψ n , x 1 ,…, xn , u 1 ,…, ur . С помощью этой функции соотношения (1.21), (1.22) записываются в следующем виде:
для оптимального процесса (u
(t
), x
(t
)), t
0
≤t
<t
1
, (1.25)
где ψ (t )=(ψ 1 (t ),…,ψ n (t )) определяются равенствами (1.20);
для любой точки u
U
и всех t
0
≤t
<t
1
. (1.26)
Вместо неравенства (1.26) мы можем в силу (1.25) написать следующее соотношение:
t
0
≤t
<t
1
. (1.27)
Наконец, соотношения (1.23) можно, очевидно, переписать так:
(1.28)
Итак, если (u (t ), x (t )), t 0 ≤t <t 1 , ─ оптимальный процесс , то существует такая функция ψ (t )=(ψ 1 (t ),…, ψ n (t )), что выполняются соотношения (1.25), (1.27), (1.28), где функция H определяется соотношением (1.24).
Так как в соотношениях (1.24), (1.25), (1.27), (1.28) нигде не участвует явно функция ω (x ), то равенства (1.20), выражающие функции ψ 1 (t ),…, ψ n (t ) через ω , никаких добавочных сведений не дают, и о них можно забыть, ограничившись утверждением, что какие-то функции ψ 1 (t ),…, ψ n (t ), удовлетворяющие перечисленным соотношениям (1.25), (1.27), (1.28), существуют. Соотношения (1.28) представляют собой систему уравнений, которым эти функции удовлетворяют. Заметим, что функции ψ 1 (t ),…, ψ n (t ) составляют нетривиальное решение этой системы (т. е. ни в какой момент времени t все эти функции одновременно в нуль не обращаются); действительно, если бы при некотором t было ψ 1 (t )= ψ 2 (t )=…=ψ n (t )=0, то в силу (1.24) мы получили бы H (ψ (t ), x (t ), u (t ))=0, что противоречит равенству (1.25). Таким образом, мы получаем следующую теорему, которая носит название принципа максимума.
Т е о р е м а 1.2. Предположим, что для рассматриваемого управляемого объекта, описываемого уравнением (в векторной форме )
(A)
и предписанного конечного состояния x 1 выполнены гипотезы 1, 2 и 3. Пусть (u (t ), x (t )), t 0 ≤t ≤t 1 , ─ некоторый процесс, переводящий объект из начального состояния x 0 в состояние x 1 . Введём в рассмотрение функцию H, зависящую от переменных x 1 (t ),…, xn (t ), u 1 ,…, ur и некоторых вспомогательных переменных ψ 1 (t ),…, ψ n (t ) (см. (1.24)):
(B)
С помощью этой функции H запишем следующую систему дифференциальных уравнений для вспомогательных переменных:
(C)
где (u (t ), x (t )) ─ рассматриваемый процесс (см. (1.28)). Тогда, если процесс (u (t ), x (t )), t 0 ≤t <t 1 , является оптимальным, то существует такое нетривиальное решение ψ (t )=(ψ 1 (t ),…, ψ n (t )), t 0 ≤t <t 1 , системы (C), что для любого момента t, t 0 ≤t <t 1 , выполнено условие максимума
(D)
(см. (1.27)) и условие (1.25) H (ψ (t ),x (t ),u (t ))=1.
Однако в приведённой здесь форме принцип максимума страдает одним недостатком: он выведен в предположение дифференцируемости (и даже двукратной) функции ω (x ), а эта функция в действительности не является (в обычно встречающихся случаях) всюду дифференцируемой.
Из-за предположения о выполнении сформулированных гипотез (о функции ω (x )) принцип максимума в том виде, в каком он сформулирован выше, не является удобным условием оптимальности. По форме он выведен как необходимое условие оптимальности: если процесс оптимален, то выполнено соотношение (1.16* ) и соответственно (D), т. е. выполнение этого условия необходимо для оптимальности. Однако это условие выведено лишь в предположении выполнения гипотез 1, 2, 3, а их выполнение отнюдь не необходимо для оптимальности. Вот почему сформулированные выше теоремы не могут считаться необходимыми условиями оптимальности.
Замечательным, однако, является тот факт, что если в теореме 1.2 решение ψ (t ) и условие максимума (D) рассматривать на всём отрезке t 0 ≤t ≤t 1 (а не только при t 0 ≤t <t 1 ), а заключительное условие
H (ψ (t 1 ), x (t 1 ), u (t 1 ))≥0, (E)
то в этой форме принцип максимума будет справедлив без каких бы то ни было предположений о функции ω, т. е. принцип максимума станет весьма удобным и широко применимым необходимым условием оптимальности.
§ 3. Пример. Задача синтеза
7. Пример применения принципа максимума. В этом пункте мы разберём один пример вычисления оптимальных процессов. Именно, рассмотрим управляемый объект, упомянутый в п. 3 (см. уравнения (1.1)), при условии, что сила трения и упругая сила отсутствуют (т. е. b =0, k =0), масса m равна единице (m =1), а управляющий параметр подчинён ограничениям |u |≤1. Иначе говоря, мы рассматриваем материальную точку G массы m= 1 (см. рис. 10), свободно и без трения движущуюся по горизонтальной прямой и снабжённую двигателем, развивающим силу u , где |u |≤1. Согласно (1.1) уравнения движения этого объекта имеют вид:
(1.29)
─1≤u ≤1. (1.30)
Для этого объекта рассмотрим задачу о быстрейшем попадании в начало координат (0, 0) из заданного начального состояния x 0 =(x 0 1 , x 0 2 ). Иначе говоря, будем рассматривать задачу об оптимальном быстродействии в случае, когда конечным положением служит точка x 1 =(0, 0). Механически это означает, что материальную точку, имеющую заданное положение x 0 1 и заданную начальную скорость x 0 2 , мы хотим за кратчайшее время привести в начало отсчёта с нулевой скоростью (т. е. добиться того, чтобы точка пришла в начало отсчёта и остановилась там).
Функция H в рассматриваемом случае имеет вид
H =ψ 1 x 2 +ψ 2 u (1.31)
(см. (1.29) и (B)). Далее, для вспомогательных переменных ψ
1
, ψ
2
мы получаем систему уравнений . Из этой системы уравнений находим: ψ
1
=d
1
; ψ
2
= ─d
1
t+
d
2
, где d
1, d2
─ постоянные интегрирования. Далее, в силу соотношения максимума (D) мы находим, учитывая (1.31) и (1.30):
u (t )= +1, если ψ 2 (t )>0; u (t )= ─1, если ψ 2 (t )<0.
Иначе говоря, u
(t
)=signψ
2
(t
)=sign (─ d
1
t
+ d
2
). Отсюда следует, что каждое оптимальное управление
u
(t
), t
0
≤t
≤t
1
, является кусочно-постоянной функцией, принимающей значения
и имеющей не более двух интервалов постоянства
(ибо линейная функция ─d
1
t +
d
2
не более одного раза меняет знак на отрезке t
0
≤t
≤t
1
).
Для отрезка времени, на котором u1, мы имеем (в силу системы (1.29))
, откуда находим
x 1 =1/2(x 2 )2 +c . (1.32)
![]() |






Аналогично для отрезка времени, на котором u ─1, мы имеем, откуда находим
x 1 = ─1/2(x 2 )2 + c ’. (1.33)
Семейство парабол (1.33) (также получающихся друг из друга сдвигом в направлении оси x
1
) показано на рис. 14. По параболам (1.33) фазовые точки движутся сверху вниз (ибо )
![]() |
Как было указано выше, каждое оптимальное управление u (t ) является кусочно-постоянной функцией, принимающей значения

На рис. 17 изображено всё семейство полученных таким образом фазовых траекторий (здесь AO ─ дуга параболы x 1 =1/2(x 2 )2 , расположенная в нижней полуплоскости; BO ─ дуга параболы x 1 = ─1/2(x 2 )2 , расположенная в верхней полуплоскости).
![]() |
Итак, согласно принципу максимума только изображённые на рис. 17 траектории могут быть оптимальными, причём видно, что из каждой точки фазовой плоскости исходит только одна траектория, ведущая в начало координат, которая может быть оптимальной (т. е. задание начальной точки x 0 однозначно определяет соответствующую траекторию).
8. Проблема синтеза оптимальных управлений. Посмотрим на разобранный в предыдущих пунктах пример с несколько иной точки зрения. Найденное выше решение оптимальной задачи можно истолковать следующим образом. Обозначим через v (x )= +1 ниже линии AOB и на дуге AO , v (x )= ─1 выше линии AOB и на дугеBO . Тогда (см. 17) на каждой оптимальной траектории значение u (t ) управляющего параметра (в произвольный момент времени t ) равно v (x (t )), т. е. равно значению функции v в той точке, в которой в момент t находится движущаяся фазовая точка, пробегающая оптимальную траекторию u (t )=v (x (t )). Это означает, что, заменив в системе (1.29) величину u функцией v (x ), мы получим систему
(1.34)
решение которой (при произвольном начальном состоянииx 0 ) даёт оптимальную фазовую траекторию, ведущую в начало координат. Иначе говоря, система (1.34) представляет собой систему дифференциальных уравнений (с разрывной правой частью) для нахождения оптимальных траекторий, ведущих в начало координат.
Рассмотренный пример показывает, что решение задачи об оптимальных управлениях естественно ожидать в следующей форме. Будем решать оптимальную задачу в общей постановке:
(см. п. 3), рассматривая всевозможные начальные состояния и каждый раз предписывая в качестве конечного состояния начало координат O фазового пространства. Тогда (насколько можно судить по разобранному выше примеру) существует такая функция v (x ), заданная в фазовом пространстве V принимающая значения в области управления U, что уравнение
(1.35)
определяет все оптимальные траектории, ведущие в начало координат. Иначе говоря, оптимальное управление оказывается естественным искать не в форме u= u (t ), а в форме u= v (x ), т. е. искомое оптимальное управление в каждый момент зависит лишь от того, в какой точке пространства находится в данный момент фазовая точка .
Функцию v (x ), дающую уравнение оптимальных траекторий в форме (1.35), называют синтезирующей функцией, а задачу нахождения синтезирующей функции ─ задачей синтеза оптимальных управлений. В разобранном примере синтезирующая функция была кусочно-непрерывной (даже кусочно-постоянной).
Г л а в а II
ЛИНЕЙНЫЕ ОПТИМАЛЬНЫЕ БЫСТРОДЕЙСТВИЯ
§ 4. Линейная задача оптимального управления
9. Формулировка задачи. Ниже будут подробно изучены управляемые объекты, движение которых описывается линейными дифференциальными уравнениями относительно величин x 1 ,…,xn , u 1 ,…,ur , т. е. уравнениями вида
i
=1,2,…,n
, (2.1)
где ai α и bi β ─ некоторые постоянные коэффициенты.
Одним из наиболее важных для приложений является случай, когда каждая из величин u 1 , u 2 ,…, ur в уравнениях (2.1) представляет собой отдельный управляющий параметр, область изменения которого не зависит от значений остальных управляющих параметров и задаётся неравенствами
β
=1,…,r
. (2.2)
Как было указано выше (см. п. 4), эти неравенства определяют r -мерный параллелепипед .
В дальнейшем при рассмотрении объектов вида (2.1) будет предполагаться, что управляющий параметр u= (u 1 ,u 2 ,…, ur ) может меняться в замкнутой области управления U , представляющей собой выпуклый многогранник (лежащий в пространстве переменных u 1 ,u 2 ,…, ur ).
Для того чтобы записать уравнения (2.1) в векторной форме, мы введём в рассмотрение матрицы
(2.3)
элементами которых являются коэффициенты ai α , bi β , входящие в уравнения (2.1). Как обычно, результат применения матрицы A к векторуx =(x 1 , x 2 ,…, xn ) мы будем обозначать символом Ax , т. е. y =Ax есть n- мерный вектор, координаты которого определяются формулами
(2.4)
Аналогично для любого r-
мерного вектора u=
(u
1
, u
2
,…, ur
) через Bu
обозначается вектор, i-
я координата которого равна Таким образом, матрица A
определяет линейное отображение координатного n-
мерного пространства снова в n-
мерное пространство, а матрица B
определяет отображение r-
мерного пространства в n-
мерное.
Пользуясь матрицами A и B , мы можем теперь записать уравнения (2.1) в векторной форме:
(2.5)
Пусть u (t )=(u 1 , u 2 ,…, ur ) ─ произвольное допустимое (в смысле п. 4) управление, заданное на некотором отрезке t 0 ≤t ≤t 1 , и x 0 =(x 1 0 ,…, xn 0 ) ─ некоторая точка фазового пространства. Обозначим θ 1 , θ 2 ,…, θ k все точки, в которых хотя бы одна из функций u 1 (t ), u 2 (t ),…, ur (t ) терпит разрыв, причём занумеруем эти точки таким образом, что t 0 <θ 1 <θ 2 <…<θ k <t 1 . Подставив функции u 1 (t ), u 2 (t ),…, ur (t ) в правые части системы (2.1),мы придём к системе уравнений
(2.6)
или в векторной форме,
(2.7)
Систему (2.7) мы рассмотрим сначала для значений t , удовлетворяющих неравенствам t 0 ≤t ≤θ 1 . На этом отрезке изменения аргумента существуют такие функции x 1 (t ),…, xn (t ), определённые и непрерывные на всём отрезке t 0 ≤t ≤θ 1 , которые, рассматриваемые на интервале t 0 <t <θ 1 , являются решениями системы (2.6) и, кроме того, удовлетворяют начальным условиям x 1 (t 0 )=x 1 0 , x 2 (t 0 )=x 2 0 ,…, xn (t 0 )=xn 0 (согласно сведениям из дифференциальных уравнений (см. книгу Л.С. Понтрягина «Обыкновенные дифференциальные уравнения», «Наука», М., 1965 (стр. 23, 24 и 168-172))).
Теперь мы можем рассмотреть систему (2.6) на отрезке θ 1 ≤t ≤θ 2 , воспользовавшись точкой γ 1 =(x 1 (θ 1 ),…, xn (θ 1 ), θ 1 ) в качестве начального значения. На отрезке θ 1 ≤t ≤θ 2 снова существует решение с начальным значением γ 1 . Это решение мы снова обозначим через x (t )=(x 1 (t ),…, xn (t )). Теперь функция x (t ) построена на отрезке t 0 ≤t ≤θ 2 и непрерывна на всём этом отрезке (и, в частности, в «точке сопряжения» θ 1 ;). Воспользовавшись, далее, новым начальным значением γ 2 =(x 1 (θ 2 ),…, xn (θ 2 ), θ 2 ), мы продолжим эту функцию x (t ) на отрезок θ 2 ≤t ≤θ 3 и т. д. В конце концов мы определим x (t ) на всём отрезке t 0 ≤t ≤t 1 .
Полученная функция x (t )=(x 1 (t ),…, xn (t )) непрерывна на всём отрезке t 0 ≤t ≤t 1 и является на нём кусочно-дифференцируемой ; именно, во всех точках интервала t 0 <t <t 1 , кроме θ 1 , θ 2 ,…, θ k , функция x (t ) непрерывно дифференцируема (и удовлетворяет системе (2.6)). Построенную функцию мы будем называть решением системы (2.6) (или уравнения (2.7)), соответствующим управлению u (t ), при начальном условии x 1 (t 0 )=x 1 0 , x 2 (t 0 )=x 2 0 ,…, xn (t 0 )=xn 0 . Наконец, мы будем говорить, что допустимое управление u (t ), t 0 ≤t ≤t 1 , переводит фазовую точку из состояния x 0 в состояние x 1 (в силу закона движения (2.1) или (2.5)), если соответствующее ему решение x (t ) системы (2.1), удовлетворяющее начальному условию x (t 0 )=x 0 , приходит в момент t 1 в точку x 1 , т. е. удовлетворяет также «конечному» условию x (t 1 )=x 1 .
Теперь можно уточнить постановку задачи.
Линейной задачей оптимального управления мы будем называть задачу об отыскании оптимальных быстродействий в случае, когда выполнены следующие три условия:
1 ) уравнения движения объекта линейны (см. (2.1) или (2.5));
2 ) предписанное конечное состояние x 1 совпадает с началом координат (0, 0,…, 0) n -мерного фазового пространства переменных x 1 , x 2 ,…,xn ;
3 ) область управления U является r -мерным выпуклым многогранником в r -мерном пространстве (u 1 , u 2 ,…, ur ), причём начало координат этого пространства принадлежит многограннику U , но не является его вершиной.
Заметим, что начало координат xi =0, i =1,…,n , является положением равновесия системы
(2.8)
получающейся из системы (2.1) отбрасыванием управлений (т. е. получающейся из (2.1) при u 1 = u 2 =…=ur =0). Таким образом, условие 2) означает, что ищется управление, переводящее объект из заданного начального состояния x 0 в положение равновесия.
10. Принцип максимума. В пункте 6 мы сформулировали необходимое условие оптимальности, называемое принципом максимума . Данный пункт посвящён принципу максимума в случае линейной задачи оптимального управления. Вначале укажем те упрощения в формулировке принципа максимума, которые возникают в этом частном случае (т. е. в случае линейной задачи оптимального управления).
Заметим, прежде всего, что функция H (см. формулу (B) на стр. 10) принимает вид
(2.9)
(Здесь в правой части записаны скалярные произведения; например, ψ Ax есть скалярное произведение векторов ψ и Ax .)
Далее, рассмотрим систему дифференциальных уравнений для вспомогательных переменных ψ 1 , ψ 2 ,…, ψ n (см. формулу (C) на стр. 10). Мы имеем
Следовательно, система уравнений для вспомогательных переменных принимает вид
(2.10)
т. е. представляет собой так называемую сопряжённую систему (по отношению к линейной системе (2.8)). В векторной форме система (2.10) записывается в виде
(2.11)
где
─ матрица, получающаяся из матрицы A транспонированием (т. е. заменой строк столбцами).
Так как в правой части соотношения (2.9) первое слагаемое совсем не зависит от u , то при написании соотношения (D) (см. стр. 11) достаточно рассмотреть лишь второе слагаемое. Таким образом, соотношение (D) принимает в рассматриваемом случае вид
(2.12)
для любого момента τ , t 0 ≤τ≤ t 1 .
Наконец, соотношение (E) (стр. 11) становится просто ненужным, так как в рассматриваемом случае оно всегда выполняется. Действительно, так как x (t 1 )=(0, 0,…, 0) (условие 2) на стр. 15), то в H (ψ (t 1 ), x (t 1 ), u (t 1 )) первое слагаемое обращается в нуль (см. (2.9)). Второе же слагаемое, в силу (2.12), заведомо неотрицательно, ибо при u 1 =…=ur =0 (эта точка, в силу условия 3) на стр.15, принадлежит многограннику U ) мы имеем ψ (τ )Bu =0, а потому максимальное значение выражения ψ (τ )Bu неотрицатнльно. Итак, соотношение H (ψ (t 1 ), x (t 1 ), u (t 1 ))³0 для линейной оптимальной задачи всегда выполнено.
Сказанное можно резюмировать следующим образом. Пусть u (t ), t 0 £t £t 1 , - допустимое управление, переводящее объект (2.5) из заданного начального состояния x 0 в положение равновесия (0, 0,…, 0). Будем говорить, что управление u (t ) удовлетворяет принципу максимума , если существует такое нетривиальное решение y(t ) уравнения (2.11), для которого выполняется условие максимума (2.12) (в каждый момент времени t, t 0 £t£t 1 ). Для оптимальности управления u (t ) необходимо, чтобы оно удовлетворяло принципу максимума . Это и есть та упрощённая формулировка принципа максимума, к которой мы приходим в случае линейной задачи оптимального управления.
11. Принцип максимума — необходимое и достаточное условие оптимальности. Замечательным фактом является то, что в случае линейной задачи оптимального управления принцип максимума представляет собой не только необходимое, но и достаточное условие оптимальности. Однако факт этот имеет место не для произвольной линейной задачи — имеются малосущественные исключения. Поэтому мы наложим на линейную задачу некоторое ограничение, называемое условием общности положения . Сформулируем это условие:
Условие общности положения : если w — вектор, параллельный произвольному ребру многогранника U, то вектор B w не принадлежит никакому собственному инвариантному подпространству относительно преобразования A . Невыполнение условия общности положения означает, что хотя бы для одного ребра многогранника U векторы B w , AB w , A 2 B w ,…, An -1 B w линейно зависимы, т. е. определитель n- го порядка, составленный из координат этих векторов, обращается в нуль. Однако всюду в дальнейшем условие общности положения предполагается (если не оговорено противное ) выполненным .
Теперь перейдём к теореме, упоминавшейся в начале этого пункта.
Т е о р е м а 2.1. Пусть u (t ), t 0 £t £t 1 , — допустимое управление, переводящее объект из заданного начального состояния x 0 в положение равновесия (0, 0,…, 0). Для оптимальности управления u (t ) необходимо и достаточно, чтобы оно удовлетворяло принципу максимума .
12. Основные теоремы о линейных оптимальных быстродействиях.
Т е о р е м а 2.2. Для каждого нетривиального решения y (t ) уравнения (2.11) соотношение (2.12) однозначно определяет допустимое управление u (t ); при этом оказывается, что функция u (t ) кусочно-постоянна и её значениями являются лишь вершины многогранника U .
Каждую точку разрыва оптимального управления мы будем называть точкой переключения .
Т е о р е м а 2.3. Предположим, что многогранник U является r-мерным параллелепипедом (2.2) и что все собственные значения матрицы A= (ai j ), составленной из коэффициентов уравнений (2.1), действительны. Тогда в оптимальном управлении u (t )=(u 1 (t ),…, ur (t )) каждая из функций u b (t ), b=1,…,r , кусочно-постоянна, принимает только значения a b и b b (см. (2.2)) и имеет не более n- 1 переключений (т. е. не более n интервалов постоянства ), где n — порядок системы (2.1).
Т е о р е м а 2.4 (т е о р е м а е д и н с т в е н н о с т и). Пусть u 1 (t ) и u 2 (t ) — два оптимальных управления, заданных соответственно на отрезках t 0 £t £t 1 и t 0 £t £t 2 и переводящих точку x 0 в начало координат . Тогда эти управления совпадают , т. е. t 1 =t 2 и u 1 (t )ºu 2 (t ) на отрезке t 0 £t £t 1 .
Областью управляемости для объекта (2.5)мы будем называть множество всех точек x 0 фазового пространства X , из которых возможно при помощи какого-либо допустимого управления попасть в начало координат. Само начало координат мы также будем причислять к области управляемости. Ясно, что вопрос о нахождении оптимальных процессов разумно ставить лишь в случае, если начальное фазовое состояние x 0 принадлежит области управляемости (ведь из точек, не принадлежащих области управляемости, вообще нельзя попасть в начало координат).
Т е о р е м а 2.5 (т е о р е м а с у щ е с т в о в а н и я). Область управляемости является выпуклым открытым множеством фазового пространства X ; для любой точки x 0 , принадлежащей области управляемости , существует оптимальное управление , переводящее точку x 0 в начало координат .
Т е о р е м а 2.6. Если в линейной задаче оптимального управления матрица A (см. (2.3)) устойчива , т. е. все её собственные значения имеют отрицательные действительные части, то область управляемости совпадает со всем фазовым пространством X . Следовательно , для любой точки x 0 Î X существует оптимальное управление , переводящее фазовую точку x 0 в начало координат .
§ 5. Решение задачи синтеза для линейных задач второго порядка
13. Упрощение уравнений линейного управляемого объекта. Нередко бывает, что в линейной задаче общая запись уравнений движения объекта в виде (2.1) неудобна и целесообразно воспользоваться некоторыми упрощениями. Мы здесь отметим стандартные упрощения, которые можно осуществить с помощью замены координат.
- Прежде всего, рассмотрим вопрос о замене координат в фазовом пространстве X рассматриваемого управляемого объекта. Предположим, что в пространстве X вместо координат x 1 ,…, xn введены новые координаты y 1 ,…, yn , связанные с прежними координатами соотношениями
(2.13)
(где матрицы P =(pi j ) и Q=(qi j ) взаимно обратны). Ясно, что при такой замене линейная система (2.1) превращается в новую линейную систему
коэффициенты которой легко вычисляются:
Таким образом, ,
Переходя к векторным обозначениям, можно сказать, что указанная замена координат переводит уравнение (2.5) в уравнение где матрицы C
и D
выражаются через матрицы A,
B,
P,
Q
по формулам C
=QAP
, D
=QB
.
Очевидно, при такой замене условия 1), 2), указанные на стр. 15, сохраняются и для уравнения получаемого после замены. Далее, каждый процесс (u
(t
), x
(t
)), удовлетворяющий уравнению
переходит в процесс (u
(t
), y(t
)), удовлетворяющий уравнению
(и обратно). Так как при этом время t
не меняется, то указанная замена переводит оптимальные процессы для уравнения
(и наоборот). В частности, синтез оптимальных управлений для уравнения
переводится с помощью преобразования координат (2.13) в синтез оптимальных управлений для уравнения
.
Таким образом, если уравнение окажется проще и для него синтез оптимальных управлений можно будет построить, то из этого синтеза можно (с помощью афинного преобразования (2.13)) получит синтез и для первоначального уравнения
. В этом и заключается смысл замены координат (2.13): она позволяет заменить матрицу A
трансформированной матрицей C
=QAP,
в то же время вызывая лишь афинное искажение картины синтеза оптимальных управлений. Таким образом, преобразованием (2.13) можно воспользоваться для упрощения матрицы A
, составленной из коэффициентов при фазовых координатах.
- Предположим, что в уравнении матрица A
уже приведена к простейшему виду (с помощью описанного выше приёма). Укажем теперь, каким образом может быть упрощена матрица B
, составленная из коэффициентов при управляющих параметрах.
С этой целью положим
(2.14)
Это означает, что вместо r управляющих параметров u 1 ,…,ur вводятся n других управляющих параметров v 1 ,…, vn , благодаря чему система (2.1) заменяется следующей:
или в векторной форме,
Нужно только выяснить, в каких пределах может изменяться точка v =(v 1 , v 2 ,…, vn ). Удобно считать, что эта точка v =(v 1 , v 2 ,…, vn ) расположена в том же пространстве X , что и точка x =(x 1 ,…, xn ).
Соотношения (2.14) определяют линейное отображение r- мерного пространства переменных u 1 ,…,ur в фазовое пространство X . Образом многогранника U при отображении (2.14) является некоторый выпуклый многогранник в пространстве X , который мы обозначим через V .
Таким образом, получаем два линейных уравнения:
(2.15)
(2.16)
Г л а в а III
СИНТЕЗ ОПТИМАЛЬНЫХ УПРАВЛЕНИЙ ДЛЯ УРАВНЕНИЯ ВТОРОГО ПОРЯДКА
§ 6. Решение задачи синтеза в случае комплексных собственных значений
14. Задача синтеза для малых колебаний маятника. Здесь будет дано полное решение задачи синтеза оптимальных управлений для линейных объектов, описываемых уравнениями второго порядка. Фазовое пространство X в этом случае представляет собой плоскость.
Рассмотрим колебание плоского маятника. Как известно колебание маятника, подвешенного к точке опоры, описывается дифференциальным уравнением второго порядка:
(в нашем случае положим β
=1)
при малых колебаниях маятника Sinφ≈φ тогда уравнение движения маятника запишется в виде:
(3.1)
Управляющий параметр u (скалярный) будем предполагать изменяющимся в пределах -1£u £1.
Пусть — угол отклонения, а
— скорость маятника. Тогда уравнение (3.1) перепишется в виде следующей нормальной системы:
(3.2)
На плоскости x 1 , x 2 «многогранник» U будет представляться отрезком [-1, 1], расположенным на оси x 2 . Легко видеть, что ось x 2 не является собственным инвариантным подпространством матрицы A , которая для системы (3.2) имеет вид:
A
=,
и потому условие общности положения всегда выполнено.
Найдём собственные значения матрицы A . Для этого составим характеристическое уравнение |λE─ A |=0, т. е. λ 2 +λ +1=0. Откуда находим, что собственные значения матрицы A такие:
т. е. собственные значения матрицы A
комплексные. Введём обозначения где b
≠0.
Тогда матрица A преобразуется к виду:
=
.
Будем рассматривать систему, соответствующую матрице , т. е. систему вида:
(3.3)
Вначале рассмотрим соответствующую однородную систему:
(3.4)
Общее решение этой системы имеет вид:
где c, γ – произвольные постоянные интегрирования.
Запишем функцию H и применим принцип максимума.
где ψ1 , ψ2 определяются системой, сопряжённой к системе (3.3), т. е. системой вида:
(3.5)
Общее решение этой системы имеет вид:
где c’, γ’ – произвольные постоянные интегрирования. Т. е. функция H имеет вид:
Подставим в функцию H представление решений x 1 , x 2 :
Т. к. собственный вектор матрицы A
, соответствующий собственному значению l
имеет вид q
1
─iq
2
, где q
1
=(1;─1/2); q
2
=(0;─).
Пусть q 1 и q 2 – базисные векторы новой косоугольной системы координат y 1 , y 2 . Тогда переход от системы y 1 , y 2 к системе x 1 , x 2 выражается формулами:
Тогда в новых координатах система уравнений (3.2) запишется в виде
или, иначе, в виде
где v
=(v
1
, v
2
) ─ управляющая точка, которая может меняться в пределах многогранника V
, представляющего собой отрезок [] оси y
2
.
Согласно теории вершинам e
1
=(0,
), e
2
=(0,
) многогранника V
соответствуют точки h
1
=(1, -
), h
2
=(-1,
) (координаты указаны в системе y
1
, y
2
), а каждый из углов a
1
, a
2
, соответствующих этим вершинам, равен p.
Теперь уже нетрудно построить синтез оптимальных управлений в плоскости y 1 , y 2 . Кусками фазовых траекторий будут дуги логарифмических спиралей, т. к. у нас b=1, т. е. b>0 (рис. 18).
При переходе от координат y 1 , y 2 к координатам x 1 , x 2 картина синтеза афинно искажается.
Список используемой литературы:
1. В.Г. Болтянский. «Математические методы оптимального управления», М.: «Наука», 1968г.
2. Л.С. Понтрягин, В.Г. Болтянский, Р.В. Гамкрелидзе, Е.Ф. Мищенко. «Математическая теория оптимальных процессов», 4-е издательство. М.: «Наука», 1983г.
3. Р. Габасов, Ф.М. Кириллова. «Методы оптимизации», Минск, издательство БГУ, 1981г.