Скачать .docx Скачать .pdf

Реферат: Лекции по биохимии углеводов

ГОУ ВПО УГМА Росздрава

кафедра биохимии

Утверждаю

Зав. каф. проф., д.м.н.

Мещанинов В.Н.

_____‘’_____________2007г

ЛЕКЦИЯ № 7

Тема: Переваривание и всасывание углеводов. Обмен гликогена

Факультеты: лечебно-профилактический, медико-профилактический, педиатрический.

2 курс.

Углеводы – это многоатомные спирты содержащие оксогруппу.

По количеству мономеров все углеводы делят на: моно-, ди-, олиго- и полисахариды.

Моносахариды по положению оксогруппы делятся альдозы и кетозы.

По количеству атомов углерода моносахариды делятся на триозы, тетрозы, пентозы, гексозы и т.д.

Функции углеводов

Моносахариды – углеводы, которые не гидролизуются до более простых углеводов.

Моносахариды:

· выполняют энергетическую функцию (образование АТФ).

· выполняют пластическую функцию (участвуют в образовании ди-, олиго-, полисахаридов, аминокислот, липидов, нуклеотидов).

· выполняют детоксикационную функцию (произ­водные глюкозы, глюкурониды, участвуют в обезвреживании токсичных метаболитов и ксенобиотиков).

· являются фрагментами гликолипидов (цереброзиды).

Дисахариды – углеводы, которые гидролизуются на 2 моносахарида. У человека образуется только 1 дисахарид - лактоза. Лактоза синтезируется при лактации в молочных железах и содержится в молоке. Она:

· является источником глюкозы и галактозы для новорожденных;

· участвует в формировании нормальной микрофлоры у новорожденных.

Олигосахариды – углеводы, которые гидролизуются на 3 - 10 моносахаридов.

Олигосахариды являются фрагментами гликопротеинов (ферменты, белки-транспортёры, белки-рецепторы, гормоны), гликолипидов (глобозиды, ганглиозиды). Они образуют на поверхности клетки гликокаликс.

Полисахариды – углеводы, которые гидролизуются на 10 и более моносахаридов. Гомополисахариды выполняют запасающую функцию (гликоген – форма хранения глюкозы). Гетерополисахариды (ГАГ) являются структурным компонентом межклеточного вещества (хондроитинсульфаты, гиалуроновая кислота), участвуют в пролиферации и дифференцировке клеток, препятствуют свертыванию крови (гепарин).

Углеводы пищи, нормы и принципы нормирования их суточной пищевой потребности. Биологическая роль. В пище человека в основном содержатся по­лисахариды — крахмал, целлюлоза растений, в меньшем количестве - гликоген животных. Источником сахарозы служат растения, особенно сахарная свёкла, сахарный тростник. Лактоза поступает с молоком млекопитающих (в коровьем мо­локе до 5% лактозы, в женском мо­локе — до 8%). Фрукты, мёд, соки содер­жат небольшое количество глюкозы и фруктозы. Мальтоза есть в солоде, пиве.

Углеводы пищи являются для организма человека в основном источником моносахаридов, преимущественно глюкозы. Некоторые полисахариды: целлюлоза, пектиновые вещества, декстраны, у человека практически не перевариваются, в ЖКТ они выполняют функцию сорбента (выводят холестерин, желчные кислоты, токсины и д.р.), необходимы для стимуляции перистальтики кишечника и формирования нормальной микрофлоры.

Углево­ды — обязательный компонент пищи, они составляют 75% массы пищевого рациона и дают более 50% необходимых калорий. У взрослого человека суточная потребность в углеводах 400г/сут, в целлюлозе и пектине до 10-15 г/сут. Рекомендуется употреблять в пищу больше сложных полисахаридов и меньше моносахаров.

Переваривание углеводов

Переваривание это процесс гидролиза веществ до их ассимилируемых форм. Переваривание бывает: 1). Внутриклеточное (в лизосомах); 2). Внеклеточное (в ЖКТ): а). полостное (дистантное); б). пристеночное (контактное).

Переваривание углеводов в ротовой полости (полостное)

В ротовой полости пища измельчается при пе­режёвывании и смачивается слюной. Слюна состоит на 99% из воды и обычно имеет рН 6,8. В слюне присутствует эндогликозидаза α-амилаза (α-1,4-гликозидаза), расщеп­ляющая в крахмале внутренние α-1,4-гликозидные связи с об­разованием крупных фрагментов — декстринов и небольшого количества мальтозы и изомальтозы. Необходим ион Cl- .

Переваривание углеводов в желудке (полостное)

Действие амилазы слюны прекращается в кислой среде (рН <4) содержимого желудка, однако, внутри пищевого комка ак­тивность амилазы может некоторое время сохраняться. Желудочный сок не содержит фермен­тов, расщепляющих углеводы, в нем возможен лишь незначительный кислотный гидролиз гликозидных связей.

Переваривание углеводов в тонком кишечнике (полостное и пристеночное)

В двенадцатиперстной кишке кислое содержимое желу­дка нейтрализуется соком поджелудочной железы (рН 7,5—8,0 за счет бикарбонатов). С соком поджелудочной железы в кишечник поступает панкреатическая α-амилаза . Эта эндогликозидаза гидролизует внутренние α-1,4-гликозидные связи в крахмале и декстринах с образованием мальтозы (2 ос­татка глюкозы, связанные α-1,4-гликозидной связью), изомальтозы (2 ос­татка глюкозы, связанные α-1,6-гликозидной связью) и олигосахаридов, содержащих 3—8 остатков глюкозы, свя­занных α-1,4- и α-1,6-гликозидными связями.

Переваривание мальтозы, изомальтозы и олигосахаридов происходит под дей­ствием специфических ферментов - экзогликозидаз, образующих ферментативные комплексы. Эти комплексы находятся на поверхности эпителиаль­ных клеток тонкого ки­шечника и осуществляют пристеночное пищеварение.

Сахаразо-изомальтазный комплекс состоит из 2 пептидов, имеет доменное строение. Из первого пептида образован цитоплазматический, трансмембранный (фиксирует комплекс на мембране энтероцитов) и связывающий домены и изомальтазная субъединица. Из второго - сахаразная субъединица. Сахаразная субъединица гидролизует α-1,2-гликозидные связи в сахарозе, изомальтазная субъединица - α-1,6-гликозидные связи в изомальтозе, α-1,4-гликозидные связи в мальтозе и мальтотриозе. Комплекса много в тощей кишке, меньше в проксимальной и дистальной частях кишечника.

Гликоамилазный комплекс , содержит две каталитические субъединицы, имеющие небольшие различия в субстратной специфич­ности. Гидролизует α-1,4-гликозидные связи в олигосахаридах (с восстанавливающего конца) и в мальтозе. Наибольшая активность в нижних отделах тонкого кишеч­ника.

β-Гликозидазный комплекс (лактаза) гликопротеин, гидролизует β-1,4-гликозидные связи в лактозе. Активность лактазы зависит от возраста. У плода она особенно повышена в поздние сроки беременности и сохраняется на высоком уровне до 5-7-летнего возраста. Затем активность лактазы снижается, составляя у взрослых 10% от уровня активности, характерного для детей.Трегалаза гликозидазный комплекс, гидролизует α-1,1-гликозидные связи между глюкозами в трегалозе — дисахариде грибов.Переваривание углеводов заканчивается образованием моносахаридов – в основном глюкозы, меньше образуется фруктозы и галактозы, еще меньше – маннозы, ксилозы и арабинозы.Всасывание углеводов Моносахариды всасываются эпителиальными клетками тощей и подвздошной кишок. Транспорт моносахаридов в клетки слизистой оболочки кишечника может осуществляться путём диффузии (рибоза, ксилоза, арабиноза), облегчённой диффузии с помощью белков переносчиков (фруктоза, галактоза, глюкоза), и путем вторично-активного транспорта (галактоза, глюкоза). Вторично-активный транспорт галактозы и глюкозы из просвета кишечника в энтероцит осуществляется симпортом с Na+ . Через белок-переносчик Na+ двигается по градиенту своей концентрации и переносит с собой углеводы против их градиента концентраций. Градиент концентрации Na+ создаётся Nа++ -АТФ-азой. При низкой концентрации глюкозы в просвете кишечника она транспортируется в энтероцит только активным транспортом, при высокой концентрации - активным транспортом и облегчённой диффузией. Скорость всасывания: галактоза > глюкоза > фруктоза > другие моносахариды. Моносахариды выходят из энтероцитов в направлении кровеносного капилляра с помощью облегченной диффузии через белки-переносчики.

Нарушение переваривания и всасывания углеводов

Недостаточное переваривание и всасывание переваренных продуктов называют мальабсорбцией . В основе мальабсорбции углеводов могут быть причины двух типов:

1). Наследственные и приобретенные дефекты ферментов, участвующих в переваривании . Известны наследственные дефекты лактазы, α-амилазы, сахаразно-изомальтазного комплекса. Без лечения эти па­тологии сопровождаются хроническим дисбактериозом и нарушениями физического разви­тия ребёнка.

Приобретённые нарушения переваривания могут наблю­даться при кишечных заболеваниях, например гастритах, колитах, энтеритах, после операций на ЖКТ.

Дефицит лактазы у взрослых людей может быть связан со снижением экспрессии гена лактазы, что проявляться непе­реносимостью молока - наблюдается рвота, диарея, спазмы и боли в животе, метеоризм. Частота этой па­тологии составляет в Европе 7—12%, в Китае — 80%, в Африке — до 97%.

2). Нарушение всасывания моносахаридов в кишечнике.

Нарушения всасывания могут быть следствием дефекта какого-либо компонента, участвующего в системе транспорта моносахаридов через мембрану. Описаны патологии, связанные с дефектом натрийзависимого белка переносчика глюкозы.

Синдром мальабсорбции сопровождается осмотической диареей, усилением перистальтики, спазмами, болями, а также метеоризмом. Диарею вызывают нерасщеплённые дисахариды или невсосавшиеся моносахариды в дистальных отделах кишечника, а также органические кислоты, образованные микроорганизмами при неполном расщеплении углеводов.

Транспорт глюкозы из крови в клетки Глюкоза поступает из кровотока в клетки путём облегчённой диффузии с помощью белков-переносчиков - ГЛЮТов. Глюкозные транспортёры ГЛЮТы имеют доменную организацию и обнаружены во всех тканях. Выделяют 5 типов ГЛЮТов:• ГЛЮТ-1 - преимущественно в мозге, плаценте, почках, толстом кишечнике;• ГЛЮТ-2 - преимущественно в печени, почках, β-клетках поджелудочной железы, энтероцитах, есть в эритроцитах. Имеет высокую Км;

• ГЛЮТ-3 - во многих тканях, включая мозг, плаценту, почки. Обладает большим, чем ГЛЮТ-1, сродством к глюкозе;

• ГЛЮТ-4 - инсулинзависимый, в мышцах (скелетной, сердечной), жировой ткани;• ГЛЮТ-5 - много в клетках тонкого кишечника, является переносчиком фруктозы.

ГЛЮТы, в зависимости от типа, могут находиться преимущественно как в плазматической мембране, так и в цитозольных везикулах. Трансмембранный перенос глюкозы происходит только тогда, когда ГЛЮТы находятся в плазматической мембране. Встраивание ГЛЮТов в мембрану из цитозольных везикул происходит под действием инсулина. При снижении концентрации инсулина в крови эти ГЛЮТы снова перемещаются в цитоплазму. Ткани, в которых ГЛЮТы без инсулина почти полностью находятся в цитоплазме клеток (ГЛЮТ-4, и в меньшей мере ГЛЮТ-1), оказываются инсулинзависимыми (мышцы, жировая ткань), а ткани, в которых ГЛЮТы преимущественно находятся в плазматической мембране (ГЛЮТ-3) - инсулиннезависимыми.

Известны различные нарушения в работе ГЛЮТов. Наследственный дефект этих белков может лежать в основе инсулинонезависимого сахарного диабета.

Метаболизм моносахаридов в клетке

После всасывания в кишечнике глюкоза и другие моносахариды поступают в воротную вену и далее в печень. Моносахариды в печени превращаются в глюкозу или продукты её метаболизма. Часть глюкозы в печени депонируется в виде гликогена, часть идет на синтез новых веществ, а часть через кровоток, направляется в другие органы и ткани. При этом печень поддерживает концентрацию глюкозы в крови на уровне 3,3-5,5 ммоль/л.

Фосфорилирование и дефосфорилирование моносахаридов

В клетках глюкоза и другие моносахариды с использованием АТФ фосфорилируются до фосфорных эфиров: глюкоза + АТФ → глюкоза-6ф + АДФ. Для гексоз эту необратимую реакцию катализирует фермент гексокиназа , которая имеет изоформы: в мышцах - гексокиназа II, в печени, почках и β-клетках поджелудочной железы - гексокиназа IV (глюкокиназа), в клетках опухолевых тканей - гексокиназа III. Фосфорилирование моносахаридов приводит к образованию реакционно-способных соединений (реакция активации), которые не способны покинуть клетку т.к. нет соответствующих белков-переносчиков. Фосфорилирование уменьшает количество свободной глюкозы в цитоплазме, что облегчает ее диффузию из крови в клетки.

Гексокиназа II фосфорилирует D-глюкозу, и с меньшей скоростью, другие гексозы. Обладая высоким сродством к глюкозе (Кm <0,1 ммоль/л), гексокиназа II обеспечивает поступление глюкозы в ткани даже при низкой концентрации глюкозы в крови. Так как гексокиназа II ингибируется глюкозо-6-ф (и АТФ/АДФ), глюкоза поступает в клетку только по мере необходимости.

Глюкокиназа (гексокиназа IV) имеет низкое сродство к глюкозе (Кm - 10 ммоль/л), активна в печени (и почках) при повышении концентрации глюкозы (в период пищеварения). Глюкокиназа не ингибируется глюкозо-6-фосфатом, что дает возможность печени без ограничений удалять излишки глюкозы из крови.

Глюкозо-6-фосфатаза катализирует необратимое отщепление фосфатной группы гидролитическим путём в ЭПР: Глюкозо-6-ф + Н2 О → Глюкоза + Н3 РО4 , есть только в печени, почках и клетках эпителия кишечника. Образовавшаяся глюкоза способна диффундировать из этих органов в кровь. Таким образом, глюкозо-6-фосфатаза печени и почек позволяет повышать низкий уровень глюкозы в крови.

Метаболизм глюкозо-6-фосфата

Глюкозо-6-ф может использоваться клетке в различных превращениях, основными из которых являются: катаболизм с образованием АТФ, синтез гликогена, липидов, пентоз, полисахаридов и аминокислот.


МЕТАБОЛИЗМ ГЛИКОГЕНА

Многие ткани в качестве резервной формы глюкозы синтезируют гликоген. Синтез и распад гликогена в печени поддерживают гомеостаз глюкозы в крови.

Гликоген — разветвлённый гомополисахарид глюкозы с массой >107 Да (50000 остатков глюкозы), в котором остатки глюкозы соединены в линейных участках α-1,4-гликозидной связью. В точках ветвления, примерно через каждые 10 остатков глюкозы, мономеры соединены α-1,6-гликозидными связями. Гликоген, водонерастворим, хранится в цитозоле клетки в форме гранул диаметром 10-40 нм. Гликоген депонируется главным образом в печени (до 5%) и скелетных мышцах (до 1%). В организме может содержаться от 0 до 450 г гликогена.

Разветвлённая структура гликогена способствует работе ферментов, отщепляющих или присоединяющих мономеры.

Синтез гликогена (гликогеногенез)

Гликоген синтезируется с затратой энергии в период пищеварения (через 1—2 ч после приёма углеводной пищи).

Синтез гликогена осуществляется путём удлинения уже имеющейся молекулы полисахарида, называемой «затравка », или «праймер ». В состав праймера может входить белок гликогенин, в котором к Тир присоединен олигосахарид (примерно из 8 остатков глюкозы). Глюкозные остатки переносятся гликогенсинтазой на нередуцирующий конец олигосахарида и связываются α-1,4-гликозидными связями.

При удлинении линейного участка примерно до 11 глюкозных остатков, фермент ветвления переносит её концевой блок, содержащий 6—7 остатков, на внутренний остаток глюкозы этой или другой цепи с образованием α-1,6-гликозидной связи. Новая точка ветвления образуется на расстоянии не менее 4 остатков от любой уже существующей точки ветвления.

Распад гликогена (гликогенолиз)

Распад гликогена происходит путем последовательного отщепления глюкозо-1-ф в ответ на повышение потребности организма в глюкозе. Реакцию катализирует гликогенфосфорилаза:

Гликогенфосфорилаза состоит из 2 идентичных субъединиц (94500 Да). Неактивная форма обозначается b, активная - a. Активируется киназой фосфорилазы b путем фосфорилирования каждой субъединицы по серину в 14 положении.

Гликогенфосфорилаза расщепляет фосфоролизом α-1,4-гликозидные связи, до тех пор, пока до точки ветвления не остается 4 остатка глюкозы.

Инактивация гликогенфосфорилазы происходит при дефосфорилировании с участием специфической фосфатазы фосфорилазы (фосфопротеинфосфотазы ФПФ).

Удаление ветвления осуществляет деветвящий фермент . Он обладает трансферазной и гликозидазной активностями. Трасферазная часть (олигосахаридтрансфераза ) переносит три оставшихся до точки ветвления глюкозных остатка на нередуцирующий конец соседней цепи, удлиняя её для фосфорилазы.

Гликозидазная часть (α-1,6-глюкозидаза ) гидролизует α-1,6-гликозидную связь, отщепляя глюкозу.

Глюкозо-1-ф изомеризуется в глюкозо-6-ф фосфоглюкомутазой.

Регуляция метаболизма гликогена в печени

АТФ

АДФ

Глюкоза-1-ф Гликоген

АТФ

АДФ

АТФ

АДФ

4Са2+ КМ

Са2+ , ДАГ

Н2 О

Фн

Н2 О

Фн

АТФ

АДФ

Регуляция метаболизма гликогена в мышцах

АТФ

Глюкоза-1-ф Гликоген

АТФ

АДФ

АТФ

АДФ

Н2 О

Фн

Н2 О

Фн

АТФ

АДФ

Метаболизм гликогена контролируется гормонами (в печени - инсулином, глюкагоном, адреналином; в мышцах - инсулином и адреналином), которые регулируют фосфорилирование /дефосфорилирование 2 ключевых ферментов гликогенсинтазы и гликогенфосфорилазы.

При недостаточном уровне глюкозы в крови выделяется гормон глюкагон, в крайних случаях – адреналин. Они стимулируют фосфорилирование гликогенсинтазы (она инактивируется) и гликогенфосфорилазы (она активируется). При повышении уровня глюкозы в крови выделяется инсулин, он стимулирует дефосфорилирование гликогенсинтазы (она активируется) и гликогенфосфорилазы (она инактивируется). Кроме того, инсулин индуцирует синтез глюкокиназы, тем самым, ускоряя фосфорилирование глюкозы в клетке. Всё это приводит к тому, что инсулин стимулирует синтез гликогена, а адреналин и глюкагон – его распад.

В печени существует и аллостерическая регуляция гликогенфосфорилазы: ее ингибирует АТФ и глюкозо-6ф, а активирует АМФ.

Нарушения обмена гликогена

Гликогеновые болезни — группа наследственных нарушений, в основе которых лежит снижение или отсутствие активности ферментов, катализирующих реакции синтеза или распада гликогена, либо нарушение регуляции этих ферментов.

Гликогенозы — заболевания, обусловленные дефектом ферментов, участвующих в распаде гликогена. Они проявляются или необычной структурой гликогена, или его избыточным накоплением в печени, сердечной или скелетных мышцах, почках, лёгких и других органах.

В настоящее время гликогенозы делят на 2 группы: печёночные и мышечные.

Печёночные формы гликогенозов ведут к нарушению использования гликогена для поддержания уровня глюкозы в крови. Поэтому общий симптом для этих форм — гипогликемии в постабсорбтивный период.

Болезнь Гирке (тип I) отмечают наиболее часто. Причина — наследственный дефект глюкозо-6-фосфатазы — фермента, обеспечивающего выход глюкозы в кровоток после её высвобождения из гликогена клеток печени и почек. Клетки печени и извитых канальцев почек заполнены гликогеном, печень и селезенка увеличены, у больных опухлое лицо - «лицо китайской куклы». Болезнь проявляется гипогликемией, гипертриацилглицеролемией, гиперурикемией, ацидоз.

1). В гепатоцитах: ↑глюкозо-6-ф → ↑ПВК, ↑лактат (ацидоз), ↑рибозо-5-ф. ↑рибозо-5-ф→ ↑пуринов→ ↑ мочевая кислота

2). В крови: ↓глюкоза →↓инсулин/глюкагон→: а) ↑липолиз жировой ткани → ↑ЖК в крови.

б). ↓ЛПЛ жировой ткани → ↑ТАГ в крови.

Лечение - диета по глюкозе, частое кормление.

Болезнь Кори (тип III) распространена, 1/4 всех печёночных гликогенозов. Накапливается разветвленный гликоген, так как дефектен деветвящий фермент. Гликогенолиз возможен, но в незначительном объёме. Лактоацидоз и гиперурикемия не отмечаются. Болезнь отличается более лёгким течением чем болезнь Гирке.

Мышечные формы гликогенозов характеризуются нарушением в энергоснабжении скелетных мышц. Эти болезни проявляются при физических нагрузках и сопровождаются болями и судорогами в мышцах, слабостью и быстрой утомляемостью.

Болезнь МакАрдла (тип V) — аутосомно-рецессивная патология, отсутствует в скелетных мышцах активность гликогенфосфорилазы. Накопление в мышцах гликогена аномальной структуры.

Агликогенозы

Агликогеноз (гликогеноз 0 по классификации) — заболевание, возникающее в результате дефекта гликогенсинтазы. В печени и других тканях больных наблюдают очень низкое содержание гликогена. Это проявляется резко выраженной гипогликемией в постабсорбтивном периоде. Характерный симптом — судороги, проявляющиеся особенно по утрам. Болезнь совместима с жизнью, но больные дети нуждаются в частом кормлении.

ГОСУДАРСТВЕННАЯ МЕДИЦИНСКАЯ АКАДЕМИЯ

кафедра биохимии

Утверждаю

Зав. каф. проф., д.м.н.

Мещанинов В.Н.

_____‘’_____________2007 г

ЛЕКЦИЯ № 8

Тема: Катаболизм глюкозы. Гликолиз

Основные пути катаболизма глюкозы

Катаболизм глюкозы в клетке может проходить как в аэробных, так и в анаэробных условиях, его основная функция - это синтез АТФ.

Аэробное окисление глюкозы

В аэробных условиях глюкоза окисляется до СО2 и Н2 О. Суммарное уравнение:

С6 Н12 О6 + 6О2 → 6СО2 + 6Н2 О + 2880 кДж/моль.

Этот процесс включает несколько стадий:

1. Аэробный гликолиз . В нем происходит окисления 1 глюкозы до 2 ПВК, с образованием 2 АТФ (сначала 2 АТФ затрачиваются, затем 4 образуются) и 2 НАДН2 ;

2. Превращение 2 ПВК в 2 ацетил-КоА с выделением 2 СО2 и образованием 2 НАДН2 ;

3. ЦТК. В нем происходит окисление 2 ацетил-КоА с выделением 4 СО2 , образованием 2 ГТФ (дают 2 АТФ), 6 НАДН2 и 2 ФАДН2 ;

4. Цепь окислительного фосфорилирования. В ней происходит окисления 10 (8) НАДН2 , 2 (4) ФАДН2 с участием 6 О2 , при этом выделяется 6 Н2 О и синтезируется 34 (32) АТФ.

В результате аэробного окисления глюкозы образуется 38 (36) АТФ, из них: 4 АТФ в реакциях субстратного фосфорилирования, 34 (32) АТФ в реакциях окислительного фосфорилирования. КПД аэробного окисления составит 65%.

Анаэробное окисление глюкозы

Катаболизм глюкозы без О2 идет в анаэробном гликолизе и ПФШ (ПФП).

· В ходе анаэробного гликолиза происходит окисления 1 глюкозы до 2 молекул молочной кислоты с образованием 2 АТФ (сначала 2 АТФ затрачиваются, затем 4 образуются). В анаэробных условиях гликолиз является единственным источником энергии. Суммарное уравнение: С6 Н12 О6 + 2Н3 РО4 + 2АДФ → 2С3 Н6 О3 + 2АТФ + 2Н2 О.

· В ходе ПФП из глюкозы образуются пентозы и НАДФН2 . В ходе ПФШ из глюкозы образуются только НАДФН2 .

ГЛИКОЛИЗ

Гликолиз – главный путь катаболизма глюкозы (а также фруктозы и галактозы). Все его реакции протекают в цитозоле.

Аэробный гликолиз - это процесс окисления глюкозы до ПВК, протекающий в присутствии О2 .

Анаэробный гликолиз – это процесс окисления глюкозы до лактата, протекающий в отсутствии О2 .

Анаэробный гликолиз отличается от аэробного только наличием последней 11 реакции, первые 10 реакций у них общие.

Этапы гликолиза

В любом гликолизе можно выделить 2 этапа:

  • 1 этап подготовительный, в нем затрачивается 2 АТФ. Глюкоза фосфорилируется и расщепляется на 2 фосфотриозы;
  • 2 этап, сопряжён с синтезом АТФ. На этом этапе фосфотриозы превращаются в ПВК. Энергия этого этапа используется для синтеза 4 АТФ и восстановления 2НАДН2 , которые в аэробных условиях идут на синтез 6 АТФ, а в анаэробных условиях восстанавливают ПВК до лактата.

Энергетический баланс гликолиза

Таким образом, энергетический баланс аэробного гликолиза:

8АТФ = -2АТФ + 4АТФ + 6АТФ (из 2НАДН2 )

Энергетический баланс анаэробного гликолиза:

2АТФ = -2АТФ + 4АТФ

Общие реакции аэробного и анаэробного гликолиза

1. Гексокиназа (гексокиназа II, АТФ: гексозо-6-фосфотрансфераза) в мышцах фосфорилирует в основном глюкозу, меньше – фруктозу и галактозу. Кm<0,1 ммоль/л. Ингибитор глюкозо-6-ф, АТФ. Активатор адреналин. Индуктор инсулин.

Глюкокиназа (гексокиназа IV, АТФ: глюкозо-6-фосфотрансфераза) фосфорилирует глюкозу. Кm - 10 ммоль/л, активна в печени, почках. Не ингибируется глюкозо-6-ф. Индуктор инсулин. Гексокиназы осуществляют фосфорилирование гексоз.

2. Фосфогексозоизомераза (глюкозо-6ф-фруктозо-6ф-изомераза) осуществляет альдо-кетоизомеризацию открытых форм гексоз.

3. Фосфофруктокиназа 1 (АТФ: фруктозо-6ф-1-фосфотрансфераза) осуществляет фосфорилирование фруктозы-6ф. Реакция необратима и самая медленная из всех реакций гликолиза, определяет скорость всего гли­колиза. Активируется: АМФ, фруктозо-2,6-дф (мощный активатор, образуется с участием фосфофруктокиназы 2 из фруктозы-6ф), фруктозо-6-ф, Фн. Ингибируется: глюкагоном, АТФ, НАДН2 , цитратом, жирными кислотами, кетоновыми телами. Индуктор реакции инсулин.

4. Альдолаза А (фруктозо-1,6-ф: ДАФ-лиаза). Альдолазы действуют на открытые формы гексоз, имеют 4 субъединицы, образуют несколько изоформ. В большинстве тканей содержится Альдолаза А. В печени и почках – Альдолаза В.

5. Фосфотриозоизомераза (ДАФ-ФГА-изомераза).

6. 3-ФГА дегидрогеназа (3-ФГА: НАД+ оксидоредуктаза (фосфорилирующая)) состоит из 4 субъединиц. Катализирует образование макроэргической связи в 1,3-ФГК и восстановление НАДН2 , которые используются в аэробных условиях для синтеза 8 (6) молекул АТФ.

7. Фосфоглицераткиназа (АТФ: 3ФГК-1-фосфотрансфераза). Осуществляет субстратное фосфорилирование АДФ с образованием АТФ.

В следующих реакциях низкоэнергетический фосфоэфир переходит в высокоэнергетический фосфат.

8. Фосфоглицератмутаза (3-ФГК-2-ФГК-изомераза) осуществляет перенос фосфатного остатка в ФГК из по­ложения 3 положение 2.

9. Енолаза (2-ФГК: гидро-лиаза) от­щепляет от 2-ФГК молекулу воды и образует высокоэнергетическую связь у фосфора. Ингибируется ионами F- .

10. Пируваткиназа (АТФ: ПВК-2-фосфотрансфераза) осуществляет субстратное фосфорилирование АДФ с образованием АТФ. Активируется фруктозо-1,6-дф, глюкозой. Ингибируется АТФ, НАДН2 , глюкагоном, адреналином, аланином, жирными кислотами, Ацетил-КоА. Индуктор: инсулин, фруктоза.

Образующаяся енольная форма ПВК затем неферментативно переходит в бо­лее термодинамически стабильную кетоформу. Данная реакция является последней для аэробного гликолиза.

Дальнейший катаболизм 2 ПВК и использование 2 НАДН2 зависит от наличия О2 .

Реакция анаэробного гликолиза

В анаэробных условиях ПВК, подобно О2 в дыхатель­ной цепи, обеспечивает регенерацию НАД+ из НАДН2 , что необходимо для продолжения реакций гликолиза. ПВК при этом превращается в молочную кислоту. Реакция протекает в цитоплазме с участием лактатдегидрогеназы (ЛДГ).

11. Лактатдегидрогеназа (лактат: НАД+ оксидоредуктаза). Стоит из 4 субъединиц, имеет 5 изоформ.

Лактат не является конечным продуктом метаболизма, удаляемым из организма. Из анаэробной ткани лактат переноситься кровью в печень, где превращаясь в глюко­зу (Цикл Кори), или в аэробные ткани (миокард), где превращает­ся в ПВК и окисляется до СО2 и Н2 О.

Катаболизм ПВК в митохондриях

В аэробных условиях ПВК и водороды с НАДН2 транспортируются в матрикс митохондрий. ПВК самостоятельно не проходит внутреннюю мембрану митохондрий, перенос ее через мембрану осуществляется вторично-активным транспортом симпортом с Н+ . ПВК в митохондриях используется в 2 реакциях:

1. Пируватдегидрогеназный комплекс (ПВК: НАД+ оксидорудуктаза (декарбоксилирующая)) содержит 3 фермента и 5 коферментов: а) Пируватдекарбоксилаза содержит (Е1 ) 120 мономеров и кофермент ТПФ; б) Дигидролипоилтрансацилаза (Е2 ) содержит 180 мономеров и коферменты липоамид и HSКоА; в) Дигидролипоилдегидрогеназа (Е3 ) содержит 12 мономеров и коферменты ФАД и НАД. Пируват ДГ комплекс осуществляет окислительное декарбоксилирование ПВК с образованием Ацетил-КоА. Активатор: HSКоА, НАД+ , АДФ. Ингибитор: НАДН2 , АТФ, Ацетил-КоА, жирные кислоты, кетоновые тела. Индуктор инсулин.

Механизм работы Пируват ДГ комплекса. Процесс проходит 5 стадий:

Далее Ацетил-КоА поступает в ЦТК, где он окисляется до 2 СО2 с образованием 1 ГТФ, восстановлением 3 НАДН2 и 1 ФАДН2 .

2. Пируваткарбоксилаза (ПВК: СО2 -синтетаза (АТФ → АДФ + Фн)) сложный олигомерный фермент, содержит биотин. Карбоксилирует ПВК до ЩУК. Пополняющая реакция, по мере необходимости добавляет ЩУК в ЦТК. Активатор: Ацетил-КоА.

Челночные системы

В аэробных условиях О2 обеспечивает регенерацию НАД+ из НАДН2 , что необходимо для продолжения реакции гликолиза (НАД+ субстрат 3-ФГА ДГ).

Так как внутренняя мембрана митохондрий непроницаема для НАДН2 , восстановленный в гликолизе НАДН2 , передает свои водороды на дыхательную цепь митохондрий с помощью специальных систем, назы­ваемых «челночными». Известны 2 челночные системы: малат-аспартатная и глицерофосфатная.

1. Малат-аспартатный челнок является универсальным, работает в печени, почках, сердце.

2.

Глицерофосфатный челночный механизм. Работает в белых скелетных мышцах , мозге, в жировой ткани, гепатоцитах .

Малат-аспартатный челнок энергетически более эффективе­н, так как передаёт водород в дыхательную цепь через митохондриальный НАД, соотношение Р/О равно 3, синтезируется 3 АТФ.

В глицерофосфатный челнок передаёт водород в дыхательную цепь через ФАД на KoQ, соотношение Р/О равно 2, синтезируется 2 АТФ.

Пластическое значение катаболизма глюкозы

При ка­таболизме глюкоза может выполнять пластические функции. Метаболиты гликолиза ис­пользуются для синтеза новых соединений. Так, фруктозо-6ф и 3-ФГА участвуют в образовании рибозо-5-ф (компонент нуклеотидов); 3-фосфоглицерат может включаться в синтез ами­нокислот, таких как серии, глицин, цистеин. В печени и жировой ткани Ацетил-КоА исполь­зуется при биосинтезе жирных кис­лот, холестерина, а ДАФ для синтеза глицерол-3ф.

Регуляция гликолиза

Эффект Пастера – снижение скорости потребления глюкозы и накопления лактата в присутствии кислорода.

Эффекта Пастера объясняется наличием конкуренции между ферментами аэробного (ПВК ДГ, ПВК карбоксилаза, ферменты цепи окислительного фосфорилирования) и анаэробного (ЛДГ) пути окисления за общий метаболит ПВК и кофермент НАДН2 .

· Без О2 митохондрии не потребляют ПВК и НАДН2 , в результате их концентрация в цитоплазме повышается и они идут на образование лактата. Так как анаэробный гликолиз дает из 1 глюкозы только 2 АТФ, для образования достаточного количества АТФ необходимо много глюкозы (в 19 раз больше чем в аэробных условиях).

· В присутствии О2 , митохондрии выкачивают ПВК и НАДН2 из цитоплазмы, прерывая реакцию образования лактата. При аэробном окислении из 1 глюкозы образуется 38 АТФ, соответственно для образования достаточного количества АТФ необходимо мало глюкозы (в 19 раз меньше чем в анаэробных условиях).

МЕТАБОЛИЗМ ФРУКТОЗЫ И ГАЛАКТОЗЫ

Фрук­тоза и галактоза наряду с глюкозой используются для получения энергии или синтеза веществ: гликогена, ТГ, ГАГ, лактозы и др.

Метаболизм фруктозы

Значительное количество фруктозы, образу­ющееся при расщеплении сахарозы, превраща­ется в глюкозу уже в клетках кишечника. Часть фруктозы поступает в печень.

Метаболизм фруктозы в клетке начинает­ся с реакции фосфорилирования:

1. Фруктокиназа (АТФ: фруктоза-1-фосфотрансфераза) фосфорилирует только фруктозу, имеет к ней высокое сродство. Содержится в печени, почках, кишечнике. Инсулин не влияет на ее активность.

2. Альдолаза В (фруктозо: ГА-лиаза) есть в печени, расщепляет фруктозо-1ф (фруктозо-1,6ф) до глицеринового альдегида (ГА) и диоксиацетонфосфата (ДАФ).

3. Триозокиназа (АТФ: ГА-3-фосфотрансфераза). Много в печени.

ДАФ и ГА, полученные из фруктозы, вклю­чаются в печени главным образом в глюконеогенез. Часть ДАФ может восстанав­ливаться до глицерол-3-ф и участвовать в синтезе ТГ.

Нарушения метаболизма фруктозы

Причиной нарушения метаболизма фруктозы является дефект 3 ферментов: фруктокиназы, альдолазы В, триозокиназы.

Доброкачественная эссенциальная фруктозурия связана с недостаточностью фруктокиназы , клинически не проявляется. Фруктоза накапливается в крови и выделяется с мочой, где её можно обнару­жить лабораторными методами. Частота 1:130 000.

Наследственная непереносимость фруктозы частая патология, воз­никает при генетически дефек­те альдолазы В (аутосомно-рецессивная форма). Она проявляется, когда в рацион добавляют фрукты, соки, сахарозу. После приёма пищи, содержащей фрук­тозу возникает рвота, боли в животе, диарея, гипогли­кемия и даже кома и судороги . У маленьких детей и подростков развиваются хрони­ческие нарушения функций печени и почек . Болезнь сопро­вождается накоплением фруктозо-1-ф, который ингибирует активность фосфоглюкомутазы, поэтому происходит торможение распада гликогена и развивается гипогликемия . Как следствие, ускоряется мо­билизация липидов, окисление жирных кис­лот и синтез кетоновых тел. Повышение кетоновых тел может привести к метаболическому ацидозу.

Результатом торможения гликогенолиза и гликолиза является снижение синтеза АТФ. Кроме того, накопление фосфорилированной фруктозы ведёт к нарушению обмена неорга­нического фосфата и гипофосфатемии . Для пополнения внутриклеточного фосфата ускоряется распад адениловых нуклеотидов. Продукты распада этих нуклеотидов включаются в катаболизм, проходя стадии образования гипоксантина, ксантина и, наконец, мочевой кис­лоты. Повышение количества мочевой кислоты и снижение экскреции уратов в условиях мета­болического ацидоза проявляются в виде гиперурикемии . Следствием гиперурикемии может быть подагра даже в молодом возрасте.

Метаболизм галактозы

Галактоза образуется в кишечнике в результа­те гидролиза лактозы. Превращение галакто­зы в глюкозу происходит в печени в реакции эпимеризации в виде УДФ-производного.

Галактокиназа (АТФ: галактозо-1-фосфотрансфераза) фосфорилирует галактозу.

Галактозо-1ф-уридилтрансфераза замещает галактозой остаток глюкозы в УДФ-глюкозе с образованием УДФ-галактозы.

Эпимераза (УДФ-галактозо-УДФ-глюкозо-изомераза) — НАД-зависимый фермент, катализирует эпимеризацию ОН группы по С4 углеродному атому, обеспечивая взаимопревращения галактозы и глюкозы в составе УДФ.

Образованная глюкозо-1-ф может включаться в: 1) синтез гликогена; 2) превращение в свободную глюкозу; 3) катаболизм, сопряжённый с синтезом АТФ, и т.д.

Нарушения метаболизма галактозы

Галактоземия обусловленна наследствен­ным дефектом любого из трёх ферментов, включающих галактозу в метаболизм глюкозы.

Галактоземия , вызванная недостаточностью галактозо-1-фосфатуридилтрансферазы (ГАЛТ) имеет несколько форм, про­является рано, и особенно опасна для детей, так как материнское молоко, содержит лактозу. Ранние симптомы дефекта ГАЛТ: рвота, диарея, дегидратация, уменьше­ние массы тела, желтуха . В крови, моче и тканях повышается концентрация галактозы и галак­тозо-1-ф. В тканях глаза (в хрусталике) галактоза восстанавливается альдоредуктазой (НАДФ) с образованием галактитола (дульцита). Галактитол накапливается в стекловид­ном теле и связывает большое количество воды, чрезмерная гидратация хрусталика приводит к развитию катаракты, которая на­блюдается уже через несколько дней после рож­дения. Галактозо-1-ф ингибирует активность ферментов углеводного обмена (фосфоглюкомутазы, глюкозо-6-фосфатдегидрогеназы).

Га­лактозо-1ф оказывает токсическое действи­е на гепатоциты: возникают гепатомегалия, жи­ровая дистрофия. Галактитол и га­лактозо-1-ф вызывают почечную недостаточность. Отмечают нарушения в клетках полушарий го­ловного мозга и мозжечка, в тяжёлых случаях — отёк мозга, задержку умственного развития, воз­можен летальный исход.

Некоторые дефекты в строении ГАЛТ при­водят лишь к частичной потере активности фер­мента. Поскольку в норме ГАЛТ присутствует в организме в избытке, то снижение его актив­ности до 50%, а иногда и ниже может клини­чески не проявляться.

Лечение заключается в удалении галактозы из рациона.

Педфак. Особенности катаболизма моносахаридов у новорожденных и детей

У детей активен УДФ-глюкоза ↔ УДФ-галактоза путь. У взрослых этот путь неактивен. У новорожденных низкая активность ПФШ. При рождении у ребенка происходит переключение катаболизма глюкозы с анаэробного на аэробный путь. Вначале преобладает использование липидов.

ГОСУДАРСТВЕННАЯ МЕДИЦИНСКАЯ АКАДЕМИЯ

кафедра биохимии

Утверждаю

Зав. каф. проф., д.м.н.

Мещанинов В.Н.

_____‘’_____________2005 г

ЛЕКЦИЯ № 9

Тема: Пентозофосфатный шунт и глюконеогенез,
регуляция углеводного обмена.

Факультеты: лечебно-профилактический, медико-профилактический, педиатрический. 2 курс.

Глюконеогенез (ГНГ)

Глюконеогенез – синтез глюкозы из веществ неуглеводной природы. Его основной функцией является поддержание уровня глюкозы в крови в период длительного голодания и интенсивных физических нагрузок. Основными субстратами глюконеогенеза являются лактат, глицерол, аминокислоты. Глюконеогенез является обратным процессом гликолиза, который протекает в цитоплазме и матриксе митохондрий. Необратимые реакции гликолиза (1, 3 и 10), катализируемые гексокиназами, фруктокиназами и пируваткиназами обходятся с участием 4 специфических ферментов глюконеогенеза: пируваткарбоксилазы, фосфоенолпируват-карбоксикиназы, фруктозо-1,6-фосфотазы и глюкозо-6-фосфотазы. Кроме того, в глюконеогенезе участвуют ферменты ЦТК, например, малат ДГ.

Реакции глюконеогенеза представлены на схеме. Ключевые (необратимые) реакции глюконеогенеза:

1. Пируваткарбоксилаза (ПВК: СО2 -синтетаза (АТФ→АДФ+Фн)) содержит биотин, находиться в митохондриях, превращает ПВК в ЩУК. Индуктор: глюкагон, адреналин, кортизол. Репрессор: инсулин. Ингибитор: АМФ, активатор АцетилКоА. Образующийся ЩУК проходит внутреннюю мембрану митохондрий в своей восстановленной (в виде малата) или аминоформе (в виде аспартата).

2. Фосфоенолпируваткарбоксикиназа (ГТФ: ЩУК-2-фосфотрансфераза (декарбоксили-рующая)) находиться в цитоплазме, превращает ЩУК в ФЕП. Индуктор: глюкагон, адреналин, кортизол. Репрессор: инсулин.

3. Фруктозо-1,6-фосфотаза (Фруктозо-1,6дф: фосфо-гидролаза) дефосфорилирует фруктозо-1,6дф. Индуктор: глюкагон, адреналин, кортизол. Репрессор: инсулин. Ингибирует АМФ, фруктозо-2,6дф. Активатор: цитрат, жирные кислоты.

4. Глюкозо-6-фосфотаза (Глюкозо-6ф: фосфо-гидролаза) дефосфорилирует глюкозо-6ф. Индуктор: глюкагон, адреналин, кортизол. Репрессор: инсулин.

Энергетический баланс глюконеогенеза . На образование 1 глюкозы из 2 лактатов требуется 6 АТФ: 2 АТФ для пируваткарбоксилазы, 2 ГТФ для ФЕПкарбоксикиназы, 2 АТФ для фосфоглицераткиназы. Обще уравнение глюконеогенеза:

2 лактат + 4 АТФ + 2 ГТФ + 4 Н2 О → 1 глюкоза + 4 АДФ + 2 ГДФ + 6 Фн

Регуляция глюконеогенеза . Регуляция глюконеогенеза осуществляется реципрокно с реакциями гликолиза: активация глюконеогенеза, сопровождается ингибированием гликолиза и наоборот. Регуляция обмена глюкозы происходит с участием гормонов и метаболитов, которые изменяют активность и количество регуляторных ферментов гликолиза и глюконеогенеза. Инсулин индуцирует синтез ключевых ферментов гликолиза и репрессирует синтез ключевых ферментов глюконеогенеза. Глюкагон, кортизол и адреналин индуцирует синтез ключевых ферментов глюконеогенеза. Ключевые ферменты гликолиза активируют – АМФ, фруктозо-2,6дф, фруктозо-1,6дф, ингибируют – АТФ, НАДН2 , цитрат, жирные кислоты, аланин, АцетилКоА, глюкагон, адреналин. Ключевые ферменты глюконеогенеза активируют – АцетилКоА, глюкагон, ингибируют – АМФ, фруктозо-2,6дф.

Тканевые особенности глюконеогенеза. В большинстве тканей глюконеогенеза нет.

Наибольшая активность глюконеогенеза отмечается в печени, меньше в почках и слизистой оболочке кишечника, в них может синтезироваться до 80-100г глюкозы в сутки. В этих органах глюконеогенез идет до конца с образованием свободной глюкозы, которая может выходить из клеток, поддерживая гомеостаз глюкозы в крови. В норме гомеостаз глюкозы в крови обеспечивается глюконеогенезом печени до 80%, почек до 20%.

Небольшая активность глюконеогенеза наблюдается в мышечных тканях, однако из-за отсутствия у них последних ферментов глюконеогенеза, вместо свободной глюкозы образуются только ее производные, которые не способны покинуть клетку. Таким образом, углеводы синтезируются в мышечных тканях только для собственных нужд. Например, в скелетных мышцах и жировой ткани нет глюкозо-6-фосфотазы, продукт глюконеогенеза – глюкозо-6ф. В миокарде и гладких мышцах нет фруктозо-1,6-дифосфотазы, продукт глюконеогенеза – фруктозо-1,6-дф.

Биологическое значение глюконеогенеза . Необходимость поддержание постоянного уровня глюкозы в крови связана с тем что, для многих тканей глюкоза является основным (нервная ткань), а для некоторых единственным (эритроциты) источником энергии. Потребность в синтезе глюкозы объясняется тем что, гликогенолиз печени может самостоятельно обеспечивать гомеостаз глюкозы в крови только в течение 8-12 часов, далее запас гликогена в течение суток почти полностью истощается. В условиях длительного голодания (больше суток) глюконеогенез является единственным источником глюкозы в организме.

Пентозофосфатный шунт (ПФШ)

Пентозофосфатный шунт (путь, цикл) является альтернативным путем окисления глюкозы. Наиболее активен этот процесс в жировой ткани, печени, коре надпочечников, эритроцитах, фагоцитирующих лейкоцитах, лактирующей молочной железе, семенниках. Протекает он в цитозоле без участия кислорода и состоит из 2 стадий окислительной и неокислительной. В окислительной стадии происходит восстановление НАДФН2 , который используется: 1) для регенерации глутатиона в антиоксидантной системе; 2) для синтеза жирных кислот; 3) в оксигеназных реакциях с участием цитохрома Р450 при обезвреживании ксенобиотиков, метаболитов, синтезе холестерина, стероидных гормонов и т.д. В неокислительной стадии образуются различные пентозы. Рибозо-5ф может использоваться для синтеза пуриновых и пиримидиновых нуклеотидов.

Тканевые особенности функционирования ПФШ (пути, цикла).

В зависимости от потребности ткани, пентозофосфатный процесс может протекать в виде метаболического цикла, пути или шунта начальных реакций гликолиза:

1. При ПФЦ или ПФШ в качестве продукта образуется только НАДФН2 . Пентозы в этом случае не являются конечным продуктом, они превращаются в фосфогексозы, которые замыкают цикл, или уходят в гликолиз, завершая шунт. В жировой ткани, эритроцитах.

2. Продуктом ПФП являются НАДФН2 и пентозы. В печени, костном мозге.

3. В тканях, которые не испытывают потребность в НАДФН2 , функционирует только неокислительная стадия ПФП, причем ее реакции идут в обратную сторону начиная с фруктозы-6ф до фосфопентоз. В мышцах.

Реакции окислительной стадии

Окислительная стадия ПФШ (пути, цикла) состоит из 3 необратимых реакций:

1). Глюкозо-6ф дегидрогеназа (глюкозо-6ф: НАДФ+ оксидоредуктаза). Ингибитор НАДФН2 . Индуктор инсулин.

2). Глюконолактонгидратаза (6-фосфоглюконат: гидро-лиаза).

3). 6-фосфоглюконат дегидрогеназа (6-фосфоглюконат: НАДФ+ оксидоредуктаза (декарбоксилирующая)). Индуктор инсулин.

Схема ПФШ (пути, цикла)

На схеме неокислительная стадия начинается с эпимераз и изомераз, которые изомеризуют рибулозо-5ф. Все реакции неокислительной стадии обратимы.

Общее уравнение ПФЦ:

6 глюкозо-6ф + 12 НАДФ+ → 6 СО2 + 12 НАДФН2 + 5 глюкозо-6ф

Общее уравнение ПФШ:

3 глюкозо-6ф + 6 НАДФ+ → 3 СО2 + 6 НАДФН2 + 2 фруктозо-6ф + ФГА

Общие уравнения ПФП:

1) глюкозо-6ф + 2 НАДФ+ → СО2 + 2 НАДФН2 + рибозо-5ф

2) 2 фруктозо-6ф + ФГА → 3 рибозо-5ф

Патология ПФШ

НАДФН2 является важным компонентом антиоксидантной защиты, он необходим для регенерации глутатиона, который с участием глутатионпероксидазы разрушает активные формы кислорода. Так как в эритроцитах НАДФН2 образуется только в реакциях ПФШ, дефект глюкозо-6ф ДГ вызывает дефицит НАДФН2 и снижение антиоксидантной защиты. В этом случае под действием прооксидантов, например, антималярийных препаратов происходит существенное повышение СРО. Активация СРО вызывает окисление цистеина в белковой части гемоглобина, в результате чего протомеры гемоглобина, соединяясь дисульфидными мостиками, образуют тельца Хайнца. Т.к. тельца Хайнца снижают пластичность клеточной мембраны эритроцитов, она при деформации в капиллярах разрушается. Массированный гемолиз эритроцитов ведет к развитию гемолитической анемии.

Витамин B1 (тиамин).

Структура витамина включает пиримидиновое и тиазоловое кольца, соединённые метановым мостиком.

Источники. Витамин В1 — первый витамин, выделенный в кристаллическом виде К. Фун-ком в 1912 г. Он широко распространён в продуктах растительного происхождения (оболочка семян хлебных злаков и риса, горох, фасоль, соя и др.). В организмах животных витамин В1 , содержится преимущественно в виде дифосфорного эфира тиамина (ТДФ); он образуется в печени, почках, мозге, сердечной мышце путём фосфорилирования тиамина при участии тиаминкиназы и АТФ.

Суточная потребность взрослого человека в среднем составляет 2-3 мг витамина В1 . Но потребность в нём в очень большой степени зависит от состава и общей калорийности пищи, интенсивности обмена веществ и интенсивности работы. Преобладание углеводов в пище повышает потребность организма в витамине; жиры, наоборот, резко уменьшают эту потребность.

Биологическая роль витамина В1 , определяется тем, что в виде ТДФ он входит в состав как минимум трёх ферментов и ферментных комплексов: в составе пируват- и α-кетоглутаратдегидрогеназных комплексов он участвует в окислительном декарбокси-лировании пирувата и α-кетоглутарата; в составе транскетолазы ТДФ участвует в пентозофосфатном пути превращения углеводов.

Основной, наиболее характерный и специфический признак недостаточности витамина В1 — полиневрит, в основе которого лежат дегенеративные изменения нервов. Вначале развивается болезненность вдоль нервных стволов, затем — потеря кожной чувствительности и наступает паралич (бери-бери). Второй важнейший признак заболевания — нарушение сердечной деятельности, что выражается в нарушении сердечного ритма, увеличении размеров сердца и в появлении болей в области сердца. К характерным признакам заболевания, связанного с недостаточностью витамина В1 , относят также нарушения секреторной и моторной функций ЖКТ; наблюдают снижение кислотности желудочного сока, потерю аппетита, атонию кишечника.

Регуляция обмена углеводов

Энергетический гомеостаз обеспечивает энергетические потребности тканей с использованием различных субстратов. Т.к. углеводы являются основным источником энергии для многих тканей и единственным для анаэробных, регуляция углеводного обмена является важной составляющей энергетического гомеостаза организма.

Регуляция углеводного обмена осуществляется на 3 уровнях:

1. центральный.

2. межорганный.

3. клеточный (метаболический).

1. Центральный уровень регуляции углеводного обмена

Центральный уровень регуляции осуществляется с участием нейроэндокринной системы и регулирует гомеостаз глюкозы в крови и интенсивность метаболизма углеводов в тканях. К основным гормонам, поддерживающим нормальный уровень глюкозы в крови 3,3-5,5 мМоль/л, относят инсулин и глюкагон. На уровень глюкозы влияют также гормоны адаптации – адреналин, глюкокортикоиды и другие гормоны: тиреоидные, СДГ, АКТГ и т.д.

2. Межорганный уровень регуляции углеводного обмена

Глюкозо-лактатный цикл (цикл Кори) Глюкозо-аланиновый цикл

Глюкозо-лактатный цикл не требует наличие кислорода, функционирует всегда, обеспечивает: 1) утилизацию лактата, образующегося в анаэробных условиях (скелетные мышцы, эритроциты), что предотвращает лактоацидоз; 2) синтез глюкозы (печень).

Глюкозо-аланиновый цикл функционирует в мышцах при голодании. При дефиците глюкозы, АТФ синтезируется за счет распад белков и катаболизма аминокислот в аэробных условиях, при этом глюкозо-аланиновый цикл обеспечивает: 1) удаление азота из мышц в нетоксичной форме; 2) синтез глюкозы (печень).

3. Клеточный (метаболический) уровень регуляции углеводного обмена

Метаболический уровень регуляции углеводного обмена осуществляется с участием метаболитов и поддерживает гомеостаз углеводов внутри клетки. Избыток субстратов стимулирует их использование, а продукты ингибируют свое образование. Например, избыток глюкозы стимулирует гликогенез, липогенез и синтез аминокислот, дефицит глюкозы - глюконеогенез. Дефицит АТФ стимулирует катаболизм глюкозы, а избыток – наоборот ингибирует.

IV. Педфак . Возрастные особенности ПФШ и ГНГ, значение.

ГОСУДАРСТВЕННАЯ МЕДИЦИНСКАЯ АКАДЕМИЯ

кафедра биохимии

Утверждаю

Зав. каф. проф., д.м.н.

Мещанинов В.Н.

_____‘’_____________2006 г

ЛЕКЦИЯ № 10

Тема: Структура и обмен инсулина, его рецепторов, транспорт глюкозы.
Механизм действия и метаболические эффекты инсулина.

Факультеты: лечебно-профилактический, медико-профилактический, педиатрический. 2 курс.

Гормоны поджелудочной железы

Поджелудочная железа выполняет в орга­низме две важнейшие функции: экзокринную и эндокринную. Экзокринную функцию выполняет ацинарная часть поджелудочной железы, она синтезирует и секретирует панкреатический сок. Эндокринную функцию выполняют клетки островкового аппарата поджелудочной железы, которые секретируют пептидные гормоны, уча­ствующие в регуляции многих процессов в организме. 1-2 млн. островков Лангерганса составляют 1-2% массы поджелудочной железы.

В островковой части поджелудочной железы выделяют 4 типа клеток, секретирующих разные гормоны: А- (или α-) клетки (25%) секретируют глюкагон, В- (или β-) клетки (70%) — инсулин, D- (или δ-) клетки (<5%) — соматостатин, F-клетки (следовые количества) секретируют панкреатический полипептид. Глюкагон и инсулин в основном влияют на углеводный обмен, соматостатин локально регулирует секрецию инсулина и глюкагона, панкреатический полипептид влияет на секрецию пищеварительных соков. Гормоны поджелудочной железы выделяются в панкреатическую вену, которая впадает в воротную. Это имеет большое значение т.к. печень является главной мишенью глюкагона и инсулина.

Строение инсулина

Инсулин — полипептид, состоящий из двух цепей. Цепь А содержит 21 ами­нокислотный остаток, цепь В — 30 аминокислотных остатков. В инсулине 3 дисульфидных мостика, 2 соединяют цепь А и В, 1 соединяет 6 и 11 остатки в А цепи.

Инсулин может существовать в форме: мономера, димера и гексамера. Гексамерная структура инсулина стабилизиру­ется ионами цинка, который связывается остатками Гис в положении 10 В-цепи всех 6 субъединиц.

Инсулины некоторых животных имеют значительное сходство по первичной структуре с инсулином человека. Бычий инсулин отличается от инсулина че­ловека на 3 аминокислоты, а инсулин свиньи отличается только на 1 ами­нокислоту (ала вместо тре на С конце В-цепи).

Во многих положениях А и В цепи встре­чаются замены, не оказывающие влияния на биологическую активность гормона. В положениях дисульфидных связей, остатков гидрофобных аминокислот в С-концевых участках В-цепи и С- и N-концевых остатков А-цепи замены встречаются очень редко, т.к. эти участки обеспечивают формирование активного центра инсулина.

Биосинтез инсулина включает образование двух неактивных предшественников, препроинсулина и проинсулина, которые в результате последова­тельного протеолиза превращаются в активный гормон.

1. На рибосомах ЭПР синтезируется препроинсулин (L-В-С-А, 110 аминокислот), биосинтез его начинается с образования гидрофобного сигнального пептида L (24 аминокислот), который направляет растущую цепь в просвет ЭПР.

2. В просвет ЭПР препроинсулин превращается в проинсулин при отщеплении эндопептидазой I сиг­нального пептида. Цистеины в проинсулине окисляются с образованием 3 дисульфидных мостиков, проинсулин становиться «сложным», имеет 5% активности от инсулина.

3. «Сложный» проинсулин (В-С-А, 86 аминокислот) поступает в аппарат Гольджи, где под действи­ем эндопептидазы II расщепляется с образованием инсулина (В-А, 51 аминокислот) и С-пептида (31 аминокислота).

4. Инсулин и С-пептид включаются в секреторные гранулы, где инсулин соединяется с цинком, обра­зуя димеры и гексамеры. В секреторной грануле содержание инсулина и С-пептида составляет 94%, проинсулина, интермедиатов и цинка - 6%.

5. Зрелые гранулы сли­ваются с плазматической мембраной, а инсу­лин и С-пептид попадают во внеклеточную жидкость и далее в кровь. В крови олигомеры инсулина распадают­ся. За сутки в кровь секретируется 40-50 ед. инсулина, это составляет 20% от его общего запаса в поджелудочной железе. Секреция инсулина энергозависимый процесс, происходит с участием микротубулярно-ворсинчатой системы.

Схема биосинтеза инсулина в β-клетках островков Лангерганса

ЭПР — эндоплазматический ретикулум. 1 — образование сигнального пептида; 2 — синтез препроинсулина; 3 — отщепление сигнального пептида; 4 — транспорт проинсу­лина в аппарат Гольджи; 5 — превращение проинсулина в инсулин и С-пептид и включение инсулина и С-пептида в секреторные гранулы; 6 — секреция инсулина и С-пептида.

Ген инсулина находиться в 11 хромосоме. Выявлены 3 мутации этого гена, у носителей низкая активность инсулина, отмечается гиперинсулинемия, нет инсулинорезистентности.

Регуляция синтеза и секреции инсулина

Синтез инсулина индуцируют глюкоза и секреция инсулина. Репрессирует секрецию жирные кислоты.

Секрецию инсулина стимулируют: 1. глюкоза (главный регулятор), аминокислоты (особенно лей и арг); 2. гормоны ЖКТ (β-адренергические агонисты, через цАМФ): ГИП , секретин, холецистокинин, гастрин, энтероглюкагон; 3. длительно высокие концентрации СТГ, кортизола, эстрогенов, прогестинов, плацентарного лактогена, ТТГ, АКТГ; 4. глюкагон; 5. повышение К+ или Са2+ в крови; 6. лекарства, производные сульфонилмочевины (глибенкламид).

Под влиянием соматостатина секреция инсулина понижается. β-клетки также находятся под влиянием автономной нервной системы. Парасимпатическая часть (холинергические окончания блуждающего нерва) стимулирует выделение инсулина. Симпатическая часть (адреналин через α2 -адренорецепторы) подавляет выделение инсулина.

Секреция инсулина осуществляется с участием нескольких систем, в которых основная роль принадлежит Са2+ и цАМФ.

Поступление Са2+ в цитоплазму контролируется несколькими механизмами:

1). При повышении концентрации глюкозы в крови выше 6-9 ммоль/л, она при участии ГЛЮТ-1 и ГЛЮТ-2 поступает в β-клетки и фосфорилируется глюкокиназой. При этом концентрация глюкозо-6ф в клетке прямо пропорциональна концентрации глюкозы в крови. Глюкозо-6ф окисляется с образованием АТФ. АТФ образуется также при окислении аминокислот и жирных кислот. Чем больше в β-клетке глюкозы, аминокислот, жирных кислот тем больше из них образуется АТФ. АТФ ингибирует на мембране АТФ-зависимые калиевые каналы, калий накапливается в цитоплазме и вызывает деполяризацию клеточной мембраны, что стимулирует открытие потенциалзависимых Са2+ -каналов и поступление Са2+ в цитоплазму.

2). Гормоны, активирующие инозитолтрифосфатную систему (ТТГ), выпускают Са2+ из митохондрий и ЭПР.

цАМФ образуется из АТФ с участием АЦ, которая активируется гормонами ЖКТ, ТТГ, АКТГ, глюкагоном и Са2+ -кальмодулиновым комплексом.

цАМФ и Са2+ стимулируют полимеризацию субъединиц в микротубулы (микроканальцы). Влияние цАМФ на микроканальцевую систему опосредуется через фосфорилирование ПК А микроканальцевых белков. Микроканальцы способны сокращаться и расслабляться, перемещая гранулы по направлению к плазматической мембране обеспечивая экзоцитоз.

Секреция инсулина в ответ на стимуляцию глюкозой представляет собой двухфазную реакцию, состоящую из стадии быстрого, раннего высвобождения инсулина, называемую первой фазой секреции (начинается через 1 мин, продолжается 5-10 мин), и второй фазы (продолжительность ее до 25-30 мин).

Транспорт инсулина. Инсулин водорастворим и не имеет белка-переносчика в плазме. Т1/2 инсулина в плазме крови составляет 3—10 мин, С-пептида — около 30 мин, проинсулина 20-23 мин.

Разрушение инсулина происходит под дей­ствием инсулинзависимой протеиназы и глутатион-инсулин-трансгидрогеназы в тканях мишенях: в основном в пе­чени (за 1 проход через печень разрушается около 50% инсулина), в меньшей степени в почках и плаценте.

БИОЛОГИЧЕСКИЕ ФУНКЦИИ ИНСУЛИНА

Инсулин — главный анаболический гормон, он влияет на все виды обмена веществ во всём организме. Однако в первую очередь действие инсулина касается обмена углеводов.

Влияние инсулина на метаболизм глюкозы

Ин­сулин стимулирует утилизацию глюкозы в клетках разными путями. Около 50% глюкозы использует­ся в процессе гликолиза, 30—40% превращается в жиры и около 10% накапливается в форме глико­гена. Общий результат стимуляции этих процес­сов — снижение концентрации глюкозы в крови.

Влияние инсулина на метаболизм липидов

В пе­чени и жировой ткани инсулин стимулирует син­тез липидов, обеспечивая получение для этого про­цесса необходимых субстратов (ацетил-КоА, глицерофосфат и NADPH2 ) из глюкозы. В жировой ткани инсулин тормозит мобилизацию липидов, что снижает концентрацию жирных кислот, циркулирующих в крови.

Влияние инсулина на метаболизм белков

Инсулин оказывает в целом анаболическое действие на белковый обмен. Он стимулирует потребление нейтральных аминокислот в мышцах и синтез белков в печени, мышцах и сердце.

Кроме того, инсулин регулирует клеточную дифференцировку, пролифе­рацию и трансформацию боль­шого количества клеток. Инсулин поддерживает рост и репликацию многих клеток эпителиального происхождения, в том числе гепатоцитов, опухолевых клеток. Инсулин усиливает спо­собность фактора роста фибробластов (ФРФ), тромбоцитарного фактора роста (ТФР), фак­тора роста эпидермиса (ФРЭ), простагландина (ПГF2 a), вазопрессина и аналогов цАМФ акти­вировать размножение клеток.

Основные направления действия инсулина

1. Инсулин регулирует транспорт веществ

Инсулин стимулирует транспорт в клетку глюкозы, аминокислот, нуклеозидов, органического фосфата, ионов К+ и Са2+ . Эффект проявляются очень быстро, в течение несколь­ких секунд и минут.

Транспорт глюкозы в клетки происходит при участии ГЛЮТ. В мышцах и жировой ткани инсули­нзависимый ГЛЮТ-4, в отсутствие инсулина находится в цитозольных везикулах. Под влиянием инсулина происходит транслокация везикул с ГЛЮТ в плазмати­ческую мембрану и начинается транспорт глюкозы. При снижении концентрации инсулина, ГЛЮТ-4 возвращаются в цитозоль, и транспорт глюкозы прекращается.

2. Инсулин регулирует синтез ферментов

Инсулин влияет на скорость транскрипции более чем 100 специфических мРНК в печени, жировой ткани, скелетных мышцах и сердце. Эффект реализуется в течение несколько часов. В клетках печени инсулин индуцирует синтез ключевых ферментов гликолиза (глюкокиназы, фруктокиназы и пируваткиназы), ПФШ (глюкозо-6ф ДГ), липогенеза (цитратлиаза, пальмитатсинтаза, Ацетил-КоА-карбоксилаза), транспортеров глюкозы (?) и репрессирует синтез ключевого фермента глюконеогенеза (ФЕП карбоксикиназу).

3. Инсулин регулирует активность ферментов

Инсулин регулирует активность ферментов путем их фосфорилирования и дефосфорилирования. Эффект проявляются очень быстро, в течение несколь­ких секунд и минут.

· Инсулин активирует ключевые ферменты гликолиза: в печени, мышцах, жировой ткани – фосфофруктокиназу и пирруваткиназу; в печени – глюкокиназу; в мышцах - гексокиназу II.

· Инсулин ингибирует в печени глюкозо-6-фосфотазу, что тормозит глюконеогенез и выход глюкозы в кровь.

· Инсулин активирует фосфопротеинфосфотазу гликогенсинтазы и гликогенфосфорилазы, в результате активируется синте­з гликогена и тормозится его распад.

· В адипоцитах инсулин активирует ключевой фермент липогенеза (АцетилКоА-карбоксилазу). Инсулин в гепатоцитах и адипоцитах активирует фосфопротеинфосфатазу, которая дефосфорилирует и инактивирует ТАГ-липазу, что тормозит липолиз.

· Инсулин снижает активность аминотрансфераз и ферментов цикла мочевины. Последний эффект инсулина характеризуется повышением активности РНК-полимеразы и концентрации РНК в печени. При этом увеличивается скорость образования полисом и рибосом.

· Инсулин активирует ФДЭ, которая снижает концентра­цию цАМФ, прерывает эффекты контринсулярных гормонов: в печени и жировой ткани тормозит липолиз, в печени и мышцах - глюконеогенез.

МЕХАНИЗМ ДЕЙСТВИЯ ИНСУЛИНА

Инсулин связы­вается с инсулиновым рецептором (IR), находящимся на мембране. IR обнаруже­ны почти во всех типах клеток, но больше все­го их в гепатоцитах и клетках жировой тка­ни (концентрация достигает до 20000 на клетку). IR постоянно син­тезируется (ген в 19 хромосоме) и разрушается. После связывания инсулина с IR весь комплекс погружается в цитоплазму, достигает лизосом, где инсулин разрушается, а IR может разрушаться, а может возвращаться мембрану. Т1/2 IR 7—12 ч, но в присутствии инсулина уменьшается до 2-3 ч.

При высокой концентрации инсу­лина в плазме крови, число IR может умень­шаться в результате усиленного разрушения в лизосомах. Также у IR может снижаться активность при его фосфорилировании по ос­таткам серина и треонина.

Рецептор инсулина ( IR) - гликопротеин, состоит из 2 α и 2 β субъединиц связанных дисульфидными связями. α субъединицы (719 АК) расположены вне клетки, они связывают инсулин, а β субъединицы (трансмебранный белок, 620 АК) обладают тирозинкиназной активностью. После присоединения гормона к α субъединицам, β субъединицы сначала фосфорилируют друг друга, а затем внутриклеточные белки — суб­страты инсулинового рецептора (IRS). Извест­но несколько таких субстратов: IRS-1, IRS-2 (фосфопротеины, состоящие из более чем 1200 аминокислот), Shc, а также некоторые белки семейства STAT.

Активация инсулином сигнального пути Ras

Фосфорилированный инсулиновым рецептором She соединяется с небольшим цитозольным белком Grb. К образо­вавшемуся комплексу присоединяется с Ras-белок (из се­мейства малых ГТФ-связывающих белков, в неактивном состоянии прикреплён к внутренней поверхности плазматической мем­браны и связан с ГДФ), GAP (от англ. GTP- ase activating factor — фактор, активирующий ГТФазу), GEF (от англ. GTP exchange factor — фактор обмена ГТФ) и SOS (от англ. son ofsevenless, названный по му­тации гена у дрозофилы). Два последних белка способствуют отделению ГДФ от Ras-бел­ка и присоединению к нему ГТФ, с образованием активной ГТФ-связанной формы Ras.

Активированный Ras соединяется с протеинкиназой Raf-1 и активирует ее в результате многоэтапного процес­са. Акти­вированная ПК Raf-1 стимулирует каскад реакций фосфорилирования и активации дру­гих протеинкиназ. ПК Raf-1 фосфорилирует и активирует киназу МАПК, которая, в свою очередь, фосфорилирует и активирует митогенактивируемые протеинкиназы МАПК.

МАПК фосфорилирует многие цитоплазматические белки: ПК pp90S6, бел­ки рибосом, фосфолипазу А2 , активаторы транскрипции STAT.

В результате активации протеинкиназ происходит фосфорилирование ферментов и факторов транскрипции, что со­ставляет основу многочисленных эффектов ин­сулина. Например:

Активация гликогенсинтазы

ПК pp90S6 фосфорилирует и активирует фосфопротеинфосфатазу (ФПФ). ФПФ дефосфорилирует и инактивирует киназу гликогенфосфорилазы и гликогенфосфорилазу, дефосфорилирует и активирует гликогенсинтазу. В результате активируется синтез гликогена, а распад - ингибируется.

Активация инозитолтрифосфатной системы

Фосфорилированные инсулином белки IRS-1 присоединяются к ФЛ С и активируют ее.

ФЛ С расщепляет фосфатидилинозитолы с образованием инозитолфосфатов и ДАГ.

Фосфорилированные инсулином белки IRS-1 и Shc присоединяются к фосфоинозитол-3-киназе (ФИ-3-киназа) и активируют ее.

ФИ-3-киназа катализирует фосфорилирование инозитолфосфатов (ФИ, ФИ-4-ф и ФИ-4,5-бф) в 3 положении, образуя инозитолполифосфаты: ФИ-3-ф, ФИ-3,4-бф, ФИ-3,4,5-тф. ФИ-3,4,5-тф (ИФ3 ) стимулирует мобилизацию Са2+ из ЭПР.

Са2+ и ДАГ активирует специфические ПК С.

Са2+ активирует микроканальцы, которые осуществляют транслока­цию ГЛЮТ-4 в плазматическую мембрану, и та­ким образом ускоряет трансмембранный перенос глюкозы в клетки жировой и мышечной ткани.

Активация фосфодиэстеразы

Фосфорилированные инсулином белки IRS-1 и Shc присоединяются к протеинкиназе В (ПК В) и активируют ее. ПК В фосфорилирует и активирует фосфодиэстеразу (ФДЭ). ФДЭ катализирует превращение цАМФ в АМФ, прерывая эффекты контринсулярных гормонов, что приводит к торможению липолиза в жировой ткани, гликогенолиза в печени.

Регуляция транскрипции мРНК

STAT – особые белки, являются переносчиками сигнала и активаторами транскрипции. При фосфорилировании STAT с участием IR или МАПК образуют димеры, которые транспортируются в ядро, где связываются со специфическими участками ДНК, регулируют транскрипцию мРНК и биосинтез белков-фементов.

Путь Ras активирует­ся не только инсулином, но и дру­гими гормонами и факторами роста.

ГОСУДАРСТВЕННАЯ МЕДИЦИНСКАЯ АКАДЕМИЯ

кафедра биохимии

Утверждаю

Зав. каф. проф., д.м.н.

Мещанинов В.Н.

_____‘’_____________2006 г

ЛЕКЦИЯ № 11

Тема: Сахарный диабет I и II типа: механизмы возникновения,
метаболические нарушения, осложнения.

Факультеты: лечебно-профилактический, медико-профилактический, педиатрический.

2 курс.

В норме уровень глюкозы в крови натощак составляет 3.3 – 5.5 ммоль/л.

Гипергликемия – повышение уровня глюкозы в крови выше 6,1 ммоль/л. Гипергликемия бывает физиологической и патологической.

Причины физиологической гипергликемии:

1) алиментарная, при употреблении легкоусвояемых углеводов. Не превышает 11 ммоль/л, нормализуется в течение 3 часов;

2) стрессорная , под действием катехоламинов, глюкокортикоидов, вазопрессина;

3) кратковременные физические нагрузки .

Причины патологической гипергликемии:

1) судороги при эпилепсиях, столбняке;

2) эндокринные нарушения . Гиперпродукция контринсулярных гормонов (гипертириоз, синдромы Кушинга и Кона), абсолютный или относительный дефицит инсулина (сахарный диабет).

3) ЧМТ .

Гипогликемия снижение уровня глюкозы в крови ниже 3,3 ммоль/л. Гипогликемия бывает физиологической и патологической.

Причины физиологической гипогликемии: 1) алиментарная, при голодании; 2) длительная физическая нагрузка .

Причины патологической гипогликемии: 1) эндокринные нарушения при избытке инсулина (инсулинома – доброкачественная опухоль β-клеток, передозировка инсулина у больных СД) или недостаточности контринсулярных гормонов (гипотиреоз, дефицит глюкокортикоидов); 2) гликогенозы, агликогенозы, препятствующие гликогенолизу; 3) печеночная недостаточность, связанная с низкой активностью глюконеогенеза; 4) почечная недостаточность, связанная с врожденной патологией реабсорбции глюкозы (почечный диабет); 5) отравления монойодацетатом (вызывает глюкозурию).

Сахарный диабет (СД) — системное гетерогенное заболевание, обусловленное абсолютным или относительным дефицитом инулина, который сначала вызывает нарушение углеводного, а затем всех видов обмена, что в итоге поражает все функциональные системы организма.

СД широко распространенное заболевание, им страдает 6,6% населения, в России – 5%.

СД бывает первичным и вторичным. Кроме того, выделяют нарушение толерантности к глюкозе и СД беременных.

Первичный СД - самостоятельное заболевание.

Вторичный СД является симптоматическим, он возникает при патологии эндокринных желез (акромегалия, феохромоцитома, глюкагонома, синдромы Кушинга, Кона) и патологии поджелудочной железы (хронический панкреатит, рак, панкреатэктомия, гемохроматоз, генетические синдромы).

Первичный СД по механизму развития подразделяется на СД I типа (раньше ИЗСД) и СД II типа (раньше ИНСД).

Общими симптомами любого СД являются жажда, полиурия, кожный зуд, склонность к инфекциям.

Этиологическая классификация СД (ВОЗ 1999) .

1. Сахарный диабет I типа (раньше ИЗСД)

а). Аутоиммунный

б). Идиопатический

2. СД II типа (раньше ИНСД)

3. Другие специфические типы

а). генетические дефекты β-клеток

б). генетические дефекты в действии инсулина

в). болезни экзокринной части поджелудочной железы (панкреатит и т.д.)

г). эндокринопатии

д). СД, индуцированный лекарствами и химикатами (глюкокортикоиды, никотиновая кислота, тиреоидные гормоны, тиазиды, вакор, пентамидин и т.д.)

е). Инфекции (врожденная краснуха, цитомегаловирус и т.д.).

ж). Необычные формы иммуноопосредованного диабета.

з). Другие генетические синдромы, иногда сочетающиеся с диабетом (Дауна, Тернера и т.д.).

4. Гестационный СД (беременных)

САХАРНЫЙ ДИАБЕТ I типа

СД I типа — за­болевание, которое возникает вследствие абсолютного дефицита инсулина, вызванного аутоиммунным разрушением β-клеток поджелудочной железы. СД I типа поражает в большинстве случаев де­тей, подростков и молодых людей до 30 лет, но может про­явиться в любом возрасте. СД I типа редко является семейным заболеванием (10-15% всех случаев).

Причины СД I типа

1. Генетическая предрасположенность . Генетические дефекты ведущие к СД могут реализоваться в клетках иммунной системы и β-клетках поджелудочной железы. В β-клетках известно около 20 генов, способствующих развитию СД I типа. В 60-70% случаях СД I типа связан с наличием в 6 хромосоме HLA региона генов DR3, DR4 и DQ.

2. Действие на β-клетки β-цитотропных вирусов (оспа, краснуха, корь, пароти­т, Коксаки, аденовирус, цитомегаловирус), химических и других диабетогенов .

Вариант 1

При наличии генетического дефекта, на поверхности β-клеток накапливаются антигены, имеющие схожую аминокислотную последовательность с β-цитотропными вирусами.

В случае возникновения инфекции β-цитотропных вирусов, развиваются иммунные реакции против этих вирусов и аутоиммунные реакции против схожих антигенов β-клеток. Реакция идет с участием моно­цитов, Т-лимфоцитов, антител к β-клеткам, инсулину, глутамат декарбоксилазе (фермент 64кДа, находиться на мембране β-клеток). В результате аутоиммунные реакции вызывают гибель β-клеток.

Вариант 2

При действии на β-клетки с генотипом HLA β-цитотропных вирусов или диабетогенов на поверхности β-клеток происходит изменение антигенов.

На измененные антигены β-клетки развиваются аутоиммунные реакции. Аутоиммунные реакции вызывают гибель β-клеток.

Вариант 3

β-цитотропные вирусы имеют схожую последовательность аминокислот с глутамат декарбоксилазой β-клеток. Генетический дефект СД8+ лимфоцитов (Т-супрессоров) не позволяет им отличить аминокислотную последовательность вируса и глутамат декарбоксилазы, поэтому при возникновении инфекции, Т-лимфоциты реагируют на глутамат декарбоксилазу β-клеток как на вирус.

Вариант 4

Некоторые β-цитотропные вирусы и химические диабетогены, например, производные нитрозомочевины, нитрозамины, аллоксан самостоятельно и избирательно поражают β-клетки, вызывая их лизис;

Стадии развития СД I типа

1. Стадия генетической предрасположенности . Есть генетические маркеры, нет нарушений углеводного обмена. Может длиться всю жизнь;

2. Стадия провоцирующих событий . Инфекция β-цитотропных вирусов или действие химических диабетогенов. Протекает без клинических симптомов;

3. Стадия явных иммунных аномалий . Развитие смешанных аутоиммунных реакций против β-клеток. Ресурсы инсулина достаточны. Протекает без клинических симптомов. Развивается от 2-3 месяцев до 2-3 лет;

4. Стадия латентного диабета . Гибель 75% β-клеток, небольшое снижение инсулина, гипергликемия при нагрузочных пробах, снижение аутоиммунных процессов. Протекает без клинических симптомов;

5. Явный диабет . Гибель 80-90% β-клеток, заметное снижение инсулина, гипергликемия натощак, нет или слабые аутоиммунные реакции. Появляются клинические симптомы. Развивается 2 года. Необходима инсулинотерапия;

6. Терминальный диабет . Полная гибель β-клеток, высокая потребность в инсулинотерапии, аутоиммунные проявления снижены или их нет. Выраженные клинические проявления, появляются ангиопатии. Развивается до 3,5 лет;

Изменения метаболизма при СД I типа

При СД I типа исчезает инсулин, т.к. инсулин ингибитор секреции глюкагона, в крови происходит увеличение глюкагона.

Изменения в углеводном обмене

В печени дефицит инсулина и избыток глюкагона стимулирует реакции глюконеогенеза, гликогенолиза и ингибирует реакции гликолиза, ПФШ и синтеза гликогена. В результате в печени глюкозы больше образуется, чем потребляется.

Так как реакции глюконеогенеза протекают через ЩУК, он, образовавшись из ПВК, аспартата и малата, активно вовлекается в глюконеогенез, вместо того чтобы включаться в ЦТК. В результате ЦТК и ДЦ тормозится, снижается образование АТФ, возникает энергодефицит .

В инсулинзависимых тканях (мышцы, жировая ткань) дефицит инсулина препятствует поступлению глюкозы в клетки и ее использованию в реакциях гликолиза, ПФШ и синтеза гликогена. Блокирование ЦТК и ДЦ также вызывает энергодефицит.

Снижение потребления глюкозы инсулинзависимыми тканями и усиление ее образования в печени приводит к гипергликемии . Когда гипергликемия превышает кон­центрационный почечный порог возникает глюкозурия.

Глюкозурия – наличие глюкозы моче. В норме проксимальные канальцы по­чек реабсорбируют всю фильтрующуюся в клу­бочках глюкозу. Если уровень глюкозы превышает в крови 9-10 ммоль/л, глюкоза не успевает полностью реабсорбироваться из первичной мочи и частично выводится с вторичной мочой.

У больных с СД после приёма пищи концентрация глюкозы в крови может достигать 300-500 мг/дл и со­храняется на высоком уровне в постабсорбтивном периоде, т.е. снижается толерантность к глюкозе.

Изменения в липидном обмене

Дефицит АТФ, НАДФН2 , инсулина и избыток глюкагона тормозят липогенез и усиливают липолиз в жировой ткани. В результате в крови повышается концентрация свободных жирных кислот, которые поступают в печень и окисляются там до Ацетил-КоА. АцетилКоА при дефиците ЩУК не может включаться в ЦТК. Поэтому он накапливается и поступает на альтернативные пути: синтез кетоновых тел (ацетоуксусная, β-гидроксимасляная кислоты) и холестерина.

В норме кетоновые тела являются источником энергии для аэробных тканей, они превращаются в АцетилКоА, который окисляется в ЦТК. Так как ЦТК заблокирован дефицитом ЩУК, кетоновые тела накапливаются в крови и вызывают кетонемию . Кетонемия усугубляет недостаточность инсулина, подавляя остаточную секреторную активность β-клеток. Когда кетонемия превышает кон­центрационный почечный порог (выше 20 мг/дл, иногда до 100 мг/дл) возникает кетонурия. Кетонурия – наличие кетоновых тел в моче.

В тканях ацетоуксусная кислота частич­но декарбоксилируется до ацетона, запах которого исходит от больных сахарным диабе­том и ощущается даже на расстоянии.

Липопротеины крови поставляют субстраты для липогенеза в тканях. Дефицит инсулина блокирует липогенез в жировой ткани, ингибирует липопротеинлипазу в сосудах, это препятствует расщеплению липопротеинов крови (в основном, ЛПОНП), в результате они накапливаются, вызывая гиперлипопротеинемию.

Изменения в белковом обмене

Энергодефицит, недостаток инсулина и избыток глюкагона приводит к снижению скорости синтеза белков в организме и усилению их распада, что повышает концентрацию аминокис­лот в крови. Аминокислоты поступают в печень и дезаминируются до кетокислот. Кетокислоты включаются в глюконеогенез, что усиливает гипергликемию. Из аммиака активно синтезируется мочевина. Повышение в крови аммиака, мочевины, аминокислот вызывает азотемию – увеличение концентрации азота в крови. Азотемия приводит к азотурии – увеличению концентрации азота в моче. Развивается отрицательный азотистый баланс. Катаболизм белков ведет к миодистрофии и вторичному иммунодефициту.

Изменения в водно-солевом обмене

Поскольку возможности почек ограничены, высокие концентрации глюкозы, кетоновых тел и мочевины не успевают реабсорбироваться из первичной мочи. Они создают в первичной моче высокое осмотическое давление, которое препятствует реабсорбции воды в кровь и образованию вторичной мочи. У таких пациентов развивается полиурия , выделение мочи воз­растает до 3—4 л в сутки (в некоторых случаях до 8—9 л). Потеря воды вызывает по­стоянную жажду или полидипсию . Без частого питья, полиурия может приводить к обезвожива­ нию организма. Потеря с мочой глюкозы усугубляет энергодефицит, может увеличить аппетит и полифагию . С первичной мочой из организма уходят некоторые полезные минеральные компоненты, что приводит к нарушению минерального обмена.

Высокие концентрации глюкозы, кетоновых тел и мочевины создают в плазме крови значительное осмотическое давление, которое способствует дегидратации тканей. Кроме воды ткани теряют электро­литы, прежде всего ионы К+ , Na+ , С1- , НСО3 - .

Изменение в газообмене тканей

Общая де­гидратация организма, вызванная полиурией и дегидратацией тканей приводит к снижению пери­ферического кровообращения, уменьшению мозгового и почечного кровотока и гипоксии. Причиной гипоксии является также гликозилирование Hb в HbA 1 c , который не переносит О2 к тканям. Гипоксия ведет к энергодефициту и накоплению в организме лактата .

Изменения в кислотно-основном равновесии

Накопление кетоновых тел, лактата и потеря щелочных валентностей с мочой снижает буферную ёмкость крови и вызывает ацидоз .

Симптомы СД I типа

Общие симптомы (жажда, полиурия, кожный зуд, склонность к инфекциям) выражены. Общая слабость, похудание, снижение трудоспособности, сонливость. Ожирение отсутствует. Повышенный аппетит при кетоацидозе сменяется анорексией. Развивается быстро, склонен к развитию кетоацидотической комы.

САХАРНЫЙ ДИАБЕТ II типа

СД II типа представляет собой группу гетерогенных нарушений углеводного обмена. СД II типа не инсулинозависимый, не склонен к кетоацидотической коме, не имеет антител к β-клеткам, не аутоиммунной природы, не имеет связи с определенными HLA фенотипами. Ожирение в 80%. На долю СД II типа приходится примерно 85-90% всех случаев СД, он поражает людей, как правило, старше 40 лет и характеризуется высо­кой частотой семейных форм (риск СД II типа у бли­жайших родственников больного достигает 50%, тогда как при СД I типа он не превышает 10%). СД II типа поражает преимущественно жителей развитых стран, особенно горожан.

В основе СД II типа лежат множество причин. СД II типа развивается при:

· генетических дефектах рецепторов инсулина, у них снижается чувствительность к инсулину;

· синтезе дефектного инсулина с низкой биологической активностью (мутация гена инсулина: в позиции 24 В-цепи вместо фен присутствует лей);

· нарушении превращения проинсулина в инсулин;

· нарушении секреции инсулина;

· повреждении инсулина и его рецепторов антителами;

· повышения скорости катаболизма инсулина;

· действия контринсулярных гормонов (создают гипеинсулинемию, которая вызывает инсулинорезистентность);

· нарушении глюкозочувствительного механизма b-клеток (мутации гена глюкокиназы) и т.д.

Основным провоцирующим фактором СД II типа служит ожирение.

Стадии СД II типа

1. Стадия генетической предрасположенности . Есть генетические маркеры, нет нарушений углеводного обмена. Может длиться всю жизнь;

2. Стадия латентного диабета . Гипергликемия при нагрузочных пробах. Протекает без клинических симптомов СД;

3. Явный диабет . Гипергликемия натощак. Появляются клинические симптомы.

Симптомы СД II типа

Общие симптомы (жажда, полиурия, кожный зуд, склонность к инфекциям) выражены умеренно или отсутствуют. Часто ожирение (у 80-90% больных).

Изменения метаболизма при СД II типа

Относительный дефицит инсулина вызывает метаболические нарушения, схожие с теми которые возникают при абсолютном дефиците инсулина, однако эти нарушения менее выражены, а у 50% больных с ожирением и умеренной гипергликемией СД II типа вообще протекает бессимптомно.

В отличие от абсолютного дефицита инсулина, при относительном дефиците инсулина, влияние инсулина сохраняется на жировую ткань, имеющую высокое содержание рецепторов к инсулину. Инсулин в жировой ткани стимулирует липогенез, блокирует липолиз и выход жирных кислот в кровь, поэтому при СД II типа не наблюдается кетоацидоз, масса тела не уменьшается, а наоборот развивается ожирение. Таким образом, ожирение, с одной стороны, важней­ший фактор риска, а с другой — одно из ран­них проявлений СД II типа.

Так как синтез инсулина как правило не нарушен, высокий уровень глюкозы в крови стимулирует секрецию инсулина из β-клеток, вызывая гиперинсулинемию . Высокая концентрация инсулина вызывает инактивацию и разрушение инсулиновых рецепторов, что снижает толерантность тканей к глюкозе. Инсулин больше не может нормализовать гликемию, возникает инсулинорезистентность . При этом, высокий уровень глюкозы в крови снижает чувствительность β-клеток к глюкозе, в результате запаздывает или отсутствует первая фаза секреции инсулина.

При СД II типа наблюдается гиперинсулинемия (80%), артериальная гипертензия (50%), гиперлипидемия (50%), атеросклероз, нейропатия (15%) и диабетическая нефропатия (5%).

Осложнения СД

Острые осложнения сахарного диабета. Механизмы развития диабетической комы

Острые осложнения специфичны для СД I и II типа.

Дегидратация тканей головного мозга в первую очередь, а также нарушения обмена веществ в нервной ткани могут приводить к развитию острых ослож­нений в виде коматозных состояний. Кома это крайне тяжелое состояние, характеризующееся глубоким угнетением ЦНС, стойкой по­терей сознания, утратой реакций на внешние раздражители любой интенсивности. Коматозные состояния при СД могут проявляться в трёх формах: кетоацидотической, гиперосмолярной и лактоацидотической.

Кетоацидотическая кома возникает при СД I типа, когда концентрация кетоновых тел становится выше 100 мг/дл (до 400-500мг/дл).

Гиперкетонемия приводит к:

1) ацидозу, который блокирует активность большинства ферментов, в первую дыхательных, что вызывает гипоксию и снижение синтеза АТФ.

2) гиперосмолярности, которая приводит к дегидратации тканей и нарушению водно-электролитного равновесия, с потерей ионов калия, натрия, фосфора, магния, кальция, бикарбонатов.

Это при определенной выраженности и вызывает коматозное состояние с падением артериального давления и развитием острой почечной недостаточности.

Возникающая гипокалиемия ведет к гипотонии гладкой и поперечно-полосатой мускулатуры, снижению тонуса сосудов, падению АД, сердечной аритмии, гипотонии дыхательной мускулатуры с развитием острой дыхательной недостаточности; атонии ЖКТ с парезом желудка и развитием кишечной непроходимости развивается выраженная гипоксия. В общей причине смертности она занимает 2-4 %.

Гиперосмолярная кома характерна для СД II типа, она наблюдается при высокой гипергликемии. У большинства высокая гипергликемия обуслов­лена сопутствующим нарушением функции по­чек, ее провоцируют стресс, травма, резкая дегидратация организма (рвота, диарея, ожоги, кровопотеря и т.д.). Гиперосмолярная кома развивается медленно, в течение нескольких дней при беспомощности человека (некомпенсируемая питьем), когда содержание глюкозы достигает 30-50 ммоль/л.

Гипергликемия способствует полиурии, создает гиперосмотическое состояние , которое вызывает дегидратацию тканей, приводящую к нарушению водно-электролитного равновесия.

Резкая дегидротация организма рвотой, диарей, кровопотерей на фоне полиурии и отсутствия питья приводит к гиповолемии . Гиповолемия вызывает снижение АД, сгущение крови, увеличение ее вязкости и способности к тромбообразованию . Нарушение гемодинамики приводит к ишемии тканей, развитию гипоксии, накоплению лактата и энергодефициту. Ишемия почек приводит к развитию острой почечной недостаточности – анурии . Анурия приводит к накоплению в крови остаточного азота (аммиак, мочевина, аминокислоты), возникает гиперазотемия . Гиповолемия через альдостерон снижает выведение с мочой NaCl, что вызывает гипернатриемию и гиперхлоремию . Гиперазотемия, гипернатриемия и гиперхлоремия усиливают гиперосмотическое состояние и нарушение водно-электролитного равновесия.

Энергодефицит и нарушение водно-электролитного равновесия препятствует формированию на мембране нейронов потенциала и проведению нервных импульсов в ЦНС, что приводит к развитию комы. Смертность при гипергликемической коме 50%.

Лактоацидотическая кома характерна для СД II типа, она возникает при накоплении лактата. В присутствии молочной кислоты резко снижается чувствительность адренорецепторов к катехоламинам, развивается необратимый шок. Появляется метаболическая коагулопатия, проявляющаяся ДВС-синдромом, периферическими тромбозами, тромбоэмболиями (инфаркт миокарда, инсульт).

Ацидоз при избытке кетоновых тел и лактата затрудняет отдачу Hb кислорода в ткани (гипоксия), он блокирует активность большинства ферментов, в первую очередь подавляется синтез АТФ, активный транспорт и создание мембранных градиентов, что в нервной ткани угнетает проведение нервных импульсов и вызывает кому.

Поздние осложнения сахарного диабета

Поздние осложнения СД неспецифичны (возникают при разных видах СД), к ним относятся:

1. макроангиопатия (атеросклероз крупных артерий);

2. нефропатия;

3. ретинопатия;

4. нейропатия;

5. синдром диабетической стопы.

Главная причина поздних осложнений сахар­ного диабета является гипергликемия, гиперлипидемия и гиперхолестеринемия. Они приводят к повреждению кровеносных сосудов и нарушению функций различных ор­ганов и тканей путем гликозилирования белков, образования сорбитола и активации атеросклероза.

1. Неферментативное гликози лирование белков . Глю­коза взаимодействует со свободными аминогруппами белков с образованием Шиффовых оснований, при этом белки изменяют свою конформацию и функции. Степень гликозилирования белков зависит от скорости их обнов­ления и концентрации глюкозы.

При гликозилировании кристаллинов - белков хрусталика, образуют мно­гомолекулярные агрегаты, увеличивающие пре­ломляющую способность хрусталика. Прозрач­ность хрусталика уменьшается, возникает его помутнение, или катаракта .

При гликозилировании белков (протеогликаны, коллагены, гликопротеины) базальных мембран нарушается их обмен, соотношение и структурная организация, происходит утолщение базальных мембран и развитие ангиопатий .

Макроангиопатии проявляются в поражени­ях крупных и средних сосудов сердца, моз­га, нижних конечностей. Гликозилированные бел­ки базальных мембран и межклеточного матрикса (коллагена и эластина) снижают элас­тичности артерий. Гликозилирование в сочетании с гиперлипидемией гликозилированных ЛП и гиперхолестеринемией является причиной активации атеросклероза.

Микроангиопатии — результат повреждения капилляров и мелких сосудов. Проявляют­ся в форме нефро-, нейро- и ретинопатии.

Нефропатия развивается примерно у трети больных СД. Признаком ранних стадий нефропатии служит микроальбуминурия (в пределах 30—300 мг/сут), которая в дальнейшем развивается до класси­ческого нефротического синдрома, характери­зующегося высокой протеинурией, гипоальбуминемией и отёками.

Ретинопатия, самое серьёзное осложнение са­харного диабета и наиболее частая причина сле­поты, развивается у 60-80% больных СД. На ранних стадиях развивается базальная ретинопатия, которая проявляется в крово­излияниях в сетчатку, расширении сосудов сет­чатки, отёках. Если изменения не затрагивают жёлтого пятна, потеря зрения обычно не проис­ходит. В дальнейшем может развиться пролиферативная ретинопатия, проявляющаяся в ново­образовании сосудов сетчатки и стекловидного тела. Ломкость и высокая проницаемость ново­образованных сосудов определяют частые кро­воизлияния в сетчатку или стекловидное тело. На месте тромбов развивается фиброз, приводя­щий к отслойке сетчатки и потере зрения.

2. Превращение глюкозы в сорбитол . При гипергликемии этот процесс ускоряется. Реакция катализируется альдозоредуктазой. Сорбитол не используется в клетке, а скорость его диффузии из клеток не­велика. При гипергликемии сорбитол накапливается в сетчатке и хрусталике глаза, клетках клубочков почек, шванновских клетках, в эндотелии. Сорбитол в высоких концентрациях токсичен для клеток, он приводит к увеличению осмотического дав­ления, набуханию клеток и отёку тканей. При накоп­лении сорбитола в хрусталике приводит к набуханию и нарушению упорядоченной структуры кристаллинов, в результате хрусталик мутнеет.

Диагностика сахарного диабета

Диагноз сахарного диабета ставят на основе классических симптомов са­харного диабета — полиурии, полидипсии, полифагии, ощущения сухости во рту.

Биохимическими признаками СД являются:

• Уровень глюкозы натощак в капиллярной крови выше 6,1 ммоль/л;

• Уровень С-пептида натощак менее 0,4 ммоль/л – признак СД I типа.

• Тест с глюкагоном. Натощак определяется концентрация С-пептида (в норме >0,6 ммоль/л), затем 1мг глюкагона вводят внутривенно, через 6 минут определяется концентрация С-пептида (в норме >1,1 ммоль/л).

• Наличие глюкозурии (определяют для контроля лечения);

• Глюкозотелерантный тест (ГТТ), проводится при отсутствии клинических симптомов СД, когда концен­трация глюкозы в крови натощак соответству­ет норме. Признак СД - уровень глюкозы в плазме крови выше 11,1 ммоль/л через 2 ч после сахарной нагрузки;

Определение толеран­тности к глюкозе

Обследуемый принимает раствор глюкозы (250-300 мл воды + глюкоза 1 г на 1 кг массы тела). Концентрацию глю­козы в крови измеряют в течение 2-3 ч с интервалами в 30 мин. 1 — у здорового человека; 2 — у больного сахарным ди­абетом.

Для оценки компенсации СД определяют:

• В норме уровень гликозилированного гемоглобина НbА не более 6% от общего содержания Hb, при компенсированном СД НbА < 8,5%;

• альбуминурии. В норме альбуминов в моче < 30 мг/сут. При сахарном диабете до 300 мг/сут.

Поскольку СД II типа развивается значительно медленнее, классические клинические симптомы, гипергликемию и дефицит инсулина диагности­руют позднее, часто в сочетании с симптомами поздних осложнений сахарного диабета.

Лечение сахарного диабета

Лечение сахарного диабета зависит от его типа (I или II), является комплексным и включает диету, применение сахаропонижающих средств, инсулинотерапию, а также профилактику и ле­чение осложнений.

Сахаропонижающие препараты делят на две основные группы: производные сульфонилмочевины и бигуаниды.

Препараты сульфонилмочевины блокируют АТФ-чувствительные К+ -каналы, что повышает внутриклеточную концентрацию К+ и приводит к деполяризации мем­браны. Деполяризация мем­браны ускоряет транспорт ионов кальция в клетку, вследствие чего стимулируется секреция инсулина.

Бигуаниды увеличива­ют количество переносчиков глюкозы ГЛЮТ-4 на поверхности мембран клеток жировой ткани и мышц.

Инсулинотерапия обязательна для СД I типа (1-4 инъекции в день), при СД II типа инсулин иногда назначают для лучшего контроля СД, а также при развитии через 10-15 лет вторичной абсолютной инсулиновой недостаточности.

К перспективным методам лечения сахарного диабета относят следующие: трансплантация ос­тровков поджелудочной железы или изолирован­ных β-клеток, трансплантация генетически рекон­струированных клеток, а также стимуляция регенерации панкреатических островков.

При сахарном диабете обоих типов важнейшее значение имеет диетотерапия. Рекомендуют хоро­шо сбалансированную диету: на долю углеводов должно приходиться 50—60% общей калорийнос­ти пиши (исключение должны составлять легко­усвояемые углеводы, пиво, спиртные напитки, сиропы, пирожные и др.); на долю белков — 15—20%; на долю всех жиров — не более 25-30%. Пищу следует принимать 5—6 раз в течение суток.

Литература:

И.И. Дедов., Г.А. Мельниченко, В.В. Фадеев. Эндокринология. Москва.: «Медицина». 2000г.