Скачать .docx  

Реферат: Решения к Сборнику заданий по высшей математике Кузнецова Л.А. - 2. Дифференцирование. Зад.4

Задача 4 . Вычислить приближенно с помощью дифференциала.

4.1.

x0 = 8

∆x= 7,76-8= -0,24

f(x0 )= 3 √8=2

f'= 1/(33 √х2 )

f'(x0 )= 1/(3*4)=1/12

f(x)= 2-0,24/12= 1,98

4.2.

x0 = 1

∆x= 1,012-1= 0,012

f(x0 )= 3 √(1+7)= 2

f'= (3х2 +7)/(33 √(х3 +7х))

f'(x0 )= (3+7)/(3*2)= 5/3

f(x)= 2+0,06/3= 2,02

4.3.

x0 = 1

∆x= 0,98-1= -0,02

f(x0 )= 1/2*(1+√4)=3/2

f'= 1/2-х/(2√(5-х2 ))

f'(x0 )= 1/2-1/4=1/4

f(x)= 3/2-0,02/4= 1,495

4.4.

x0 = 27

∆x= 27,54-27= 0,54

f(x0 )= 3

f'= 1/(33 √х2 )

f'(x0 )= 1/27

f(x)= 3+0,54/27= 3,02

4.5.

x0 = 0

∆x= 0,08

f(x0 )= arcsin0=0

f'= 1/√(1-х2 )

f'(x0 )= 1

f(x)= 0+0,08=0,08

4.6.

x0 = 1

∆x= 0,97-1= -0,03

f(x0 )= 3 √8=2

f'= (2х+2)/33 √(х2 +2х+5)

f'(x0 )= 4/(3*2)=2/3

f(x)= 2-0,06/3= 1,98

4.7.

x0 = 27

∆x= 26,46-27= -0,54

f(x0 )= 3 √27=3

f'= 1/(33 √х2 )

f'(x0 )= 1/27

f(x)= 3-0,54/27= 2,98

4.8.

x0 = 2

∆x= 1,97-2= -0,03

f(x0 )= √(4+2+3)

f'= (2х+1)/2√(х2 +х+3)

f'(x0 )= 5/(2*3)= 5/6

f(x)= 3-0,15/6= 2,975

4.9.

x0 = 1

∆x= 1,021-1= 0,021

f(x0 )= 1

f'= 11х10

f'(x0 )= 11

f(x)= 1+11*0,021= 1,231

4.10.

x0 = 1

∆x= 1,21-1= 0,21

f(x0 )= 1

f'= 1/(33 √х2 )

f'(x0 )= 1/3

f(x)= 1+0,21/3= 1,07

4.11.

x0 = 1

∆x= 0,998-1= -0,002

f(x0 )= 1

f'= 21х20

f'(x0 )= 21

f(x)= 1-0,002/21= 0,9999

4.12.

x0 = 1

∆x= 1,03-1= 0,03

f(x0 )= 1

f'= 2/(33 √х)

f'(x0 )= 2/3

f(x)= 1+0,03*2/3= 1,02

4.13.

x0 = 2

∆x= 2,01-2= 0,01

f(x0 )= 26 =64

f'= 6х5

f'(x0 )= 6*25 =192

f(x)= 64+0,01*192= 65,92

4.14.

x0 = 8

∆x= 8,24-8= 0,24

f(x0 )= 3 √8= 2

f'= 1/(33 √х2 )

f'(x0 )= 1/12

f(x)= 2+0,24/12= 2,02

4.15.

x0 = 2

∆x= 1,996-2= -0,004

f(x0 )= 27 =128

f'= 7х6

f'(x0 )= 7*26 = 448

f(x)= 128-0,004*448= 126,208

4.16.

x0 = 8

∆x= 7,64-8= -0,36

f(x0 )= 3 √8= 2

f'= 1/(33 √х2 )

f'(x0 )= 1/12

f(x)= 2-0,36/12= 1,97

4.17.

x0 = 2,5

∆x= 2,56-2,5= 0,06

f(x0 )= √(10-1)= 3

f'= 1/√(4х-1)

f'(x0 )= 1/√9= 1/3

f(x)= 3+0,06/3= 3,02

4.18.

x0 = 1

∆x= 1,016-1= 0,016

f(x0 )= 1/√(2+1+1)= 1/2

f'= -(4х+1)/2√(2х2 +х+1)3

f'(x0 )= (-4-1)/2√(2+1+1)3 = -5/16

f(x)= 0,5-0,08/16= 0,495

4.19.

x0 = 8

∆x= 8,36-8= 0,36

f(x0 )= 3 √8= 2

f'= 1/(33 √х2 )

f'(x0 )= 1/12

f(x)= 2+0,36/12= 2,03

4.20.

x0 = 4

∆x= 4,16-4= 0,16

f(x0 )= 1/2

f'= -1/(2√х3 )

f'(x0 )= -1/16

f(x)= 0,5-0,16/16= 0,499

4.21.

x0 = 2

∆x= 2,002-2= 0,002

f(x0 )= 27 =128

f'= 7х6

f'(x0 )= 7*26 = 448

f(x)= 128+0,002*448= 128,896

4.22.

x0 = 1

∆x= 1,78-1= 0,78

f(x0 )= √(4-3)= 1

f'= 2/√(4х-3)

f'(x0 )= 2

f(x)= 1+0,78*2= 2,56

4.23.

x0 = 1

∆x= 0,98-1= -0,02

f(x0 )= 1

f'= 3/(2√х)

f'(x0 )= 3/2

f(x)= 1-3*0,02/2= 0,97

4.24.

x0 = 3

∆x= 2,997-3= -0,003

f(x0 )= 243

f'= 5х4

f'(x0 )= 5*81= 405

f(x)= 243-405*0,003= 241,785

4.25.

x0 = 1

∆x= 1,03-1= 0,03

f(x0 )= 1

f'= 2/(55 √х3 )

f'(x0 )= 2/5

f(x)= 1+2*0,03/5= 1,012

4.26.

x0 = 4

∆x= 3,998-4= -0,002

f(x0 )= 256

f'= 4х3

f'(x0 )= 4*64= 256

f(x)= 256-256*0,002= 255,488

4.27.

x0 = 0

∆x= 0,01-0=0,01

f(x0 )= √(1+0+sin0)=1

f'= (1+cosx)/(2√(1+х+sinx))

f'(x0 )= (1+1)/2= 1

f(x)= 1+0,01= 1,01

4.28.

x0 = 0

∆x= 0,01-0= 0,01

f(x0 )= 1

f'= (3-sinx)/(33 √3x+cosx)

f'(x0 )= 3/3= 1

f(x)= 1+0,01= 1,01

4.29.

x0 = 1

∆x= 1,02-1= 0,02

f(x0 )= 4 √(2-1)= 1

f'= (2-π/2*cos(πx/2))/(44 √(2x-sin(πx/2)))

f'(x0 )= 2/4√1= 0.5

f(x)= 1+0,02*05= 1,01

4.30.

x0 = 2

∆x= 1,97-2= -0,03

f(x0 )= √9=3

f'= х/√(х2 +5)

f'(x0 )= 2/3

f(x)= 3-0,03*2/3= 2,98

4.31.

x0 = 1,5

∆x= 1,58-1,5= 0,08

f(x0 )= 1/2

f'= -1/(√(2х+1))

f'(x0 )= -1/2

f(x)= 0,5-0,5*0,08= 0,46