Скачать .docx |
Курсовая работа: Привод ковшового элеватора
Министерство образования Республики Беларусь
Учреждение образования
Белорусский государственный технологический университет
Пояснительная записка
к Курсовому проекту
по дисциплине: Основы конструирования и проектирования
на тему: Привод ковшового элеватора
Выполнила
студентка 2 курса
Мороз О.С.
Минск 2005
Введение
Зубчатая передача (редуктор), выполненный в виде отдельного агрегата, служит для передачи мощности от двигателя к рабочей части машины.
Назначение редуктора – понижение угловой скорости и повышение враща-ющего момента ведомого вала по сравнению с валом ведущим.
Рассматриваемый редуктор состоит из корпуса (литого чугунного), в котором помещены элементы передачи – вал-шестерня, зубчатое колесо, подшипники и т.п.
Узлы соединяются между собой валами, через которые передаётся крутящий момент.
Вал, передающий крутящий момент, называется ведущим и мощность передаваемая этим валом является выходной. Вал, принимающий крутящий момент, называется ведомым.
Задача 1. Разработка кинематической схемы машинного агрегата
1.1 Условия эксплуатации машинного агрегата
Устанавливаем привод к ковшовому элеватору на стройплощадку. Агрегат работает на протяжении 3 лет в две смены. Продолжительность смены 8 часов, нагрузка мало меняющаяся с малыми колебаниями, режим работы реверсивный.
1.2 Срок службы приводного устройства
Срок службы Lh , ч,
Lh = 365· Lr tc Lc . (1.1)
где Lr - срок службы привода, лет; tc - продолжительность смены, ч; Lc - число смен.
Lh = 365· 3 · 8 · 2 = 17520 ч.
Принимаем время простоя машинного агрегата 15% ресурса. Тогда
Lh = 17520 · 85 / 100% = 14892 ч.
Рабочий ресурс привода принимаем Lh = 15000 ч.
Табличный ответ к задаче:
Таблица 1.1. Эксплуатационные характеристики машинного агрегата
Место установки | Lr | Lc | tc | Lh , ч | Характер нагрузки |
Режим работы |
Стройплощадку | 3 | 2 | 8 | 15000 | С малыми колебаниями |
реверсивный |
Задача 2. Выбор двигателя. Кинематический расчет привода
2.1 Определение номинальной мощности и номинальной частоты вращения двигателя
1. Определим мощность рабочей машины Pрм , кВт:
Ррм = F · v, (2.1)
где F — тяговая сила ленты, кН; v, — скорость ленты, м/с.
Подставляя значения в (2.1) получаем:
Ррм = 2,72 · 1000 · 0,9 = 2,45 · 1000Вт=2,45 кВт
2. Определим общий коэффициент полезного действия привода:
= пк 2 · пс · м · зп · ц
где пк , пс ,м ,зп ,ц — коэффициенты полезного действия подшипников качения (две пары), подшипников скольжения (одна пара), муфты , закрытой зубчатой передачи , цепной передачи
=0,995 2 · 0,99 · 0,98 · 0,97 · 0,93 = 0,87 .
3. Определим требуемую мощность двигателя Рдв , кВт:
Рдв = Ррм / (2.2)
Рдв = 2,45 / 0,87 = 2,8 кВт.
4. Определим номинальную мощность двигателя Рном , кВт:
Значение номинальной мощности выбираем по величине, большей, но ближайшей к требуемой мощности :
Рном Рдв
Принимаем номинальную мощность двигателя Рном = 3,0 кВт, применив для расчета четыре варианта типа двигателя, представленных в табл.2.1:
Таблица 2.1. Технические данные различных типов двигателей
Вариант | Тип двигателя | Номинальная мощность Рном , кВт | Частота вращения, об / мин | |
синхронная | номинальная nном | |||
1 | 4АМ112MВ8УЗ | 3,0 | 750 | 700 |
2 | 4АM112MA6УЗ | 3,0 | 1000 | 955 |
3 | 4АМ100S4У3 | 3,0 | 1500 | 1435 |
4 | 4АМ90L2УЗ | 3,0 | 3000 | 2840 |
Каждому значению номинальной мощности Рном соответствует в большинстве не одно, а несколько типов двигателей с различными частотами вращения, синхронными 3000, 1500, 1000, 750 об/мин. Выбор типа двигателя зависит от типов передач, которые входят в привод, кинематических характеристик рабочей машины и производится после определения передаточного числа привода и его ступеней. При этом следует отметить, что двигатели с большой частотой вращения (синхронной 3000 об/мин) имеют невысокий рабочий ресурс, а двигатели с низкими частотами (синхронной 750 об/мин) металлоемки, поэтому их нежелательно применять без особой необходимости в приводах общего назначения малой мощности.
2.2 Определение передаточного числа привода и его ступеней
1. Определим частоту вращения приводного вала рабочей машины:
nрм =60 · 1000 · v / ( ¶·D)(2.3)
где v — скорость тягового органа, м/с; D — диаметр барабана, мм.
Подставляя значения в (2.3) имеем:
nрм = 60 · 1000 · 0,9 / ( 3,14·250 ) = 69,0 об / мин.
2. Определим передаточное число привода для всех приемлемых вариантов типа двигателя:
U = nном / nрм (2.4)
U1 = 700 / 69 =10,14
U2 = 955 / 69 =13,84
U3 = 1435/69 =20,79
U 4 = 2840/69 =41,16
3. Производим разбивку общего передаточного числа, принимая для всех вариантов передаточное число редуктора постоянным Uзп = 4:
Uоп = U/ Uзп (2.5)
В табл. 2.2 сведены все варианты разбивки общего передаточного числа.
Таблица 2.2 Варианты разбивки передаточного числа
Передаточное число | Варианты | |||
1 | 2 | 3 | 4 | |
Общее для привода, U | 10,14 | 13,84 | 20,79 | 41,16 |
Цепной передачи, Uоп | 2,53 | 3,46 | 5,20 | 10,29 |
Цилиндрического редуктора, Uзп | 4 | 4 | 4 | 4 |
Из рассмотренных четырех вариантов предпочтительнее 2-й тип двигателя: 4АМ112MАУ6З (Рном = 3,0 кВт, nном = 955 об / мин).
Итак, передаточные числа для выбранного двигателя будут иметь следующие значения: U = 13,84; Uоп = 3,46 ;Uзп = 5,20 .
4. Определим максимально допустимое отклонение частоты вращения приводного вала механизма:
∆nрм = nрм · δ / 100 = 69,0 · 5 /100 = 3,45 об / мин.
5. Определим допускаемую частоту движения приводного вала элеватора, приняв ∆nрм = 1,05 об / мин:
[nрм ] = nрм + ∆nрм = 69+1,05=70,05 об / мин;
отсюда фактическое передаточное число привода
Uф = nном / [nрм ] = 955 / 70,05 = 13,6.
Передаточное число открытой передачи
U оп = Uф / U зп = 13,6 / 4 =3,4.
Таким образом, выбираем двигатель 4АМ112MА6УЗ c Рном = 3,0 кВт, nном = 955 об / мин); передаточные числа: привода U = 13,6, редуктора Uзп = 4, цепной передачи Uоп = 3,4.
2.3 Определение силовых и кинематических параметров привода
Силовые (мощность и вращающий момент) и кинематические (частота вращения и угловая скорость) параметры привода рассчитывают на валах привода из требуемой (расчетной) мощности двигателя Рдв и его номинальной частоты вращения nном при установившемся режиме. Расчеты проводятся в таблице 2.3.
Таблица 2.3. Определение силовых и кинематических параметров привода.
Параметр | Вал | Последовательность соединения элементов привода по кинематической схеме |
||
дв - м - зп - оп - рм | ||||
Мощность Р, кВт | дв | Рдв = 2,8 кВт | ||
Б | Р1 = Рдв м пк = 2,8 · 0,98 · 0,995 = 2,73 кВт | |||
Т | Р2 = Р1 зп пк = 2,73 · 0,97 · 0,995 = 2,63 кВт | |||
рм | Ррм = Р2 ц пc = 2,63 · 0,93 · 0,99 = 2,42 кВт | |||
Частота вращения n, об / мин |
Угловая скорость ω, 1/ с |
дв | nном = 955 об/мин | ωном =100 с-1 |
Б | n1 = nном = 955 об/мин | ω1 = ωном = 100 с-1 | ||
Т | n2 = n1 /Uзп = 239 об/мин | ω2 = ω1 /Uзп = 25 c-1 | ||
рм | nрм = n2 /Uоп = 70 об/мин | ωрм = ω2 /Uоп = 7,35 c-1 | ||
Вращающий момент Т, Н м |
дв | Тдв = Рдв · 1000 / ωном = 2800/100 = 28 Н· м | ||
Б | Т1 = Тдв м пк = 28 · 0,98 · 0,995 = 27,3 Н· м | |||
Т | Т2 = Т1 Uзп зп пк = =27,3 · 4 · 0,97 · 0,995 = 105,4 Н·м | |||
рм | Трм = Т2 Uц ц пc = =105,4 · 3,4 · 0,93 · 0,99 = 330Н·м |
Табличный ответ к задаче представлен в табл. 2.4:
Таблица 2.4. Силовые и кинематические параметры привода.
Тип двигателя 4АМ112MА6УЗ Рном = 3 кВт nном = 955 об/мин | |||||||
Параметр | Передача | Вал | |||||
Закры-тая | Цеп-ная пере-дача | Параметр | Дв. | Редуктора | Приводной рабочей машины | ||
Б | Т | ||||||
Передаточное число, U | 4 | 3,4 | Расчет мощности Р, кВт | 2,8 | 2,73 | 2,63 | 2,42 |
Угловая скорость ω, с-1 | 100 | 100 | 25 | 7,35 | |||
КПД, η | 0,97 | 0,93 | Частота вращения n, об/мин | 955 | 955 | 239 | 70 |
Вращающий момент Т, Н· м | 28 | 27,3 | 105,4 | 330 |
Задача 3. Выбор материала зубчатой передачи
3.1 Выбираем материал зубчатой передачи
а) По таблицам определяем марку стали: для шестерни — 40Х, твердость ≥ 45HRCэ; для колеса — 40Х, твердость ≤ 350 HB.
б) Также определяем механические характеристики стали 40Х: для шестерни твердость 45…50 HRC, термообработка — улучшение, Dпред = 125 мм; для колеса твердость 269…302 HB, термообработка — улучшение, Sпред = 80 мм.
в) Определяем среднюю твердость зубьев шестерни и колеса:
HB1ср. = (50+45) / 2 = 47,5HRC=450 HB
HB2ср =(269+302) / 2 = 285,5НВ.
3.2 Определяем допускаемые контактные напряжения для зубьев шестерни []H1 и колеса []H2 :
а) Рассчитываем коэффициент долговечности КHL :
Наработка за весь срок службы:
для колеса
N2 = 573· Lh · 2 = 573 · 15000· 25 = 214,9 · 106 циклов,
для шестерни
N1 = 573· Lh · = 573 · 15000· 100 = 859,5 · 106 циклов.
Число циклов перемены напряжений NН0 , соответствующее пределу выносливости, находим по табл. 3.3 [1, с.51] интерполированием:
Nно1 = 68 · 106 циклов и Nно2 = 22,7 · 106 циклов.
Т.к. N1 > Nно1 и N2 > Nно2 , то коэффициенты долговечности KHL1 = 1 и KHL2 = 1.
б) Определяем допускаемое контактное напряжение []H соответствующее числу циклов перемены напряжений Nно : для шестерни
[]но1 = 14 HRC ср. +170=14·47,5 +170=835 Н/мм2
для колеса
[]но2 = 1,8· HB 2ср +67 = 1,8 · 285,5 + 67 = 580,9 Н/мм2
в) Определяем допускаемое контактное напряжение:
для шестерни []н1 = KHL1 · []но1 = 1 · 835 = 835 Н/мм2 ,
для колеса []н2 = KHL2 · []но2 = 1 · 580,9 = 580,9 Н/мм2 .
Т.к. HB1ср - HB2ср > 70 и HB2ср =285,5<350HB, то значение []н рассчитываем по среднему допускаемому значению из полученных для шестерни и колеса:
[]н =0,45([]н1 +[]н2 ) = 637,2 Н/мм2 .
При этом условие []н < 1.23· []н2 соблюдается.
3.3 Определяем допускаемые напряжения изгиба для зубьев шестерни []F1 и колеса []F2.
а) Рассчитываем коэффициент долговечности KFL .
Наработка за весь срок службы : для шестерни N1 = 859,5 · 106 циклов, для колеса N2 = 214,9 · 106 циклов.
Число циклов перемены напряжений, соответствующее пределу выносливости, NF0 = 4· 106 для обоих колес.
Т.к. N1 > NF0 и N2 > NF0 , то коэффициенты долговечности KFL1 = 1 и KFL2 = 1.
б) По табл. 3.1 /1/ определяем допускаемое напряжение изгиба, соответствующее числу циклов перемены напряжений NF0 :
для шестерни []Fo1 = 310 Н/мм2 , в предположении, что m<3 мм;
для колеса []Fo2 =1,03· HB2ср =1,03 · 285,5 = 294 Н/мм2
в) Определяем допускаемые напряжения изгиба:
для шестерни []F1 = KFL1 · []Fo1 = 1 · 310 = 310 Н/мм2 ,
для колеса []F2 = KFL2 · []Fo2 = 1 · 294 = 294 Н/мм2 .
Т.к. передача реверсивная, то []F уменьшаем на 25%: []F1 = 310 · 0,75 = 232,5 Н/мм2 ; []F2 = 294 · 0,75 = 220,5 Н/мм2 .
Табличный ответ к задаче представлен в табл. 3.1:
Таблица3.1. Механические характеристики материалов зубчатой передачи.
Элемент передачи | Марка стали | Dпред | Термообработка | HB | 1ср | []H | []F |
Sпред | HB2ср | Н/мм2 | |||||
Шестерня | 40Х | 125 | У | 450 | 835 | 232,5 | |
Колесо | 40Х | 80 | У | 285,5 | 580,9 | 220,5 |
Задача 4. Расчет зубчатых передач редуктора
4.1 Расчет закрытой цилиндрической зубчатой передачи
Проектный расчет
1. Определяем главный параметр — межосевое расстояние аW , мм:
Производим определение межосевого расстояния аW , мм по формуле:
aw = Kнβ Ka (U+1) 3 √(T2 103 )/(a U2 []2 H ), (4.1)
где а) Ка — вспомогательный коэффициент. Для косозубых передач Ка = 43;
б) ψa = b2 / aw — коэффициент ширины венца колеса, равный 0,28...0,36 — для шестерни, расположенной симметрично относительно опор в проектируемых нестандартных одноступенчатых цилиндрических редукторах. Примем его равным 0,32;
в) U — передаточное число редуктора (см. табл.2.4.);
г) Т2 — вращающий момент на тихоходом валу редуктора, Н· м (см. табл.2.4.);
д) []Н - допускаемое контактное напряжение колеса с менее прочным зубом или среднее допускаемое контактное напряжение, []Н = 637,2 Н/мм2 ;
е) КН — коэффициент неравномерности нагрузки по длине зуба. Для прирабатывающихся зубьев КН = 1.
aw = 43· ( 4 + 1)· 3 √( 105400 / ( 0,32 · 4 2 · 637,2 2 )· 1 = 79,6 мм.
Полученное значение aw округляем до 80 мм.
2. Определяем модуль зацепления m, мм:
m ≥ 2 Km T2 103 /(d2 b2 []F ) ,(4.2)
где а) Кm — вспомогательный коэффициент. Для косозубых передач Кm = 5,8;
б) d2 = 2 aw U / (U+1) ,(4.3)
где d2 — делительный диаметр колеса, мм;
d2 =2· 80 · 4 /( 4 +1)= 128 мм;
в) b2 = a aW — ширина венца колеса, мм:
b2 = 0,32 · 80 = 25,6 мм.
Полученное значение b2 округляем до 26 мм.
г) []F — допускаемое напряжение изгиба материала колеса с менее прочным зубом, []F = 294 Н/мм2 ;
m = 2· 5,8 · 105,4 · 103 /( 128,0 · 25,6 · 294 ) = 1,3 мм.
m = 1,5мм
3. Определяем угол наклона зубьев min для косозубых передач:
min = arcsin(3,5 m / b2 ),(4.4)
min = arcsin(3,5·1,5 / 25,6) = 11,834 °
4. Определяем суммарное число зубьев шестерни и колеса для косозубых колес:
z = z1 + z2 = 2 aw cos min / m,(4.5)
z = 2· 80 · cos(11,834 °)/ 1,5 = 104,4
Округляем полученное значение в меньшую сторону до целого числа:
z = 104
5. Уточняем действительную величину угла наклона зубьев для косозубых передач:
= arccos(z m / (2 aw )),(4.6)
=arccos( 104 · 1,5/(2· 80) = 12,83857 °.
6. Определяем число зубьев шестерни:
z1 = z / (U + 1),(4.7)
z1 = 104 / (4 + 1) ≈ 21.
7. Определяем число зубьев колеса:
z2 = zΣ – z1 = 104 - 21 = 83
8. Определяем фактическое передаточное число Uф :
Uф = z2 / z1 ,(4.8)
Uф = 83 / 21 = 3,95.
Проверяем отклонение фактического передаточного числа от заданного U:
U = |Uф - U| / U · 100 % =|3,95 - 4| / 4 100 % =1,25 % ≤ 4 %.
9. Определяем фактическое межосевое расстояние для косозубых передач:
aw = (z1 + z2 ) m / (2 cos ).(4.9)
Подставляя в (4.9) получаем:
aw = (21 + 83) · 1,5/(2 · cos 12,83857 °) = 80 мм.
10. Основные геометрические параметры передачи представлены в табл. 4.1:
Таблица 4.1. Расчет основных геометрических параметров передачи.
Параметр | Шестерня | Колесо | |
Диаметр, мм | делительный | d1 = m z1 / cos = = 2 · 21 / cos 12,83857 °= =32,31мм |
d2 = m z2 / cos = =2 · 83 / cos 12,83857 °= = 127,69мм |
вершин зубьев |
da1 = d1 + 2 m = =32,31 + 2 · 1,5 = 35,31мм |
da2 = d2 + 2 m = =127,69 + 2 ·1,5 = 130,69 |
|
впадин зубьев |
df1 = d1 - 2,4 m = =32,31 - 2,4 · 1,5 = 28,71мм |
df2 = d2 - 2,4m = = 127,7 - 2,4 · 1,5= 124,09 |
|
Ширина венца, мм | b1 = b2 + (2..4) = 30мм | b2 = a aW = 26мм |
4.2 Проверочный расчет
Проверяем межосевое расстояние:
aw = (d1 +d2 )/2 = (32,31 + 127,69) / 2 ≈ 80 мм.(4.10)
Проверяем пригодность заготовок колес:
Условие пригодности заготовок колес: Dзаг Dпред ; Sзаг Sпред . Диаметр заготовки шестерни
Dзаг = dа1 + 6 мм = 35,31 + 6 = 41,31 мм.
Толщина диска заготовки колеса Sзаг = b2 + 4 мм = 26 + 4 = 30 мм. Dпред = 125 мм, Sпред = 80 мм. 41,31<125 и 30 < 80, следовательно, условие выполняется.
13. Проверяем контактные напряжения σн , Н / мм2 :
H = K√Ft (Uф + 1) KH K K / (d2 b2 ) ≤ []H .(4.11)
где а) К вспомогательный коэффициент, равный 376;
б) Ft = 2 T2 103 / d2 - окружная сила в зацеплении, Н:
Ft = 2 · 105,4 · 1000 / 127,69 = 1650,87 H;
в) КН коэффициент, учитывающий распределение нагрузки между зубьями. Для косозубых колес КН определяется по графику на рис. 4.2 /1/ в зависимости oт окружной скорости колес v м/с, и степени точности передачи (табл. 4.2 /1/). Окружная скорость колес определяется по формуле
v = 2 d2 /(2· 103 ) = 25 · 127,69 / (2 · 1000) ≈ 1,6 м/с.(4.12)
Данной окружной скорости соответствует 9-я степень точности передачи. По указанной степени точности передачи и окружной скорости определяем коэффициент КH = 1,114 ;
г) КHυ коэффициент динамической нагрузки, зависящий от окружной скорости колес и степени точности передачи (табл. 4.3 /1/), равный 1,022 .
Подставив все известные значения в расчетную формулу (4.11), получим:
H = 376 · √1650,87 · (3,95 + 1) · 1,114 · 1 · 1,022 /(127,69 · 26) = 629,4 Н / мм2 .
14. Проверяем напряжения изгиба зубьев шестерни σF1 и колеса σF2 , Н/мм2 :
F2 = YF2 Y Ft KF KF KFv / ( b2 m ) ≤ []F2 ,(4.13)
F1 = F2 YF1 / YF2 ≤[]F1 ,(4,14)
где a) m — модуль зацепления, мм; b2 — ширина зубчатого венца колеса, мм; Ft — окружная сила в зацеплении, Н;
б) KFa — коэффициент, учитывающий распределение нагрузки между зубьями. Для косозубых колес КFa зависит от степени точности передачи. КFa = 1;
в) КF — коэффициент неравномерности нагрузки по длине зуба. Для прирабатывающихся зубьев колес КF = 1;
г) КF — коэффициент динамической нагрузки, зависящий от окружной скорости колес и степени точности передачи (см. табл. 4.3 /1/), равный 1,058 ;
д) YF1 и YF2 — коэффициенты формы зуба шестерни и колеса. Для косозубых определяются в зависимости от эквивалентного числа зубьев шестерни
zv 1 = z1 / cos3 21 / 0,92686 = 22,7 (4.15)
и колеса
zv 2 = z2 / cos2 83 / 0,92686 = 89,5 (4.16)
где — угол наклона зубьев;
YF1 = 3,959 и YF2 = 3,600;
е) Y = 1 - / 140 = 1 – 12,83857 / 140 = 0,9083 — коэффициент, учитывающий наклон зуба;
ж) []F1 и []F2 — допускаемые напряжения изгиба шестерни и колеса, Н/мм2 .
Подставив все значения в формулы (4.13 - 4.14), получим:
F2 = 3,60 · 0,91 · 1650,87 · 1 · 1 · 1,058 /(26 ·1,5) = 146,46 ≤ F2
F1 = 146,46 · 3,959 / 3,60 = 161 ≤ F1
15. Составим табличный ответ к задаче 4:
Таблица 4.2 Параметры зубчатой цилиндрической передачи, мм
Проектный расчет | ||||
Параметр | Значение | Параметр | Значение | |
Межосевое расстояние aw |
80 | Угол наклона зубьев |
12,83857 | |
Mодуль зацепления m |
1,5 | Диаметр делительной окружности: |
||
Ширина зубчатого венца: |
||||
шестерни b1 | 30 | шестерни d1 | 32,31 | |
колеса b2 | 26 | колеса d2 | 127,69 | |
Число зубьев: | Диаметр окружности вершин: |
|||
шестерни z1 | 21 | шестерни da1 | 35,31 | |
колеса z2 | 83 | колеса da2 | 130,69 | |
Вид зубьев | косые | Диаметр окружности впадин: |
||
шестерни df1 | 28,71 | |||
колеса df2 | 124,09 | |||
Проверочный расчет | ||||
Параметр | Допускаемые значения | Расчетные значения |
Примечание | |
Контактные напряжения H , Н/мм2 |
637,2 | 629,4 | Недогрузка 1,22% | |
Напряжения изгиба, Н/мм2 |
F1 | 232,5 | 161 | Недогрузка 30% |
F2 | 220,5 | 146,46 | Недогрузка 33,5% |
Задача 5. Расчет открытой передачи
5.1 Расчет открытой цепной передачи
1. Определяем шаг цепи р, мм:
p = 2,83 √T1 103 Kэ /(vz1 [pц ]) , (5.1)
где а) Т1 - вращающий момент на ведущей звездочке,Т1 = 105,4 Н· м;
б) Кэ — коэффициент эксплуатации, который представляет собой произведение пяти поправочных коэффициентов, учитывающих различные условия работы передачи:
Кэ = Кд Кс К Крег Кр (5.2)
где Кд — коэффициент динамичности нагрузки, Кд = 1;
Кс — коэффициент, учитывающий способ смазывания, Кс = 1;
K — коэффициент угла наклона линии центров шкивов к горизонту, C = 1;
Kрег — коэффициент, учитывающий способ регулировки межосевого расстояния, Крег =1;
Kр — коэффициент, учитывающий режим работы, Кр =1,25;
Кэ = 1 · 1 · 1 · 1 · 1,25 = 1,25
в) z1 - число зубьев ведущей звездочки
z1 = 29 - 2u, (5.3)
где u — передаточное число цепной передачи, u = 3,4;
z1 = 29 - 2 · 3,4 = 22,2.
Полученное значение округляем до целого нечетного числа (z1 = 23 ), что в сочетании с нечетным числом зубьев ведомой звездочки z2 и четным числом звеньев цепи l p обеспечит более равномерное изнашивание зубьев и шарниров;
г) [pц ] — допускаемое давление в шарнирах цепи, Н/мм2 , зависит от частоты вращения ведущей звездочки и ожидаемого шага цепи, который принимается равным из промежутка р = 19,05..25,4 мм. Учитывая это получаем [pц ] = 25,5 Н/мм2 ;
д) — число рядов цепи. Для однорядных цепей типа ПР = 1;
p = 2,83 √ 105,4 · 1000 · 1,25 /(1 · 23 · 25,5) = 17,02 мм,
Полученное значение шага р округляем до ближайшего стандартного
р = 19,05 мм.
2. Определим число зубьев ведомой звездочки z2 :
z2 = z1 u , (5.4)
z2 = 23 · 3,4 = 78,2,
Полученное значение z2 округляем до целого нечетного числа (z2 = 79 ). Для предотвращения соскакивания цепи максимальное число зубьев ведомой звездочки ограничено: z2 120.
3. Определим фактическое передаточное число uф и проверим его отклонение u:
uф = z2 / z1 ,(5.5)
u = |uф –u| /u· 100% . (5.6)
Подставляя в значения в формулы (5.5 - 5.6), получим
uф = 75 / 23 = 3,43;
u = |3,43 - 3,4|/3,4 · 100% = 1 % ≤ 4 %.
4. Определяем оптимальное межосевое расстояние а, мм:
Из условия долговечности цепи а = (30...50) р = 40 · 19,05 = 762 мм,
где р — стандартный шаг цепи.
Тогда ар = а/р = 30...50 = 40 — межосевое расстояние в шагах, мм.
5. Определяем число звеньев цепи l р :
l p = 2 ap + (z2 + z1 ) / 2 + [(z2 - z1 ) / 2]2 / ap , (5.7)
l p = 2 · 40 + (102) / 2 + [(79 - 23) / (2 · 3,14)] 2 / 40 = 133.
Полученное значение l p округляем до целого четного числа (l p =132).
6. Уточняем межосевое расстояние ар в шагах:
ap = 0,25 {l p - 0,5(z2 + z1 ) + √[l p - 0,5(z2 + z1 )]2 - 8[(z2 - z1 ) / (2 )]2 }, (5.8)
ap = 0,25 · { 132 - 0,5 · (102) + √[132 - 0,5 · (102)] 2 - 8 · [( 79 - 23) / (2 · 3,14)] 2 } = =39,5
7. Определяем фактическое межосевое расстояние а, мм:
а = ар р , (5.9)
a = 39,5 · 19,05 = 752,5 мм.
Значение а не округляем до целого числа. Так как ведомая (свободная) ветвь цепи должна провисать примерно на 0,01а, то для этого при монтаже передачи надо предусмотреть и возможность уменьшения действительного межосевого расстояния на 0,005а. Таким образом, монтажное межосевое расстояние ам = 0,995а.
8. Определяем длину цепи l , мм:
l = l р p , (5.10)
l = 132 · 19,05 = 2514,6 мм.
Полученное значение l не округляют.
9. Определяем диаметры звездочек, мм.
Диаметр делительной окружности ведущей звездочки d∂1 , мм:
d∂1 = p /sin(180°/ z1 ), (5.11)
d∂1 = 19,05 / sin(180 /23) = 140 мм;
диаметр делительной окружности ведомой звездочки d∂2 , мм:
d∂2 = p /sin(180°/ z2 ), (5.12)
d∂2 = 19,05 / sin(180 /79) = 480 мм;
диаметр окружности выступов ведущей звездочки De1 , мм:
De1 = p(K + Kz1 - 0,31 / ), (5.13)
диаметр окружности выступов ведомой звездочки De2 , мм:
De2 = p(K + Kz2 - 0,31 / ), (5.14)
где К = 0,7 — коэффициент высоты зуба; Kz — коэффициент числа зубьев:
Kz1 = ctg(180°/z1 ) = ctg( 180°/23) = 7,28 — ведущей звездочки,
Kz2 = ctg(180°/z2 ) = ctg(180°/ 79) = 25,14 — ведомой звездочки;
= р / d1 — геометрическая характеристика зацепления (здесь d1 — диаметр ролика шарнира цепи), =19,05 / 5,94 = 3,21
Подставив значения в формулы (5.13 - 5.14), получим
De 1 = 19,05 · (0,7 + 7,28 - 0,31/3,21) = 150,2 мм,
De 2 = 19,05 · (0,7 + 25,14 - 0,31/3,21) = 490,4 мм,
диаметр окружности впадин ведущей звездочки Di1 :
Di1 = d∂1 - (d1 - 0,175 √ d∂1 ) , (5.15)
Di1 = 140 - (5,94 - 0,175· √140) = 136,1 мм,
диаметр окружности впадин ведомой звездочки Di2 :
Di2 = d∂2 - (d1 - 0,175 √ d∂2 ) , (5.16)
Di2 = 480 - (5,94 - 0,175· √480) = 477,9 мм
Проверочный расчет
10. Проверяем частоту вращения меньшей звездочки n1 об/мин:
n1 [n]1 , (5.17)
где n1 — частота вращения тихоходного вала редуктора, об/мин (на этом валу расположена меньшая звездочка);
[n]1 = 15000 / p = 15000 / 19,05 = 787,4 об/мин — допускаемая частота вращения.
239 ≤ 787,4 .
11. Проверяем число ударов цепи о зубья звёздочек U, c-1 :
U [U], (5.18)
где U = 4 z1 n1 / (60 l p ) = 4 · 23 · 239 / (60 · 132) = 2,78 c-1 — расчетное число ударов цепи;
[U] = 508 / p = 508 / 19,05 = 26,667 c-1 —допускаемое число ударов.
2,78 ≤ 26,667 .
12. Определяем фактическую скорость цепи v , м/с:
23 · 19,05 · 239 /60000 = 1,74 м/с. (5.19)
13. Определяем окружную силу, передаваемую цепью Ft , Н:
Ft = Р1 · 103 /v , (5.20)
где Р1 — мощность на ведущей звездочке кВт; v , м/с .
Ft = 2,63 · 1000/1,74 = 1511,5 H.
14. Проверяем давление в шарнирах цепи pц , Н/мм2 :
pц = Ft Kэ / A < [pц ], (5.21)
а) А — площадь проекции опорной поверхности шарнира, мм2 :
A = d1 b3 , (5.22)
где d1 и b3 — соответственно диаметр валика и ширина внутреннего звена цепи, мм;
б) допускаемое давление в шарнирах цепи [рц ]уточняют соответствии с фактической скоростью цепи v м/с. [рц ] = 25,5 Н/мм2
А = 5,94 · 12,7 = 75,4 мм2 ,
pц = 1511,5 · 1,25 / 75,4 = 25 Н/мм2 ≤ 25,5 Н/мм2
15. Проверяем прочность цепи. Прочность цепи удовлетворяется соотношением S[S],где [S] — допускаемый коэффициент запаса прочности для роликовых (втулочных) цепей; S—расчетный коэффициент запаса прочности,
S = Fp / (Ft Kд + F0 + F ) , (5.23)
где a) Fp – разрушающая нагрузка цепи, Н, зависит от шага цепи р, Fp = 31800 H;
б) Ft – окружная сила, передаваемая цепью, Н; Кд – коэффициент, учитывающий характер нагрузки
в)Fo — предварительное натяжение цепи от провисания; ведомой ветви (от ее силы тяжести), Н,
Fo = Kf qag, (5.24)
где Кf =3 – коэффициент провисания; a – межосевое расстояние, м; q = 1,9 – масса 1 м цепи, кг/м; g =9,81 м/с2 – ускорение свободного падения.
г) F — натяжение цепи от центробежных сил, Н; F = q v 2 ,
где v — фактическая скорость цепи, м/с.
F = 1,9 · 1,74 2 = 5,75 Н,
Fo = 3 · 1,9 · 0,7525 · 9,81 = 42,01 H,
S = 31800 / (1511,5 · 1 + 42,01 +5,75) = 20,4
[S] = 8,156; 20,4 ≥ 8,156 - зн. условие выполняется.
16. Определение силы давления цепи на вал Fоп , Н:
Fоп = kв Ft + 2Fo , (5.25)
где kв = 1,05 – коэффициент нагрузки вала,
Fоп = 1,05 · 1511,5 + 2 · 42,01 = 1671,2 H.
Таблица 5.1 Параметры цепной передачи, мм
Проектный расчет | |||
Параметр | Значение | Параметр | Значение |
Тип цепи | ПР-19,05-3180 |
Диаметр делительной окружности звездочек: |
|
Шаг цепи р | 19,05 | ведущей d∂ 1 | 140 |
Межосевое расстояние а |
752,5 | ведомой d∂ 2 | 480 |
Длина цепи l | 2514,6 | Диаметр окружности выступов звездочек : |
|
Число звеньев l t | 132 | ведущей De1 | 150,2 |
Число зубьев звездочки: |
ведомой De2 | 490,4 | |
ведущей z1 | 23 | Диаметр окружности впадин звездочек |
|
ведомой z2 | 79 | ведущей Di1 | 136,1 |
Сила давления цепи на вал Fоп , H |
1671,2 | ведомойDi2 | 477,9 |
Проверочный расчет | |||
Параметр | Допускаемое значение |
Расчетное значение |
Примечание |
Частота вращения ведущей звездочки n1 , об/мин |
787 | 239 | Недогрузка 70% |
Число ударов цепи U |
27 | 3 | Недогрузка 88,8% |
Коэффициент запаса прочности s |
8,156 | 20,4 | - |
Давление в шарнирах рц , Н / мм2 |
25,5 | 25 | Недогрузка 2% |
Задача 6. Нагрузки валов редуктора
Редукторные валы испытывают два вида деформации — изгиб и кручение. Деформация кручения на валах возникает под действием вращающих моментов, приложенных со стороны двигателя и рабочей машины. Деформация изгиба валов вызывается силами в зубчатом зацеплении закрытой передачи и консольными силами со стороны открытых передач и муфт.
6.1 Определение сил в зацеплении закрытых передач
Значения сил приведены в табл. 6.1.
Таблица 6.1 Силы в зацеплении закрытой передачи
Силы в зацеплении |
Значение силы, Н | |
на шестерне | на колесе | |
Окружная | Ft1 = Ft2 = 1650,8 H | Ft2 = 2 T2 · 103 /d2 = =2 · 105,4 · 1000 / 127,69 = 1650,8 H |
Радиальная | Fr1 = Fr2 = 616,2 H | Fr2 = Ft2 tg / cos = =1650,8 · tg20 / cos 12,83857 = 616,2 H |
Осевая | Fa1 = Fa2 = 376,2 H | Fa2 = Ft2 tg = =1650,8 · tg 12,83857 = 376,2 H |
6.2 Определение консольных сил
Значения консольных сил приведены в табл. 6.2.
Таблица 6.2 Консольные силы
Вид открытой передачи |
Характер силы | Значение силы,Н |
цепная передача |
Радиальная | Fоп = [kв] F + 2 F0 =1671,2 Н |
муфта | Радиальная | Fм1 = 50√Т1..125√Т1 =1000 Н |
Задача 7. Проектный расчет валов. Эскизная компоновка редуктора
Основными критериями работоспособности проектируемых редукторных валов являются прочность и выносливость.
Они испытывают сложную деформацию — совместное действие кручения, изгиба и растяжения (сжатия). Но так как напряжения в валах от растяжения небольшие в сравнении с напряжениями от кручения и изгиба, то их обычно не учитывают.
7.1 Выбор материала валов
В проектируемых редукторах рекомендуется применять термически обработанные среднеуглеродистые и легированные стали 45, 40Х. В качестве материала применяем термически обработанную сталь 40Х со следующими механическими характеристиками:
В | -l | F | |
Н / мм2 | |||
Шестерня | 900 | 410 | 232,5 |
Колесо | 900 | 410 | 220,5 |
7.2 Выбор допускаемых напряжений на кручение
Проектный расчет валов выполняется по напряжениям кручения (как при чистом кручении), т. е. при этом не учитывают напряжения изгиба, концентрации напряжений и переменность напряжений во времени (циклы напряжений). Поэтому для компенсации приближенности этого метода расчета опускаемые напряжения на кручение применяют заниженными: [t]к = 10...20 Н/мм2 .
При этом меньшие значения [t]к — для быстроходных валов, большие — для тихоходных.
7.3 Определение геометрических параметров ступеней валов
Редукторный вал представляет собой ступенчатое цилиндрическое тело, количество и размеры ступеней которого зависят от количества и размеров установленных на вал деталей.
Определяем расчетные ориентировочные геометрические размеры каждой ступени вала, мм.
Результаты вычислений представлены в табл. 7.1.
Таблица 7.1 Определение размеров ступеней валов одноступенчатого редуктора
Ступень вала | Вал-шестерня цилиндрическая | Вал колеса |
1-я | d1 = 3 √(Mk · 103 / 0,2[t]k ) = =3 √(27300/(0,2 · 15) = 20 мм |
d1 = 3 √(Mk · 103 / 0,2[t]k ) = = 3 √(105400/(0,2 · 20) = 30 мм |
под элемент открытой передачи или полумуфту |
l1 = 1,5 · d1 = 30 мм | l1 = 1,3 · d1 = 40 мм |
2-я | d2 = d1 + 2t = =20 + 2 · 2,2 = 24,4≈ 25мм |
d2 = d1 + 2t = = 30 + 2 · 2,2 = 34,4 ≈ 35 мм |
под уплотнение крышки с отверстием и подшипник |
l2 = 1,5 d2 = 1,5 · 25 = = 36 мм |
l2 = 1,25 d2 = 1,25 · 35 = 44 мм |
3-я | d3 = d2 + 3,2r = =25 + 3,2 · 1,6 = 30 мм d3 =28 мм |
d3 = d2 + 3,2r = 35 + 3,2 · 2,5 = =42 мм |
под шестерню, колесо | l3 – определяем графически на эскизной компоновке | |
4-я | d4 = d2 = 25мм | d4 = d2 = 35 мм |
под подшипник | l4 = 28 мм | l4 = 34 мм |
7.4 Предварительный выбор подшипников качения
Выбор наиболее рационального типа подшипника для данных условий работы редуктора весьма сложен и зависит от целого ряда факторов: передаваемой мощности редуктора, типа передачи, соотношения сил в зацеплении, частоты вращения внутреннего кольца подшипника, требуемого срока службы, приемлемой стоимости, схемы установки. По табл. 7.2 /1/ выбираем подшипники для валов.
Для быстроходного вала выбираем роликовые конические однорядные подшипники типа 7205 со схемой установки 3 (враспор).
Для тихоходного вала выбираем роликовые конические однорядные подшипники легкой серии типа 7207 со схемой установки 3 (враспор).
7.5 Эскизная компоновка редуктора
Составляем после вычерчивания эскизной компоновки табличный ответ к задаче (см. табл. 7.2).
Таблица 7.2 Параметры ступеней валов и подшипников
Вал | Размеры ступеней, мм | Подшипники | ||||||
d1 | d2 | d3 | d4 | Типо-раз-мер | dxDxB(Т), мм | Динамическая грузо- подъем- ность Сr , кН |
Статическая грузо- подъем- ность С0r , кН |
|
l1 | l2 | l3 | l4 | |||||
Б | 20 | 25 | 28 | 25 | 7205 | 25x52x16,5 | 23,9 | 17,9 |
30 | 36 | 68 | 28 | |||||
Т | 30 | 35 | 42 | 34 | 7207 | 35x72x18,5 | 35,2 | 26,3 |
40 | 44 | 68 | 34 |
Задача 8. Проверочный расчет подшипников
Проверочный расчет предварительно выбранных в задаче 7 подшипников выполняется отдельно для быстроходного и тихоходного валов. Пригодность подшипников определяется сопоставлением расчетной динамической грузоподъемности Сrр , Н, с базовой Сr , Н, или базовой долговечности L10h , ч, (L10 , млн. оборотов), с требуемой Lh , ч, по условиям:
Crp ≤ Cr и L10h ≥ Lh .
Базовая динамическая грузоподъемность подшипника Сr представляет собой постоянную радиальную нагрузку, которую подшипник может воспринять при базовой долговечности L10h , составляющей 106 оборотов внутреннего кольца.
8.1 Определение пригодности подшипников на быстроходном валу
Проверить пригодность подшипника 7205 быстроходного вала.
Осевая сила в зацеплении Fa = 376,2 Н. Реакции в подшипниках
Rr 1 = 856,3 H; Rr 2 = 912,2 H.
Характеристика подшипников: Сr = 23,9 кН; С0 r = 17,9 кН; Х=0,40, V=1,0 , Кб =1,1, КT =1. Требуемая долговечность подшипников Lh = 15 ∙103 ч.
1. Определяем составляющие радиальных реакций:
Rs 1 =0,83еRr 1 =0,83·0,36·856,3=255,86 Н
Rs 2 =0,83еRr 2 =0,83·0,36·912,2=272,56 Н
2.Определяем осевые нагрузки подшипников
Так как Rs 1 < Rs 2 и Fa > Rs 2 - Rs 1 , то Rа1 = Rs 1 =255,86 Н,
Rа2 = Rа1 + Fa =255,86 +376,2=632 Н
3. Определяем соотношения:
Ra 1 /(VRr 1 ) =255,86/(1· 856,3) =0,29
Ra 2 /(VRr 2 ) = 632 / (1 · 912,2) = 0,69
4. По соотношениям Ra 1 /(VRr 1 )<е и Ra 2 /(VRr 2 )>е выбираем соответствующие формулы для определения RЕ
RE 1 =VRr 1 Кб КТ =1 ·856,3· 1,1·1=942 Н
RE 2 = (XVRr 2 + YRа2 ) Kб Kт =(0,4 · 1 · 912,2 + 1,67 · 632) · 1,1 · 1 = 1562Н
5. Производим расчет динамической грузоподъемности по формуле:
Сrp = RE2 m √60 · n · Lh /( а1 ·106 · а23 )= 1562 · 3,33 √60 · 955 · 15· 103 /( 0,7· 106 )= =13217,5 H < Сr =23900 H — подшипник пригоден.
6. Рассчитываем долговечность подшипника:
L10h = (а1 ·106 · а23 /(60· n)) · (Сr / RE 2 )3,33 = 106 · 0,7·( 23900 / 1562) 3,33 / (955 · 60) = =105 > 15000 ч. — подшипник пригоден.
8.2 Определение пригодности подшипников на тихоходном валу.
Проверить пригодность подшипника 7207 тихоходного вала.
Осевая сила в зацеплении Fa = 376,2 Н. Реакции в подшипниках
Rr 1 = 1019,5 H; Rr 2 = 4102,5 H.
Характеристика подшипников: Сr = 35,2 кН; С0 r = 26,3 кН; Х=0,40, V=1,0 , Кб =1,1, КT =1. Требуемая долговечность подшипников Lh = 15 ∙103 ч.
1. Определяем составляющие радиальных реакций:
Rs 1 =0,83еRr 1 =0,83·0,36·1019,5=313 Н
Rs 2 =0,83еRr 2 =0,83·0,36·4102,5=1260 Н
2.Определяем осевые нагрузки подшипников
Так как Rs 1 < Rs 2 , то Rа1 = Rs 1 =313 Н,
Rа2 = Rа1 + Fa =313 +376,2=689,2 Н
3. Определяем соотношения:
Ra 1 /(VRr 1 ) =313/(1· 4102,5) =0,076
Ra 2 /(VRr 2 ) = 689,2 / (1 · 1019,5) = 0,67
4. По соотношениям Ra 1 /(VRr 1 )<е и Ra 2 /(VRr 2 )>е выбираем соответствующие формулы для определения RЕ
RE 1 =VRr 1 Кб КТ =1 ·1019,5· 1,1·1=1121 Н
RE 2 = (XVRr 2 + YRа2 ) Kб Kт =(0,4 · 1 · 4102,5 + 1,62 · 689,2) · 1,1 · 1 = =3033,3Н
5. Производим расчет динамической грузоподъемности по формуле:
Сrp = RE2 m √60 · n · Lh /( а1 ·106 · а23 )= 3033,3 · 3,33 √60 · 239 · 15· 103 /( 0,7· 106 )= =16940 H < Сr =35200 H — подшипник пригоден.
6. Рассчитываем долговечность подшипника:
L10h = (а1 ·106 · а23 /(60· n)) · (Сr / RE 2 )3,33 = 106 · 0,7·( 35200 / 3033,3) 3,33 / (239 · 60) = =171·103 > 15000 ч. — подшипник пригоден.
Таблица 8.1Основные размеры и эксплуатационные характеристики подшипников
Вал | Подшипник | Размеры dDВ, мм | Динамическая грузоподъемность, Н |
Долговечность, ч | |||
принят предварительно | выбран окончательно | Сrp | Cr | L10h | Lh | ||
Б | 7205 | 7205 | 25x52x16,5 | 13217,5 | 23900 | 100000 | 15000 |
Т | 7207 | 7207 | 35x72x18,5 | 16940 | 35200 | 171000 | 15000 |
Задача 9. Конструктивная компоновка привода
9.1 Конструирование зубчатого колеса
В проектируемом приводе зубчатое колесо редуктора изготавливаем ковкой. Ступицу колеса располагаем симметрично относительно обода.
Определяем параметры обода зубчатого колеса, приведенные в таблице 10.1:
Таблица 9.1 Параметры зубчатого колеса
Элемент колеса | Параметр | Значение, мм |
Обод | Диаметр | da = 130 |
Толщина | S = 2,2 m + 0,05 b2 = = 2,2 ∙ 1,5 + 0,05 ∙ 26= 4,6=5 |
|
Ширина | b2 = 26 | |
Ступица | Диаметр внутренний | d = d3 =42 |
Диаметр внешний | dст = 1,55 d = 1,55 ∙ 42 = 65 | |
Толщина | dст ≈ 0,3 d = 0,3 ∙ 42 = 13 | |
Длина | lст = 1,2· d = 1,2∙ 42 = 50 | |
Диск | Толщина | C = 0,5(S + dст ) = = 0,5 (5 + 13) = 9 |
Радиус закруглений и уклон |
R≥6°, g≥7° |
9.2 Конструирование валов
Из-за небольших размеров редуктора и очень малых погрешностей при расчете валов в задаче 7, размеры валов не изменились.
9.3 Конструирование подшипниковых узлов
Обе опоры конструируются одинаково, каждый подшипник предотвращает движение вала в одну сторону.
Достоинства:
1. Возможность регулировки подшипников;
2. Простота конструкции опор;
Недостатки:
1. Вероятность защемления тел качения;
2. Более жесткие допуски на размеры.
Но все-таки данная схема установки (враспор) наиболее распространена и предпочтительна.
9.4 Конструирование корпуса редуктора
Корпус редуктора служит для размещения и координации деталей передачи, защиты их от загрязнения, организации системы смазки, а также восприятия сил возникающих, в зацеплении редукторной пары, подшипниках, открытой передаче. Наиболее распространенный способ изготовления корпусов литье из серого чугуна (например, СЧ 15).
Форма корпуса определяется в основном технологическими, эксплуатационными и эстетическими условиями с учетом его прочности и жесткости.
Габаритные размеры корпуса определяются размерами расположенной в корпусе редукторной пары и кинематической схемой редуктора.
Толщина стенок корпуса редуктора и ребер жесткости принимаются одинаковыми:
δ=1,8(Т2 )¼=1,8(105,4)¼= 6мм
Толщину стенки принимаем равной 7 мм (dmin =6).
9.5 Смазывание. Смазочные устройства
Смазывание зубчатых зацеплений и подшипников применяется в целях защиты от коррозии, снижения коэффициента трения, уменьшения износа, отвода тепла и продуктов износа от трущихся поверхностей, снижения шума и вибрации.
9.5.1 Смазывание зубчатого зацепления
а) Способ смазывания. Для редукторов общего назначения применяют непрерывное смазывание жидким маслом картерным непроточным способом.
б) Выбор сорта масла. Зависит от значения расчетного контактного напряжения в зубьях sн и фактической окружной скорости колес υ. В проектируемом редукторе применяем для смазки смазочное масло И-Г-С-100.
в) Определение количества масла. Объем масляной ванны Vм определяем из расчета ~0,5 ... 0,8 л масла на 1кВт передаваемой мощности: Vм =(0,4..0,8)∙2,8≈2,24 дм3 .
Необходимое количество масла примем равным 4 л.
г) Определение уровня масла. Определяется по формуле:
hм =(0,1…0,5)d1 =3мм
д) Контроль уровня масла. Уровень масла, находящегося в корпусе, контролируется круглым маслоуказателем в стенке корпуса редуктора.
е) Слив масла. Для слива масла в корпусе предусматривается сливное отверстие, закрываемое пробкой с цилиндрической резьбой .
9.5.2 Смазывание подшипников
Смазывание подшипников качения в проектируемом приводе производится жидкими материалами из картера в результате разбрызгивания масла колесами, образования масляного тумана и растекания масла по валам.
Задача 10. Проверочные расчеты
10.1 Проверочный расчет шпонок
Призматическая шпонка тихоходного вала под колесом подлежит проверке на смятие.
Параметры шпонки: 12x8x34.
Условие прочности на смятие:
см = 2Т/( Aсм · d) ≤ [см ], (11.1)
где Т — крутящий момент на тихоходном валу ; Асм – площадь смятия;
Асм = (0,94 h - t1 ) lр , (11.2)
где lр = l – b = 34 – 12 = 22 мм – рабочая длина шпонки; t1 = 5 мм; h = 8 мм;
Асм = (0,94 · 8 – 5) · 22 = 55,44 мм2 ,
см = 2 · 105,4 · 103 / (40 · 55,44) = 95 Н/мм2 ≤ []см = 190 Н/мм2
Призматическая шпонка выходного конца тихоходного вала также подлежит проверке на смятие.
Параметры шпонки: 10x8x26.
lр = l – b = 26 – 10 = 16 мм; t1 = 5 мм; h = 8 мм;
Асм = (0,94 · 8 – 5) · 16 = 40,32 мм2 ,
σсм = 2 · 105,4 · 103 / (30 · 40,32) = 174,3 Н/мм2 ≤ [σ]см = 190 Н/мм2
10.2 Проверочный расчет стяжных винтов подшипниковых узлов
Стяжные винты рассчитывают на прочность по эквивалентным напряжениям на совместное действие растяжения и кручения экв , Н/мм2 :
экв = 1,3 Fp / A ≤ [], (11.3)
где Fp — расчетная сила затяжки винтов, обеспечивающая нераскрытие стыка под нагрузкой, Н,
Fp = [Кз (1 - х) + х] Fв , (11.4)
Fв = 0,5; Ry = 0,5 · 2804,5 = 1402,25 Н — сила, воспринимаемая одним стяжным винтом, Н, где Ry — большая из реакций в вертикальной плоскости в опорах подшипников тихоходного вала, Н.
х — коэффициент основной нагрузки, х = 0,27;
Кз — коэффициент затяжки, Кз = 1,5;
Fp = [1,5 · (1 - 0,27) + 0,27] · 1402,25 = 1914,07 H;
A — площадь опасного сечения винта, мм2 :
А = dp 2 / 4, (11.5)
dp ≈ d2 - 0,94 p — расчетный диаметр винта; р — шаг резьбы, р = 1,75мм; d2 — наружный диаметр винта, d2 = 12 мм.
dp ≈ 12 - 0,94 · 1,75 = 10,355 мм,
А = 3,14 · 10,3552 / 4 = 84,17 мм2 .
[] — допускаемое напряжение при неконтролируемой затяжке, [] = 0,25 · = 0,25· 300 = 75 H/мм2 .
экв = 1,3 ·1914,07 / 84,17 = 30 ≤ 75 H/мм2
10.3 Проверочный расчет валов
Проверочный расчет валов на прочность выполняют на совместное действие изгиба и растяжения.
Условие прочности:
S ≥ [S], (11.6)
где [S]= 1,5 — допускаемое значение коэффициента запаса прочности.
1. Определим напряжения в опасных сечениях быстроходного вала:
а = М·103 / Wнетто , (11.7)
a = Мкр ·103 / (2·Wρнeтто ), (11.8)
где — a и a амплитуда напряжения и цикла соответственно;
М — суммарный изгибающий момент в рассматриваемом опaсном сечении,
Н · м;
Мкр — крутящий момент, Н · м;
Wнетто — осевой момент сопротивления сечения вала, мм3 ;
Wρнетто — полярный момент инерции сопротивления сечения вала, мм3 ;
а = 70,7· 1000 / 2195,2 = 32,2 Н / мм2 ,
a = 3 Н / мм2 .
2. Определим коэффициент концентрации нормальных и касательных напряжений для расчетного сечения вала:
(K )D = K / Kd + KF – 1, (11.9)
(K )D = K / Kd + KF – 1, (11.10)
где К и K — эффективные коэффициенты концентрации напряжений;
Kd — коэффициент влияния абсолютных размеров поперечного сечения;
КF — коэффициент влияния шероховатости;
(K )D = 1,65 / 0,73 + 1, 5 - 1 = 2,76
(K )D = 1,45/ 0,73 + 1,5 - 1 = 2,49
3. Определяем пределы выносливости в расчетном сечении вала, Н / мм2 :
(-1 )D = -1 / (K)D = 410 / 2,76 = 148,55 Н / мм2 ,
( -1 )D = -1 / (K)D = 0,58 -1 / (K )D = 0,58 · 410 / 2,49 = 95,5 Н / мм2 ,
где — -1 и -1 пределы выносливости гладких образцов при симметричном цикле изгиба и кручения, Н/мм2 .
4. Определим коэффициенты запаса прочности по нормальным и касательным напряжениям:
s = (-1 )D / a = 148,55 / 32,2 = 4,61,
s = (-1 )D / a = 95,5 / 3 = 31,83.
5. Определим общий коэффициент запаса прочности в опасном сечении:
s = s s /√s 2 + s 2 = 4,61 · 31,83 / √4,61 2 + 31,83 2 = 4,56≥ [S] = 1,5.
6. Рассмотрим опасное сечение на 2-й ступени быстроходного вала
а = 70,7·1000 / 1562,5 = 45,25 Н / мм2 ,
a = 70,7·1000 / (2·0,2·15625) = 11,3 Н / мм2 .
7. Определим коэффициенты запаса прочности по нормальным и касательным напряжениям:
s = (-1 )D / a = 148,55 / 45,25 = 3,28,
s = (-1 )D / a = 95,5 / 11,3 = 8,45.
8. Определим общий коэффициент запаса прочности в опасном сечении:
s = s s /√s 2 + s 2 = 3,28·8,45 / √3,28 2 + 8,45 2 = 3,06 ≥ [S] = 1,5.
9. Определим напряжения в опасных сечениях тихоходного вала:
а = 102 · 1000 / 0,1 · 74088 = 13,8 Н / мм2 ,
a = 104,8 · 1000 / (2 · 0,2 · 74088) = 3,5 Н / мм2 .
10. Определим коэффициенты запаса прочности по нормальным и касательным напряжениям:
s = (-1 )D / a = 148,55 / 13,8 = 10,76
s = (-1 )D / a = 95,5 / 3,5 = 27,3
11. Определим общий коэффициент запаса прочности в опасном сечении:
s = s s /√s 2 + s 2 = 10,76 · 27,3 / √10,76 2 + 27,3 2 = 10 ≥ [S] = 1,5.
12. Определим напряжения в опасных сечениях тихоходного вала на 2-й ступени:
а = 102 · 1000 / 4287,5 = 23,8 Н / мм2 ,
a = 104,8 · 1000 / (2 · 0,2 · 42875 ) = 6,1 Н / мм2 .
13. Определим коэффициенты запаса прочности по нормальным и касательным напряжениям:
s = (-1 )D / a = 148,55 / 23,8 = 6,24
s = (-1 )D / a = 95,5 / 6,1 = 15,65
14. Определим общий коэффициент запаса прочности в опасном сечении:
s = s s /√s 2 + s 2 = 6,24 · 15,65 / √6,24 2 + 15,65 2 = 5,8 ≥ [S] = 1,5.
Таблица 10.1 Результаты проверочных расчетов
Детали | Напряжение, Н/мм2 | Детали | Коэффициент запаса прочности | ||||
расчетное | допускаемое [] | pасчетный s | допуска-емый s | ||||
Шпонки | Т | 174,3 | 190 | Вал | Б | 4,56 | 1,5 |
Т | 95 | 190 | Б | 3,06 | 1,5 | ||
Стяжные винты |
30 | 75 | Т | 10 | 1,5 | ||
Т | 5,8 | 1,5 |
Задача 11. Технический уровень редуктора
Технический уровень целесообразно оценивать количественным параметром, отражающим отношение затраченных средств и полученного результата. «Результатом» является вращающий момент Т2 , Н·м. Мерой затраченных средств является масса редуктора m, кг.
11.1 Определение массы редуктора
Масса редуктора определяется по формуле:
m = φ∙r ∙V·10-9 , (12.1)
где φ – определяем по графику 12.1 [1, с.263] (φ = 0,465);
r — плотность чугуна (r = 7400 кг/м3 );
V – условный объем редуктора:
V = LxBxH = 258x170x197 = 8640420 мм3 .
m = 0,465∙7400∙8640420∙10 -9 = 29,7 кг.
11.2 Определение критерия технического уровня редуктора
= m / T2 , (12.2)
где Т2 – вращающий момент на тихоходном валу редуктора, Н·м.
= 29,7 / 105,4 = 0,282
Полученные данные представляем в виде табл. 12.1.
Таблица 11.1 Технический уровень редуктора
Тип редуктора | Масса m, кг | Момент Т2 , Н·м |
Критерий |
Вывод |
Цилиндрический | 29,7 | 105,4 | 0,282 | Технический уровень низкий; редуктор морально устарел |
Литература
1. Шейнблит А.Е. Курсовое проектирование деталей машин. М., 1991
2. Иванов М.Н. Детали машин. М., 1984