Скачать .docx  

Реферат: Устройство селективного управления работой семисегментного индикатора

САНКТ-ПЕТЕРБУРГСКАЯ ИНЖЕНЕРНАЯ ШКОЛА ЭЛЕКТРОНИКИ

КУРСОВОЙ ПРОЕКТ

Пояснительная записка

Тема : УСТРОЙСТВО СЕЛЕКТИВНОГО УПРАВЛЕНИЯ РАБОТОЙ

СЕМИСЕГМЕНТНОГО ИНДЕКАТОРА

КП 2201 453К

Преподаватель Швайка О. Г.


Учащийся Бляхман Е.С.

УТВЕРЖДЕНО

предметной комиссией

« » __________________________ 2004г.

Председатель _______________________

З А Д А Н И Е

на курсовое проектирование по курсу ЭЦВМ и МП

учащемуся Бляхман Е.С. IV курса 453-К группы

СПИШЭ техникума

(наименование среднего специального учебного заведения)


(фамилия, имя, отчество)

Тема задания Устройство селективного управления работой семисегментного индикатора

Курсовой проект на указанную тему выполняется учащимися техникума в следующем объеме:

1. Пояснительная записка.

Введение.

1. Общая часть.


1.1. Назначение устройства управления.


1.2. Составление таблицы истинности работы устройства.


1.3. Минимизация логической функции.


1.4. Выбор и обоснование функциональной схемы устройства.


1.5. Синтез электрической принципиальной схемы в базисе И-НЕ.


1.6. Выбор элементной базы проектируемого устройства.


1.7. Описание используемых в схеме ИМС и семисегментного индикатора.


2. Расчетная часть проекта ______________________________________________________

2.1. Ориентировочный расчет быстродействия и потребляемой мощности устройства


управления.


2.2. Расчет вероятности безотказной работы устройства управления и среднего


времени наработки на отказ.


4. Графическая часть проекта _______________________________________________

Схема электрическая принципиальная.


Устройство селективного управления работой семисегментного индикатора.


Заключение.


Список литературы.


Дата выдачи ______________________________

Срок окончания ______________________________

Зав. отделением ______________________________

Преподаватель ______________________________

ВВЕДЕНИЕ

Развитие микроэлектроники способствовало появлению малогабаритных, высоконадежных и экономичных вычислительных устройств на основе цифровых микросхем. Требования увеличения быстродействия и уменьшения мощности потребления вычислительных средств привело к созданию серий цифровых микросхем. Серия представляет собой комплект микросхем, имеющие единое конструктивно – технологическое исполнение. Наиболее широкое распространение в современной аппаратуре получили серии микросхем ТТЛ, ТТЛШ, ЭСЛ и схемы на МОП – структурах.

ТТЛ схемы появились как результат развития схем ДТЛ в результате замены матрицы диодов многоэмиттерным транзистором. Этот транзистор представляет собой интегральный элемент, объединяющий свойства диодных логических схем и транзисторного усилителя.

1. Общая часть.

1.1. Назначение устройства


На рисунке в виде “черного ящика” показана комбинационная схема (КС) управляющая семисегментным индикатором. На вход схемы подаются различные комбинации двух сигналов X1 , X2 , X3 , X4 (X1 - старший). На индикатор предполагается выводить лишь отдельные цифры из множества шестнадцатеричных цифр. На выходе Y должна быть единица, если соединенный с этим выходом сегмент должен загореться при отображении цифр (для логической схемы). Требуется:

1 . Составить совмещенную таблицу истинности, комплект карт Карно для функции Y, провести совместную минимизацию в СДНФ и записать логические формулы, выражающие Y через X, выполнить преобразование этих формул к виду, обеспечивающему минимально возможную реализацию КС в системе логических элементов ТТЛ серии типа К155 или К555;

2 . Выполнить принципиальную электрическую схему устройства, провести расчет быстродействия и мощности;

3 . Выполнить расчет надежности.

1.2. Составление таблицы истинности работы устройства .

Создание таблицы истинности работы устройства по следующему набору комбинаций 1, 2, 3, 4, 7, 8, B , C , F .

N

X1

X2

X3

X4

Y1

Y2

Y3

Y4

Y5

Y6

Y7

1

0

0

0

1

1

0

0

0

0

0

1

2

0

0

1

0

1

1

0

1

1

1

0

3

0

0

1

1

1

1

0

1

0

1

1

4

0

1

0

0

1

0

1

1

0

0

1

7

0

1

1

1

1

1

0

0

0

0

1

8

1

0

0

0

1

1

1

1

1

1

1

B

1

0

1

1

0

0

1

1

1

1

1

C

1

1

0

0

0

1

1

0

1

1

0

F

1

1

1

1

0

1

1

1

1

0

0

1.3. Минимизация логической функции.

Составить СДНФ по таблице, построить карты Карно и минимизировать их .

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1


1.4. Выбор и обоснование функциональной схемы устройства.

1.5. Синтез электрической принципиальной схемы

в базисе «И-НЕ».

Можно уменьшить количество наименований схем. Это можно сделать путем преобразования с помощью формул:

В результате получаем только схемы “И-НЕ” и схемы отрицания

Повторяющиеся значения формул СДНФ

1.6. Выбор и обоснование элементной базы.

Для проектирования было предложено выбрать элементы ТТЛ серий 155 и 555. После сравнения характеристик этих двух серий мною была выбрана 555 серия.

Потому что:

¾ во-первых, коэффициент разветвления у неё в два раза больше, чем у 155 серии, что в дальнейшем даст возможность не использовать дополнительные резисторы на входе схемы

¾ во-вторых, элементы 555 серии потребляют меньше мощности в отличие от серии 155, так как их максимальное напряжение и сила тока меньше, чем у 155 серии.

В 555 серию входят различные логические элементы общим числом 98 наименований. Их назначение заключается в построении узлов ЭВМ и устройств дискретной автоматики с высоким быстродействием и малой потребляемой мощностью.

Элементы И – НЕ в 555 серии содержат простые n-p-n транзисторы VT2 – VT4, многоэмиттерный транзистор VT1, а так же резисторы и диоды, количество которых зависит от конкретного элемента. Такая схема обеспечивает возможность работы на большую емкостную нагрузку при высоком быстродействии и помехоустойчивости.

В качестве индикатора выбран семисегментный индикатор АЛС320Б, один из немногих индикаторов способный отображать не только цифровую информацию, но и буквенную, что необходимо в проектируемом устройстве.

В моей схеме используется следующие микросхемы серии К555:

К555ЛА1, К555ЛА2, К555ЛА4, К555ЛН1, К555ЛН2

1.7. Описание используемых в схеме ИМС и семисегментного индикатора.

К555ЛА1

Два логических элемента 4И-НЕ


выв.

Назначение


выв.

Назначение

1

2

3

4

5

6

7

Вход Х1

Вход Х2

Свободный

Вход Х3

Вход Х4

Выход Y1

Общий

8

9

10

11

12

13

14

Выход Y2

Вход Х5

Вход Х6

Свободный

Вход Х7

Вход Х8

Ucc


DIP14

Пластик


Тип микросхемы

К555ЛА1

Фирма производитель

СНГ

Функциональные особенности

2 элемента 4И-НЕ

Uпит

5В ± 5%

Uпит (низкого ур-ня)

≤ 0,5В

Uпит (высокого ур-ня)

≥ 2,7В

Iпотреб (низкий ур-нь Uвых )

≤ 2,2мА

Iпотреб (высокий ур-нь Uвых )

≤ 0,8мА

Iвых (низкого ур-ня)

≤ |-0.36|мА

Iвых (высокого ур-ня)

≤ 0,02мА

P

7,88мВт

tзадержки

20нСек

Kразвёртки

20

Корпус

DIP14

К555ЛА2

Логический элемент 8И-НЕ


выв.

Назначение


выв.

Назначение

1

2

3

4

5

6

7

Вход Х1

Вход Х2

Вход Х3

Вход Х4

Вход Х5

Вход Х6

Общий

8

9

10

11

12

13

14

Выход Y1

Свободный

Свободный

Вход Х7

Вход Х8

Свободный

Ucc


DIP14

Пластик


Тип микросхемы

К555ЛА2

Фирма производитель

СНГ

Функциональные особенности

элемент 8И-НЕ

Uпит

5В ± 5%

Uпит (низкого ур-ня)

≤ 0,5В

Uпит (высокого ур-ня)

≥ 2,7В

Iпотреб (низкий ур-нь Uвых )

≤ 1,1мА

Iпотреб (высокий ур-нь Uвых )

≤ 0,5мА

Iвых (низкого ур-ня)

≤ |-0,4|мА

Iвых (высокого ур-ня)

≤ 0,02мА

P

4,2мВт

tзадержки

35нСек

Kразвёртки

20

Корпус

DIP14

К555ЛА4

Три логических элемента 3И-НЕ


выв.

Назначение


выв.

Назначение

1

2

3

4

5

6

7

Вход Х1

Вход Х2

Вход Х4

Вход Х5

Вход Х6

Выход Y2

Общий

8

9

10

11

12

13

14

Выход Y3

Вход Х7

Вход Х8

Вход Х9

Выход Y1

Вход Х3

Ucc


DIP14

Керамический


Тип микросхемы

К555ЛА4

Фирма производитель

СНГ

Функциональные особенности

3 элемента 3И-НЕ

Uпит

5В ± 5%

Uпит (низкого ур-ня)

≤ 0,5В

Uпит (высокого ур-ня)

≥ 2,7В

Iпотреб (низкий ур-нь Uвых )

≤ 1,2мА

Iпотреб (высокий ур-нь Uвых )

≤ 0,8мА

Iвых (низкого ур-ня)

≤ |-0.36|мА

Iвых (высокого ур-ня)

≤ 0,02мА

P

11,8мВт

tзадержки

15нСек

Kразвёртки

20

Корпус

DIP14

К555ЛН 1

Шесть инверторов


выв.

Назначение


выв.

Назначение

1

2

3

4

5

6

7

Вход Х1

Выход Y1

Вход Х2

Выход Y2

Вход Х3

Выход Y3

Общий

8

9

10

11

12

13

14

Выход Y4

Вход Х4

Выход Y5

Вход Х5

Выход Y6

Вход Х6

Ucc

12


DIP14

Пластик


Тип микросхемы

К555ЛН1

Фирма производитель

СНГ

Функциональные особенности

6 инверторов

Uпит

5В ± 5%

Uпит (низкого ур-ня)

≤ 0,5В

Uпит (высокого ур-ня)

≥ 2,7В

Iпотреб (низкий ур-нь Uвых )

≤ 6,6мА

Iпотреб (высокий ур-нь Uвых )

≤ 2,4мА

Iвых (низкого ур-ня)

≤ |-0.36|мА

Iвых (высокого ур-ня)

≤ 0,02мА

P

23,63мВт

Tзадержки

≤ 20нСек

Kразвёртки

20

Корпус

DIP14

К555ЛН2

Шесть инверторов с открытым коллекторным выходом


выв.

Назначение


выв.

Назначение

1

2

3

4

5

6

7

Вход Х1

Выход Y1

Вход Х2

Выход Y2

Вход Х3

Выход Y3

Общий

8

9

10

11

12

13

14

Выход Y4

Вход Х4

Выход Y5

Вход Х5

Выход Y6

Вход Х6

Ucc

12


DIP14

Пластик


Тип микросхемы

К555ЛН2

Фирма производитель

СНГ

Функциональные особенности

6 инверторов с открытым коллекторным выходом

Uпит

5В ± 5%

Uпит (низкого ур-ня)

≤ 0,5В

Uпит (высокого ур-ня)

≥ 2,7В

Iпотреб (низкий ур-нь Uвых )

≤ 6,6мА

Iпотреб (высокий ур-нь Uвых )

≤ 2,4мА

Iвых (низкого ур-ня)

≤ |-0.36|мА

Iвых (высокого ур-ня)

≤ 0,02мА

P

23,63мВт

Tзадержки

≤ 32нСек

Kразвёртки

20

Корпус

DIP14

ИНДИКАТОР ЦИФРОВОЙ

АЛС320Б


Название

АЛС320Б

Цвет свечения

зеленый

Н, мм

5

М

1

Lmin, нм

555

Lmax, нм

565

Iv, мДж

0.15

при Iпр, мА

10

Uпр max(Uпр max имп), В

3

Uобр max(Uобр max имп), В

5

Iпр max(Iпр max имп), мА

12

Iпр и max, мА

60

при tи, мс

1

при Q

12

Т,°С

-60…+70

2. Расчетная часть

2.1. Расчет быстродействия и потребляемой мощности устройства

· Расчет номиналов резисторов

Из расчетов видно, что сопротивление равно 758 Ом, а его наминал,
равен 1 кОм. Сопротивление индикатора равно 167 Ом, а его
наминал, равен 250 Ом.

· Расчет быстродействия

Таким образом, из расчета, время задержки составляет 127 нс.

· Расчет мощности

Таким образом, из расчета я получил потребляемую мощность

равную 402,88 мВт

2.2. Расчет вероятности безотказной работы устройства и
среднего времени наработки на отказ.

Наименее

Обозначение
на схеме

Кол-во
элементов

lо

10-6

Режим работы

Усл. раб.
Кl

Коэф.
а

li =a×кl ×lо

10-6

10-6

Кн

tс

Резисторы

R1

1

1

1

50

1,6

2,7

4,32

4,32

R2-8

7

0,4

1,728

12,096

ИМС

DD1 -DD10

10

0,1

1

50

1

2,7

0,27

2,7

ИМС

(К555ЛН2)

DD11 -DD12

2

0,08

1

50

1

2,7

0,216

0,432

Индикатор

VD

7

5

1

50

1,6

2,7

21,6

151,2

1. Прикидочный расчет

2. Ориентировочный расчет

3. Окончательный расчет

Графическая часть проекта.


Заключение.

В курсовом проекте я разработал электрическую принципиальную схему управления семисегментного индикатора.

Изначально, по заданию, составив таблицы истинности и минимизировав логическую функцию, получили те сигналы, которые поступят непосредственно на индикатор (пройдя предварительную инверсию). Преобразовав полученные формулы и выделив повторяющиеся блоки, оптимизировал работу схемы. В ней используются микросхемы серии К555, т.к. они являются более новыми, чем серия К155, а также рассчитывались номинал резисторов, быстродействие, потребляемая мощность и вероятность безотказной работы устройства.

Значение прикидочного расчета больше, так как при его расчете было взято максимальное значение коэффициента интенсивности отказов, а в ориентировочном расчете для каждого элемента свое. Из-за этой разницы в ориентировочном расчете увеличилось P(t) и Tср.

Список литературы.

1. «Справочник по интегральным микросхемам» Тарабин; Москва 1981г.

2. «Цифровые интегральные микросхемы» Богданович М.И., Грель И.Н., Похоренко В.А., Шалимо В.В.; Минск, Беларусь 1991г.

3. Конспект по предмету «Конструирование ЭВМ» преподаватель – Пушницкая И.В.

4. Конспект по предмету «Типовые элементы и устройства цифровой техники» преподаватель – Золотарев И.В., Тихонов Б.Н.

5. методическая указания к выполнению курсового проекта по предмету «Электронные цифровые вычислительные машины и микропроцессоры» Пушницкая И.В., Чечурина А.В.

Ленинград 1990г.

6. Методические рекомендации по оформлению курсовых и дипломных проектов Лагутина Н.И.; Ленинград 1987г.

7. «Справочник по полупроводниковых электронных приборов» Иванов В.И.

8. «Справочник интегральных микросхем» Нефедов

9. «Импульсные и цифровые устройства» Браммер Ю.А., Пащук И.Н.