Скачать .docx |
Реферат: Расчет наружный стен и фундаментов
Министерство образования и науки РФ
Санкт-Петербургский государственный
инженерно - экономический университет
Кафедра экономики и менеджмента
в городском хозяйстве
Курсовое проектирование
Расчет наружных стен и фундамента
жилого дома
Выполнила :
студентка 3 курса гр. 781
Ковальчук Ю.С.
Проверила :
доц. Кузнецова Г.Ф.
Санкт- Петербург
2010 г.
Содержание
Введение ……………………………………………………...стр.2
Исходные данные…………………………………………….стр.3
1. Характеристика климатического района строительства и проектируемого здания……………………………………стр.4
2. Теплотехнический расчет наружных стен……………….стр.6
3. Расчет фундамента………………………………………...стр.11
4. Расчет технико- экономических показателей проекта….стр.16
Заключение……………………………………………………стр.17
Литература…………………………………………………….стр.18
Введение
Целью данной работы является расчет стен и фундамента жилого дома (для индивидуальных застройщиков) в городе Петрозаводск. При расчете будут использованы действующие строительные нормы и правила. Настоящий расчет проводится во первых для того, чтобы выявить какой материал стен целесообразно использовать для данного проекта, во вторых узнать площадь заложения фундамента рассчитав все нагрузки на него. А так же, целесообразно ли строить данный жилой дом.
Исходные данные к курсовой работе
« Расчет наружных стен и фундамента жилого дома»
1. Город- Петрозаводск
2. Температура внутреннего воздуха tв = 18о С
3. Материал стен- кирпич
4. Высота этажа- 2,5м
5. Междуэтажные и чердачные перекрытия- щитовой накат по деревянным балкам( вариант- сборные ж.б.панели)
6. Кровля- волнистые асбестоцементные листы
7. Глубина пола в подвале- 2,5м
8. Толщина пола в подвале- 0,1м
9. Расстояние от низа конструкции пола в подвале до подошвы фундамента- 0,4м
10. Фундаменты- ленточные, бутовые
11. Расчетная среднесуточная to воздуха в помещении, примыкающем к наружным фундаментам, = 20о С.
1. Характеристика климатического района строительства и проектируемого здания
1.1. Характеристика климатического района
Город- Петрозаводск;
Влажностная зона- сухая и нормально-влажностная зоны;
Средняя температура наиболее холодной пятидневки- -32о С;
Средняя температура наиболее холодных суток- -37о С;
Абсолютная минимальная температура- -38о С;
Средняя температура отопительного периода- -3,1о С;
Продолжительность отопительного периода- 240 дней;
Средняя температура самого жаркого месяца- 15,7о С;
Скорость ветра- 3,9м/сек;
Географическая широта:
Структура и характер грунта- пески средней крупности, средней плотности;
Уровень грунтовых вод- 2,67м;
Глубина промерзания грунтов- 0,75м.
1.2. Характеристика проектируемого здания
Эксплуатация квартир
Тип квартиры |
Количество квартир |
Площадь, м2 |
||||
жилая |
общая |
|||||
в сек ции |
в доме |
в квартире |
в доме |
в квартире |
в доме |
|
Четырехкомнатная |
1 |
1 |
55,4 |
55,4 |
97,16 |
97,16 |
Средняя квартира |
55,4 |
97,16 |
Для оценки объемно- планировочных решений зданий применяются коэффициенты, характеризующие рациональность планировочных решений квартир- К1 и объемно- планировочных решений зданий- К2 .
Коэффициент К1 – плоскостной архитектурно- планировочный показатель. Он рассчитывается по формуле (1):
К=, (1)
где Аж – жилая площадь в доме, м2 ;
Ао – общая площадь в доме, м2 .
55,4
К= 97,16 = 0,57
Коэффициент К2 – объемный показатель, определяющий объем здания, приходящийся на единицу его функциональной площади, рассчитывается по формуле (2). Для жилых зданий в качестве функциональной площади используется жилая.
К= ,
где Vз – строительный объем надземной части здания, м3 . ( 486,42 м3 )
486,42
К = 55,4 = 8,78.
В жилых зданиях коэффициенты К1 и К2 должны находится в следующих пределах: К1 = 0,54 - 0,64; К2 = 4,5 – 10. Расчеты показали, что эти коэффициенты находятся в заданных пределах.
Характеристика конструктивного решения здания с продольными несущими стенами:
Тип фундамента- ленточные, бутовые,
Материал перегородок- гиспоблочные, шлакоблочные, деревянные,
Перекрытие- щитовой накат по деревянным балкам( вариант – сборные ж.б.панели),
Покрытия:
Лестница- деревянная,
Кровля- волнистые асбестоцементные листы
Окна и балконные двери- со спаренными переплетами,
Двери наружные- деревянные входные
Двери внутренние- щитовой конструкции,
Полы- дощатые, в санузлах- керамическая плитка,
Наружная отделка- кирпичная кладка с расшивкой швов,
Внутренняя отделка- в комнатах и передней- улучшенная клеевая покраска, в кухне, в ванной и уборной- масляная панель. Инженерное оборудование здания:
тип и расчетный напор,
водопровод- хозяйственно-питьевой, расчетный напор на вводе,
горячего водоснабжения- от котла КМЧ-I,
канализация- в наружную сеть (вариант- на местные очистные сооружения)
электроснабжения- III категория, напряжение 220.380В, освещение лампами накаливания;
отопление- от котла КМЧ-I,система однотрубная тупиковая с верхней разводкой с радиаторами М-I40-АО, теплоноситель- вода с температурой 90-70о С
вентиляция- естественная, из кухни- механическая,
газоснабжение- отсутствует,
устройств связи- радиофикация, телеантенна, телефонный ввод,
оборудования кухонь и санузлов- плита на твердом топливе, мойка, унитаз, ванна, умывальник, поддон,
мусоропровод и лифт отсутствуют.
2. Теплотехнический расчет наружных стен
При проектировании наружных стен необходимо не только подобрать ограждение, отвечающее теплотехническим требованиям, но и учесть его экономичность.
При расчете наружных стен определяют их сопротивление теплопередаче.
Сопротивление теплопередаче Ro ограждающих конструкций принимают равным экономически оптимальному сопротивлению, но не менее требуемого Rо тр по санитарно- гигиеническим условиям.
Требуемое (минимально допустимое) сопротивление теплопередаче ограждающих конструкций определяют по формуле (3).
,
где t в – расчетная температура внутреннего воздуха, 0 С; принимается 180 С;
t н – расчетная зимняя температура наружного воздуха, 0 С; принимается по СНиП 2.01.01-82. Строительная климатология и геофизика[3];
(t в – t в ) = Dt н – нормативный температурный перепад между температурой внутреннего воздуха и температурой внутренней поверхности ограждающей конструкции, 0 С; нормируется в зависимости от функционального назначения помещений СНиП I-3-79** Строительная теплотехника [5] (для стен жилых домов Dt н £ 60 С);
R в – сопротивление теплопередаче внутренней поверхности ограждения (зависит от рельефа его внутренней поверхности); для гладких поверхностей стен R в = 0,133;
n – коэффициент, принимаемый в зависимости от положения наружной поверхности ограждающих конструкций по отношению к наружному воздуху (см. СНиП I-3-79** Строительная теплотехника [5]).
tв - tн 18- (-20)
Rо тр = tв - jв *Rв *n = 6 * 0,133 * 1 = 0,84 (3)
Расчетную зимнюю температуру наружного воздуха tн принимают с учетом тепловой инерции Д ограждающих конструкций по СНиП (3).
При Д > 7( массивные конструкции ) – за расчетную принимаем среднюю температуру наиболее холодной пятидневки.
Затем определяем экономичное сопротивление теплопередаче по формуле (4).
Wо Цо
Ro эк = √ Е λ Цм , (4)
где Цо – стоимость тепла 1 Гкал в руб.; (276 руб./ Гкал)
Wо – теплопотери за отопительный период, Гкал
Е – коэффициент эффективности капитальных вложений ( Е= 0,15);
λ – коэффициент теплопроводности материала стен, ккал/ (м.ч.град) (см. СНиП (5));
λкерамзитобетона = 0,67; λкирпича = 0,47; λц/п раствора = 0,76
Цм – стоимость материала стен, руб/м3 .
Стоимость материала стен определяется по Стройпрайсу:
Цкерамзитобетона = 1600 руб/м3 ; Цкирпича = 2500 руб/м3
Для упрощения расчетов в учебных целях теплопотери за отопительный период Wо предлагается определять по формуле (5).
Wо = (tв – tн.ср. ) * N * z * r * d / 106 = ( 18 – 1,1) *240*24*1,4*1,5/ 106 =
= 0,204 (5)
где tв – температура внутреннего воздуха, о С;
tн.ср. – средняя температура отопительного периода, о С; ( отопительным считается период с температурой наружного воздуха tн < 8о С);
N- отопительный период в течении года, дни;
z – отопительный период в течение суток, ч;
r – коэффициент неучтенных теплопотерь за счет инфильтрации воздуха через неплотности оконных переплетов, стыков, утоненных стен за отопительными приборами и др., принимается равным 1,4;
d – коэффициент, учитывающий единовременные и текущие затраты при устройстве и эксплуатации головных сооружений средств отопления, теплосетей и др., принимается равным 1,5.
Значение Wо рассчитывается по формуле (5) на основании данных СНиП (3).
0,204 * 276 56,30
Rэк о керамзитоб. = √ 0,15* 0,67* 1600 = √ 160,80 = 4,43
0,204 * 276 56,30
Rэк о кирпича = √ 0,15* 0,47 * 2500 = √ 176,25 = 4,06
Для выбора сопротивления теплопередаче Rо соблюдается условие: если Ro эк > Rо тр , то Ro = Rо эк ; если Rо эк < Rо тр , то Ro = Rо тр .
Т.к. Rо тр .> Rо эк , то Ro = Rо тр
Толщину стены определяем по формуле (6).
δ1 δ2
δ = [ Rо – ( Rв + Rн + λ1 + λ2 ) ] * λ ; (6)
1
где Rн = αн - сопротивление теплопередаче наружной поверхности ограждения, м2 .ч.град/ккал; зависит от местоположения ограждения, для стен и покрытий северных районов Rн = 0,05 (табл.6 (5));
δ1,2 – толщина слоя, м;
λ1,2 – коэффициент теплопроводности материала слоя.
0,025
δкерамзитобетона = [ 0,84 –( 0,133 + 0,05 + 0,76 * 2)]* 0,67 = 0,39
0,020
δкирпича = [ 0,84- ( 0,133 + 0,05 + 0,76 )] * 0,47 = 0,29
Полученную толщину стен округляем до стандартного размера штучных изделий. δкерамзитобетона = 1,5м; δкирпича = 1м. После этого рассчитываем действительную величину тепловой инерции Д ограждающей конструкции, подставляя значение δ, по формуле (7). По этой величине проверяют правильность выбора tн .
Рассчитываем фактическое сопротивление теплопередаче наружного ограждения по формуле (9).
δ1 δ2 δn
Ro = Rв + λ1 + λ2 + ……+ λn + Rн , (9)
При этом должно быть выполнено условие: Ro ≥ Rо тр .
0,7 0,025
Ro керамзитобетон = 0,133+ 0,8 + 0,26 *2+ 0,05= 0,133 + 0,875 +0,048+ 0,05 = 1,108
0,375 0,02
Rо кирпича = 0,133 + 0,47 + 0,76 + 0,05 = 0,133+ 0,797 + 0,026 + 0,05 = 1,006
Условие Ro ≥ Rо тр выполняется.
Рассчитываем два варианта стен разной конструкции и выбираем наиболее эффективный вариант.
Выбор варианта осуществляется по минимуму приведенных затрат
Пi (руб./м2 стены)
П= С (10)
где, К - единовременные затраты, руб./м(стоимость стены);
С - текущие затраты на отопление, руб./мстены в год
- номер варианта ограждающей конструкции (=1,2).
= 1 – керамзитобетон; = 2 –кирпич.
Величину расходов на отопление определяем по формуле (11):
С= (11)
0,204 * 276
С0 1 = 1,108 = 50,8
0,204 * 276
С0 2 = 1,006 = 55,9
К вычисляем по формуле:
К= (12)
К1 = 0,39 * 1600 = 624
К2 = 0,29 * 2500 = 725
П1 = 50,8+ 0,15 * 624 = 144,40
П2 = 55,9 + 0,15 * 725 = 164,65
Так как П< П, выбираем ограждающую конструкцию из керамзитобетона и рассчитываем коэффициент теплопередачи К (Вт/м град. С):
К = (13)
1
К = 1,108 = 0,9.
3. Расчет фундамента
При определении глубины заложения фундамента в соответствии со СНиП 2.02.01-83 учитывают следующие основные факторы: влияние климата (глубину промерзания грунтов), инженерно-геологические и гидрологические особенности, конструктивные особенности.
Расчетная глубина сезонного промерзания определяется по формуле:
, (14)
где kn – коэффициент влияния теплового режима здания, принимаемый для
наружных фундаментов отапливаемых сооружений, kn = 0,5
( СНиП 2.02.01 – 83).
dfn – нормативная глубина промерзания определяется по карте глубины
промерзания, dfn = 0,75 м.
df = 0,5 * 0,75 = 0,375м df = d1 = 0,375м
Влияние геологии и гидрогеологии строительной площадки на глубину заложения фундаментаопределяем по СНиП 2.02.01-83. Определяем величину+2 и сравниваем с (уровнем подземных вод)= 2,6 м (СНиП 2.02.01-83, стр.6, табл. №2).
+2= 2,375 м; >+2; =2,6 м.
Определяем влияние конструктивного фактора на глубину заложения фундамента . Эта величина определяется как сумма значений глубины и толщины пола в подвале и толщины слоя грунта от подошвы фундамента до низа конструкции в подвале.
,
где db – глубина пола в подвале,
hcf – толщина пола в подвале,
hs – толщина слоя грунта от подошвы фундамента до низа
конструкции пола в подвале.
d3 = 2,5 + 0,1 + 0,4 =3 м.
При окончательном назначении глубины заложения фундамента d принимаем равным максимальному значению из величин -:-.
d = 3 м.
Определяем площадь подошвы фундамента по формуле:
, (15)
где Fv – расчетная нагрузка, приложенная к обрезу фундамента кН/м;
Ro – расчетное сопротивление грунта основания, кПа ( см. СНиП (4);
γср - средний удельный вес фундамента и грунта на его уступах.
Обычно принимается при наличии подвала равным 16 – 19 Кн/м3 .
Для определения расчетной нагрузки, приложенной к обрезу фундамента, необходимо собрать нагрузки в следующей последовательности. Вначале определяем постоянные нормативные нагрузки от: веса покрытия (гидроизоляционный ковер, кровельный настил и балки); веса чердачного перекрытия с утеплителем; веса междуэтажного перекрытия; веса перегородок; веса карниза; веса стен.
Затем устанавливаем временные нормативные нагрузки: снеговую на 1мгоризонтальной проекции; временную на чердачное перекрытие; временную на междуэтажное перекрытие.
Нормативные нагрузки определяем по СНиП 2.01.07-85 «Нагрузки и воздействия» в соответствии с конструктивным решением здания.
Таблица 2
Постоянные нормативные нагрузки
Наименование нагрузки |
Величина нагрузки |
От веса покрытия |
1,5 |
От веса чердачного перекрытия с утеплителем |
3,8 |
От веса междуэтажного перекрытия |
3,6 |
От веса перегородки |
1,0 |
От веса карниза |
2,0 |
От веса 1мкирпичной кладки (или от веса стены из др. материала) |
18 |
Таблица 3
Временные нормативные нагрузки
Наименование нагрузки |
Величина нагрузки |
Снеговая на 1мгоризонтальной проекции кровли |
1,5 |
На 1мпроекции чердачного перекрытия |
0,7 |
На 1мпроекции междуэтажного перекрытия |
2,0 |
С учетом постоянных и временных нагрузок определяем нагрузки на фундамент наружной стены на уровне планировочной отметки грунта (по обрезу фундамента).
Для этого предварительно на плане этажа выделяем грузовую площадь, которая определяется следующим образом: расстоянием между осями оконных проемов вдоль здания и половиной расстояния в чистоте между стенами поперек здания. Грузовая площадь А равна произведению длин сторон полученного четырехугольника (См. Приложение).
Аг = 2,65 * 2,1 = 5,56
Эту грузовую площадь принимаем постоянной, пренебрегая ее уменьшением на первом этаже за счет увеличения ширины наружных стен.
Далее определяем постоянные нагрузки:
1. Вес покрытия (произведение нормативной нагрузки и грузовой площади);
2. Вес чердачного перекрытия;
3. Вес междуэтажного перекрытия, умноженный на количество этажей;
4. Вес перегородок на всех этажах;
5. Вес карниза и стены выше чердачного перекрытия (определяется на длине, равной расстоянию между осями оконных проемов);
6. Вес цоколя и стены первого этажа за вычетом веса оконных проемов на длине, равной расстоянию между осями оконных проемов;
7. Вес стены со второго этажа и выше за вычетом веса оконных проемов на длине, равной расстоянию между осями оконных проемов.
Временные нагрузки (произведение нормативной нагрузки и грузовой и площади):
1. Снеговая.
2. На чердачное перекрытие.
3. На междуэтажного перекрытия с учетом их количества и снижающего коэффициента , учитывающего неодновременное загружение перекрытий.
= коэффициент сочетания применяется при количестве перекрытий 2 и более. Для квартир жилых зданий определяется по формуле:
= (17)
где n – общее число перекрытий, от которых рассчитываются нагрузки
фундамента.
φn 1 = 0,3 + 0,6 / √2 = 0,3 + 0,42 = 0,72
Таблица 4
Постоянные нагрузки
Наименование нагрузки |
Расчет нагрузки |
Величина нагрузки |
Вес покрытия |
Нормативная нагрузка *Аг |
1,5*5,56= 8,34 |
Вес чердачного перекрытия |
Нормативная нагрузка * Аг |
3,8*5,56= 21,12 |
Вес междуэтажных перекрытий |
Нормативная нагрузка * Аг * n |
3,6*5,56*2= 40,03 |
Вес перегородок на этажах |
Нормативная нагрузка * Аг * n |
1,0*5,56*2 = 11,12 |
Вес карниза и стены выше чердачного перекрытия |
(Нормативная нагрузка на карниз + толщина стены * пролет * нормативная нагрузка кирпичной кладки) * расстояние между осями оконных проемов |
(2,0+0,39*4,2*18)*2,1= 66,11 |
Вес цоколя и стены первого этажа за вычетом веса оконных проемов на длине, равной расстоянию между осями оконных проемов |
Толщина стены первого этажа * (высота цоколя и первого этажа * расстояние между осями оконных проемов – высота оконного проема * длина оконного проема)* нормативная нагрузка кирпичной кладки |
0,39*(3*2,1-1,5*1,05)*18 = 0,39*(6,3-1,57)* 18 = 0,39*4,73*18 = 33,2 |
Вес стены со второго этажа и выше за вычетом веса оконных проемов |
Толщина стены * (высота этажа * расстояние между осями оконных проемов – высота оконного проема * длина оконного проема)* количество этажей * нормативная нагрузка кирпичной кладки |
0,39*(2,5*2,1-1,5*1,05)*2 *18 =51,66 |
Итого постоянная нагрузка |
231,58 |
Таблица 5
Временные нагрузки
Наименование нагрузки |
Расчет нагрузки |
Величина нагрузки |
Снеговая |
Нормативная нагрузка *Аг |
1,5*5,56=8,34 |
На чердачное перекрытие |
Нормативная нагрузка * Аг |
0,7*5,56=3,89 |
На 4 междуэтажных пере-крытий с учетом коэф. |
Нормативная нагрузка * Аг *n* |
2,0*5,56*2*0,72=16,01 |
Итого временная нагрузка |
28,24 |
Все нагрузки суммируются, и определяется нагрузка на 1м наружной стены. Для этого общую нагрузку (временную и постоянную) делим на расстояние между осями оконных проемов вдоль здания:
Fv = 28,24 + 231,58
2,1 = 123,72 кН/м
Следовательно, площадь подошвы фундамента составляет:
123,72
А= 300 – 16* 3 = 0,49 м2 .
Находим требуемую ширину подошвы фундамента. Для ленточного фундамента:
б= (А = б*1м) = 0,49 м.
4. Расчет технико-экономических показателей проекта
Основными технико-экономическими показателями проектов жилых домов приняты:
1. показатели сметной стоимости строительства;
2. объемно-планировочные показатели;
3. показатели затрат труда;
4. показатели, характеризующие степень унификации сборных элементов;
5. годовые эксплуатационные затраты.
Таблица 6
Технико-экономические показатели
Наименование |
Единица измерения |
Значения показателя |
А. Показатели сметной стоимости строит-ва |
||
Стоимость самого здания |
$ |
12630,8 |
а) на 1 квартиру |
$/кв. |
12630,8 |
б) на 1мжилой площади |
$/ м |
130 |
в) на 1мполезной площади |
$/ м |
122 |
г) на 1м здания |
$/ м |
26 |
Б. Объемно-планировочные показатели |
||
Общий строительный объем здания |
м |
486,42 |
а) на 1мжилой площади |
8,78 |
|
б) на 1 квартиру |
486,42 |
|
Объем типового этажа на 1м жилой площади по этажу |
м |
9,21 |
Отношение жилой площади к полезной (К) |
м/ м |
0,57 |
Средняя жилая площадь на1 квартиру |
м |
55,4 |
Средняя полезная площадь на1 квартиру |
м |
97,16 |
Отношение строительного объема к жилой площади (К) |
м/ м |
8,78 |
Заключение
В курсовой работе мы произвели расчет конструктивных элементов (наружных стен и фундамента) и основных технико-экономических показателей проекта жилого дома на примере города Петрозаводск. Таким образом, мы выяснили, что наиболее эффективно выбрать ограждающую конструкцию из керамзитобетона.
Стоимость здания составляет 12630,8 $
Список литературы
1. Шумилов М. С. Гражданские здания и их техническая эксплуатация: учебник для вузов.-М.: Высш. шк.,1985
2. СНиП 2.01.07-85. Нагрузки и воздействия. – М.:1986
3. СНиП 2.01.01-82. Строительная климатология и геофизика. – М.:1983
4. СНиП 2.02.01-83. Основания зданий и сооружений. - М.:1985
5. СНиП I-3-79**. Строительная теплотехника. – М.:1986
6. Берлинов М.В. Основания и фундаменты: Учеб. Для вузов. - М.: Высш.Шк., 1998