Скачать .docx |
Курсовая работа: Расчет привода и поршневого двигателя автомобиля
Введение
Курсовая работа является важным этапом подготовки студентов к решению задач применительно к практике по обработке исходной информации и по обучению оформления технической и нормативной документации в соответствии с ГОСТ и ЕСКД.
Качество выполнения курсовой работы характеризует уровень усвоения дисциплины «Основы функционирования систем сервиса», что позволяет оценить готовность студента к самостоятельной работе по выполнению дипломного проекта и к практической деятельности на производстве как будущего специалиста по сервису (Специализация 23.07.12).
1. Приводы автомобиля
Простейшая принципиальная схема привода автомобиля (рис. 1) включает в себя карбюраторный или дизельный многоцилиндровый четырехтактный двигатель с кривошипно-шатунным механизмом тронкового типа 1, маховик 2, фрикционную муфту сцепления 3, коробку перемены передач 4, главную передачу 5 заднего моста автомобиля, дифференциал 6 и полуоси 7.
Кривошипно-шатунный механизм предназначен для преобразования возвратно-поступательного движения поршня во вращательное движение коленчатого вала.
В головке блока размещены впускные и выпускные клапаны.
Маховик 2 во время рабочего хода поршня накапливает запас энергии, за счет которой осуществляется нерабочий ход и повышается равномерность вращения коленчатого вала.
Фрикционная муфта сцепления 3 обеспечивает присоединение или отсоединение трансмиссии (коробки перемены передач) и двигателя внутреннего сгорания.
Коробка перемены передач 4 (КПП) – двухступенчатая и двухскоростная.
Главная передача 5 – коническая, соединена шестернями дифференциала с полуосями заднего моста.
2. Двигатель внутреннего сгорания
Поршневые двигатели внутреннего сгорания являются тепловыми двигателями, у которых химическая энергия топлива преобразуется в механическую работу непосредственно в самом двигателе.
Преобразование химической энергии в тепловую и тепловой – в энергию движения поршня (механическую) происходит практически одновременно, непосредственно в цилиндре двигателя.
В результате сгорания рабочей смеси в цилиндрах двигателя образуются газообразные продукты с высоким давлением и температурой.
Под влиянием давления поршень совершает поступательное движение, которое с помощью шатуна и кривошипа преобразуется во вращение коленчатого вала.
Четырехтактными называют двигатели, у которых один рабочий цикл совершается за четыре хода (такта) поршня, соответствующих двум оборотам коленчатого вала. Схема работы четырехтактного двигателя без наддува представлена на рис.2.
Первый такт – впуск или всасывание горючей смеси – соответствует движению поршня вниз от В.М.Т. до Н.М.Т. За счет движения поршня создается разрежение (около 0,05 – 0,1 н/см2 ) и горючая смесь через открытый клапан «а» засасывается в цилиндр. Для достижения максимального наполнения цилиндра впускной клапан открывается несколько раньше положения поршня в В.М.Т. (точка 1) с определенным углом опережения и закрывается с некоторым углом запаздывания после Н.М.Т. (точка 2).
Второй такт – сжатие – соответствует движению поршня вверх от момента закрытия впускного клапана до момента прихода поршня в В.М.Т. Во время такта сжатия все клапаны находятся в закрытом положении.
Поршень сжимает находящуюся в цилиндре горючую смесь, в точке 3 подается искра в свече для воспламенения горючей смеси.
Третий такт – горение и расширение (рабочий ход) – соответствует движению поршня от В.М.Т. к Н.М.Т. под давлением сгорающего топлива и расширяющихся продуктов сгорания. (от точки 4 до точки 5).
Четвертый такт – выпуск отработавших газов – осуществляется при ходе поршня вверх от Н.М.Т. к В.М.Т. Этот ход поршня происходит при открытом выпускном клапане «б». Для улучшения процесса выпуска клапан открывается несколько раньше Н.М.Т. (точка 5) и закрывается с некоторым запаздыванием (точка 6).
В дизель, в отличие от карбюраторного двигателя, при движении поршня от В.М.Т. к Н.М.Т. засасывается через впускной клапан атмосферный воздух, на такте сжатия повышается давление и температура, при впрыске через форсунку топливо самовоспламеняется и сгорает, газы расширяясь давят на поршень, совершая рабочий ход, при движении поршня из Н.М.Т. к В.М.Т. через открытый выпускной клапан отработанные газы выталкиваются в атмосферу.
При дальнейшем движении поршня вниз начинается новый рабочий цикл, такты которого повторяются в перечисленной ранее последовательности.
Рабочий цикл четырехтактного двигателя изображается диаграммами в виде замкнутой (рис. 3) и развернутой (рис. 4).
Исходные данные для кинематического и динамического (силового) анализа кривошипно-шатунного механизма представлена в таблице 1.
3. Обозначения
К – карбюраторный двигатель
Д – дизель
В.М.Т. – верхняя мертвая точка
Н.М.Т. – нижняя мертвая точка
Пведом – ведомый вал
Пд – частота вращения двигателя (ведущего вала), об/мин;
Пп – частота вращения промежуточного вала КПП, об/мин;
Пкпп – частота вращения выходного вала КПП, об/мин;
Пв – частота вращения ведомого вала главной передачи, об/мин;
R – радиус кривошипа, мм;
l - постоянная кривошипно-шатунного механизма;
l = R / L = 0,25
где L – длина шатуна, мм;
Р1 , Р2 , Р3 , Р4 – давление газов в цилиндре двигателя, МПа; (см. Индикаторная диаграмма Рис. 3)
Z1 …. Z6 – число зубьев шестерен и колес в коробке перемен передач и в главной передаче;
Рш – сила, направленная по оси шатуна, Н; (см. рис. 5)
Рг – сила давления газов на поршень, Н;
Рн – сила, направленная перпендикулярно оси цилиндра, Н;
Рр – радиальная сила, действующая по радиусу кривошипа, Н;
Pт – тангенциальная сила, действующая по касательной к окружности
4. Исходные данные (l=0,25)
Таблица 1
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
Пд , об/мин | 4000 | 2500 | 1500 | 1000 | 1500 | 1200 | 1400 | 4400 | 3400 | 2200 |
Двигатель | К | К | Д | Д | Д | Д | Д | К | К | К |
R, мм | 60 | 75 | 40 | 70 | 65 | 55 | 50 | 80 | 45 | 85 |
Д, мм | 76 | 82 | 86 | 66 | 96 | 88 | 85 | 72 | 84 | 80 |
Р1 , мПа | 1,0 | 1,5 | 2,0 | 2,5 | 3,0 | 2,5 | 2,0 | 1,5 | 1,0 | 1,0 |
Р2 , мПа | 2,0 | 3,0 | 4,0 | 5,0 | 6,0 | 5,0 | 4,0 | 3,0 | 2,0 | 2,5 |
Р3 , мПа | 3,0 | 4,5 | 6,0 | 7,5 | 9,0 | 7,5 | 6,0 | 4,5 | 3,0 | 3,5 |
Р4 , мПа | 4,0 | 5,0 | 8,0 | 10,0 | 12,0 | 10,0 | 8,0 | 5,0 | 4,0 | 4,5 |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
Z1 | 24 | 20 | 30 | 22 | 25 | 12 | 15 | 25 | 20 | 24 |
Z2 | 120 | 120 | 120 | 110 | 75 | 36 | 45 | 50 | 60 | 48 |
Z3 | 20 | 25 | 20 | 24 | 22 | 20 | 24 | 20 | 25 | 22 |
Z4 | 100 | 100 | 80 | 120 | 110 | 60 | 48 | 100 | 100 | 88 |
Z5 | 25 | 20 | 24 | 12 | 15 | 24 | 30 | 20 | 20 | 24 |
Z6 | 50 | 60 | 48 | 36 | 45 | 48 | 120 | 60 | 80 | 120 |
5. Содержание курсовой работы
Курсовая работа состоит из расчетно-пояснительной записки и графической части в виде принципиальной схемы привода автомобиля (рис. 1), схемы работы четырехтактного двигателя (рис. 2), замкнутой и развернутой индикаторной диаграммы (рис. 3, рис.4), схемы кривошипно шатунного механизма и действия сил давления газов на поршень (рис.5), графика зависимости пути «S», скорости «n» и ускорения «а» поршня от угла «a» поворота коленчатого вала(рис. 6), графика зависимости усилий Рш , Рн ,Рр , Рт и крутящего момента Мкр на валу двигателя от угла «a» поворота коленчатого вала.
По исходным данным вначале построить индикаторные диаграммы (рис.3, рис.4).
Расчетно-пояснительная записка включает титульный лист (см. Приложение), исходные данные на выполнение курсовой работы и следующие разделы:
1. Привод автомобиля.
2. Двигатель внутреннего сгорания.
3. Обозначение:
4. Исходные данные (Таблица 1).
5. Содержание курсовой работы.
6. Кинематический анализ кривошипно-шатунного механизма.
7. Динамический анализ кривошипно-шатунного механизма.
8. Силовой расчет трансмиссии автомобиля.
9. Прочностной расчет поршня и поршневого пальца двигателя.
6. Кинематический анализ кривошипно-шатунного механизма
6.1 Выражение для определения перемещения «S» поршня в зависимости от угла поворота кривошипа «a» запишется в виде (рис. 5)
S = (R + L) – (R*Cosa + L*Cosb) = R (1 – Cosa) + L (1 – Cosb) = R (1 – Cosa) + L (1 – 1 - l2 * Sin2 a )
Величина R (1 – Cosa) – определяет путь, который прошел бы поршень, если шатун был бы бесконечно длинным,
а величина L (1 – 1 - l2 * Sin2 a ) – есть поправка на влияние конечной длины шатуна.
Используя формулу Бинома Ньютона выражение для вычисления “ S“ упрощается:
S = R (1 – Cosa + ( l/2)* Sin2 a ).
S = 75*(1 – Cos0 + ( l/2)* Sin2 0 )=0
S = 75*(1 – Cos30 + ( l/2)* Sin2 30 )=12.392
S = 75*(1 – Cos60 + ( l/2)* Sin2 60 )=44.531
S = 75*(1 – Cos90 + ( l/2)* Sin2 90 )=84.375
S = 75*(1 – Cos120 + ( l/2)* Sin2 120 )=119.531
S = 75*(1 – Cos150 + ( l/2)* Sin2 150 )=142.296
S = 75*(1 – Cos180 + ( l/2)* Sin2 180 )=150
S = 75*(1 – Cos210 + ( l/2)* Sin2 210 )=142.296
S = 75*(1 – Cos240 + ( l/2)* Sin2 240 )=119.531
S = 75*(1 – Cos270 + ( l/2)* Sin2 270 )=84.357
S = 75*(1 – Cos300 + ( l/2)* Sin2 300 )=44.531
S = 75*(1 – Cos330 + ( l/2)* Sin2 330 )=12.392
S = 75*(1 – Cos360 + ( l/2)* Sin2 360 )=0
Расчеты внесем в табл.2 и построим график зависимости
S = f (a)… (рис.6)
6.2 Скорость поршня изменяется во время «t», т.е.
n = ds / dt = (ds / da) * (da / dt),
где da / dt = w - угловая частота вращения.
ds / da = R* d/da (1 – Cosa + ( l/2)* Sin2 a) =
= R (Sina + ( l/2)* Sin2a)
n = w * R (Sina + (l/2)* Sin2a).
n = (3.14*3400/30)*45 (Sin0 + (l/2)* Sin2*0)=0
n = (3.14*3400/30)*45 (Sin30 + (l/2)* Sin2*30)=11936.97
n = (3.14*3400/30)*45 (Sin60 + (l/2)* Sin2*60)=19120.22
n = (3.14*3400/30)*45 (Sin90 + (l/2)* Sin2*90)=19625
n = (3.14*3400/30)*45 (Sin120 + (l/2)* Sin2*120)=14871.28
n = (3.14*3400/30)*45 (Sin150 + (l/2)* Sin2*150)=7688.03
n = (3.14*3400/30)*45 (Sin180 + (l/2)* Sin2*180)=0
n = (3.14*3400/30)*45 (Sin210 + (l/2)* Sin2*210)= -7688.03
n = (3.14*3400/30)*45 (Sin240 + (l/2)* Sin2*240)= -14871.28
n = (3.14*3400/30)*45 (Sin270 + (l/2)* Sin2*270)= -19625
n = (3.14*3400/30)*45 (Sin300 + (l/2)* Sin2*300)= -19120.22
n = (3.14*3400/30)*45 (Sin330 + (l/2)* Sin2*330)= -11936.97
n = (3.14*3400/30)*45 (Sin360 + (l/2)* Sin2*360)=0
Расчеты внесем в табл. 2 и построим график зависимости
n = f (a) … (рис. 6)
6.3 Ускорение поршня изменяется во времени t , т.е.
а = dn / dt = (dn / da) * (da / dt) = (dn / da) * w.
dn / da = w * R * d/ da (Sina + ( l/2)* Sin2α) =
= w * R * (Cosa + l * Cos2α).
а = w * (dn / da) = w2 * R * (Cosa + l * Cos2α).
а = (3.14*3400/30)2 * 45 * (Cos0 + l * Cos2*0)=6419010.4
а = (3.14*3400/30)2 * 45* (Cos30 + l * Cos2*30)=5089121.91
а = (3.14*3400/30)2 * 45* (Cos60 + l * Cos2*60)=1925703.125
а = (3.14*3400/30)2 * 45* (Cos90 + l * Cos2*90)= -1283802.1
а = (3.14*3400/30)2 * 45* (Cos120 + l * Cos2*120)= -3209505.2
а = (3.14*3400/30)2 * 45* (Cos150 + l * Cos2*150)= -3805319.82
а = (3.14*3400/30)2 * 45* (Cos180 + l * Cos2*180)= -3851406.25
а = (3.14*3400/30)2 * 45 * (Cos210 + l * Cos2*210)= -3805319.82
а = (3.14*3400/30)2 * 45* (Cos240 + l * Cos2*240)= -3209505.2
а = (3.14*3400/30)2 * 45 * (Cos270 + l * Cos2*270)= -1283802.1
а = (3.14*3400/30)2 * 45* (Cos300 + l * Cos2*300)=1925703.125
а = (3.14*3400/30)2 * 45* (Cos330 + l * Cos2*330)=5089121.91
а = (3.14*3400/30)2 * 45* (Cos360 + l * Cos2*360)=6419010.4
Расчеты занесем в табл.2 и построим график зависимости
а = f (a) … (рис. 6).
Таблица 2
a, град. ПКВ | Sina | Sin2 a | (l/2)Sin2 a | Sin2a | (l/2)Sin2a | Cosa | Cos2a | l * Cos2a | S, мм | n мм/с | а мм/с2 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0.25 | 0 | 0 | 6419010.4 |
30 | 0,5 | 0,25 | 0.03125 | 0,87 | 0.10875 | 0,87 | 0,5 | 0.125 | 12.392 | 11936.97 | 5089121.91 |
60 | 0,87 | 0,77 | 0.09625 | 0,87 | 0.10875 | 0,5 | -0,5 | -0.125 | 44.531 | 19120.22 | 1925703.125 |
90 | 1 | 1 | 0.125 | 0 | 0 | 0 | -1 | -0.25 | 84.375 | 19625 | -1283802.1 |
120 | 0,87 | 0,77 | 0.09625 | -0,87 | -0.10875 | -0,5 | -0,5 | -0.125 | 119.531 | 14871.28 | -3209505.2 |
150 | 0,5 | 0,25 | 0.03125 | -0,87 | -0.10875 | -0,87 | 0,5 | 0.125 | 142.296 | 7688.03 | -3805319.82 |
180 | 0 | 0 | 0 | 0 | 0 | -1 | 1 | 0.25 | 150 | 0 | -3851406.25 |
210 | -0,5 | 0,25 | 0.03125 | 0,87 | 0.10875 | -0,87 | 0,5 | 0.125 | 142.296 | -7688.03 | -3805319.82 |
240 | -0,87 | 0,77 | 0.09625 | 0,87 | 0.10875 | -0,5 | -0,5 | -0.125 | 119.531 | -14871.28 | -3209505.2 |
270 | -1 | 1 | 0.125 | 0 | 0 | 0 | -1 | -0.25 | 84.375 | -19625 | -1283802.1 |
300 | -0,87 | 0,77 | 0.09625 | -0,87 | -0.10875 | 0,5 | -0,5 | -0.125 | 44.531 | -19120.22 | 1925703.125 |
330 | -0,5 | 0,25 | 0.03125 | -0,87 | -0.10875 | 0,87 | 0,5 | 0.125 | 12.392 | -11936.97 | 5089121.91 |
360 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0.25 | 0 | 0 | 6419010.4 |
7. Динамический анализ кривошипно-шатунного механизма
К основным силам, действующим в кривошипно-шатунном механизме, относят: силы давления газов на поршень, силы инерции масс движущихся частей и полезное сопротивление на колесах заднего моста автомобиля. Силами трения в кривошипно-шатунном механизме пренебрегаем из-за их небольшой величины.
Силы давления газа на поршень находятся в прямой зависимости от рабочего цикла двигателя внутреннего сгорания (см. индикаторные диаграммы (рис. 3, рис. 4)).
Давление газа на поршень изменяется в зависимости от угла поворота кривошипа и для любого положения поршня определяется по индикаторной диаграмме для данного варианта исходных данных и заносится в таблицу 3.
Силы инерции зависят от масс движущихся деталей и числа оборотов двигателя. График зависимости сил инерции от угла поворота кривошипа коленчатого вала представлен на развернутой индикаторной диаграмме (рис. 4).
Мгновенная сила от давления газов, действующая на поршень:
Р = Рг * F = Рг * (π*Д2 / 4); МН;
где Д – диаметр цилиндра, м;
F – площадь поршня, м2 ;
Рг – давление газов, МПа;
Движущее усилие Рд = Р + Ри равно сумме силы от давления газов на поршень Р и сил инерции движущихся частей Ри .
Рд = РS *F = π*Д2 / 4 * РS ;
Рд = -0,9*3,14*0,0822 /4= -0,00475 Рд = 4,3*3,14*0,0822 /4=0,0227
Рд = -0,8*3,14*0,0822 /4= -0,00422 Рд = 2,9*3,14*0,0822 /4=0,01531
Рд = -0,5*3,14*0,0822 /4= -0,00264 Рд = 2,6*3,14*0,0822 /4=0,01372
Рд = 0,3*3,14*0,0822 /4=0,00158 Рд = 2,4*3,14*0,0822 /4=0,01267
Рд = 0,8*3,14*0,0822 /4=0,00422 Рд = 2,5*3,14*0,0822 /4=0,0132
Рд = 1*3,14*0,0822 /4=0,00528 Рд = 2,55*3,14*0,0822 /4=0,01346
Рд = 1,1*3,14*0,0822 /4=0,00581 Рд = 2,3*3,14*0,0822 /4=0,01214
Рд = 1,1*3,14*0,0822 /4=0,00581 Рд = 1,75*3,14*0,0822 /4=0,00924
Рд = 1*3,14*0,0822 /4=0,00528 Рд = 0,75*3,14*0,0822 /4=0,00396
Рд = 0,5*3,14*0,0822 /4=0,00264 Рд = -0,5*3,14*0,0822 /4= -0,00264
Рд = 0*3,14*0,0822 /4=0 Рд = -0,8*3,14*0,0822 /4= -0,00422
Рд = -0,2*3,14*0,0822 /4= -0,00106 Рд = -0,9*3,14*0,0822 /4= -0,00475
Рд = 1*3,14*0,0822 /4=0,00528
Сила давления газов на поршень Р (см. рис. 5.) разлагается на силу, направленную по оси шатуна Рш , и силу, перпендикулярную оси цилиндра
Рн .Рш = Рд / Cosb
Рш = -0,00475/1= -0,00475
Рш =-0,00422/0,99= -0,00418
Рш =-0,00264/0,98= -0,00259
Рш =0,00158/ 0,97=0,00153
Рш =0,00422/ 0,98= 0,00414
Рш =0,00528/ 0,99=0,00523
Рш =0,00581/1=0,00581
Рш =0,00581/ -0,99= -0,00575
Рш =0,00528/ -0,98= -0,00517
Рш =0,00264/-0,97= -0,00256
Рш =0/-0,98= 0
Рш =-0,00106/ -0,99=0,00105
Рш =0,00528/ -1= -0,00528
Рш =0,0227/ -0,99= -0,0227
Рш =0,01531/ -0,98= -0,015
Рш =0,01372/-0,97= -0,01331
Рш =0,01267/-0,98= -0,01242
Рш =0,0132/-0,99= -0,01307
Рш =0,01346/ 1=0,01346
Рш =0,01214/ 0,99=0,01202
Рш =0,00924/0,98=0,00906
Рш =0,00396/0,97=0,00384
Рш =-0,00264/0,98= -0,00259
Рш =-0,00422/0,99= -0,00422
Рш =-0,00475/1= -0,00475
Рн = Рд * tgb;
Рн = -0,00475*0=0
Рн =-0,00422*0,13= -0,00055
Рн =-0,00264*0,22= -0,00058
Рн =0,00158*0,26=0,00041
Рн =0,00422*0,22=0,00093
Рн =0,00528*0,13=0,00069
Рн =0,00581*0=0
Рн =0,00581*(-0,13)= -0,00076
Рн =0,00528*(-0,22)= -0,00116
Рн =0,00264*(-0,26)= -0,00069
Рн =0*(-0,22)=0
Рн =-0,00106*(-0,13)=0,00014
Рн =0,00528*0=0
Рн =0,0227*(-0,13)= -0,00295
Рн =0,01531*(-0,22)= -0,00337
Рн =0,01372*(-0,26)= -0,00357
Рн =0,01267*(-0,22)= -0,00279
Рн =0,0132*(-0,13)= -0,00172
Рн =0,01346*0=0
Рн =0,01214*0,13=0,00158
Рн =0,00924*0,22=0,00203
Рн =0,00396*0,26=0,00103
Рн =-0,00264*0,22= -0,00058
Рн =-0,00422*0,13= -0,00055
Рн =-0,00475*0=0
Сила Рш стремится сжать или растянуть шатун, а сила Рн прижимает поршень к стенке цилиндра и направлена в сторону, противоположную вращению двигателя.
Сила Рш может быть перенесена по линии её действия в центр шейки кривошипа и разложена на тангенциальную силу Рт , касательную к окружности, и радиальную силу Рр , действующую по радиусу кривошипа
Рр = Рш *Cos (a + b) = Pд * (Cos(a + b) / Cosb);
Рр = -0,00475*1= -0,00457
Рр =-0,00422*0,8= -0,00336
Рр =-0,00264*0,31= -0,00082
Рр =0,00158*(-0,26)= -0,00041
Рр =0,00422*(-0,69)= -0,00291
Рр =0,00528*(-0,93)= -0,00491
Рр =0,00581*(-1)= -0,00581
Рр =0,00581*(-0,93)= -0,0054
Рр =0,00528*(-0,69)= -0,00364
Рр =0,00264*(-0,26)= -0,00069
Рр =0*0,31=0
Рр =-0,00106*0,8= -0,00085
Рр =0,00528*1=0,00528
Рр =0,0227*0,8=0,01816
Рр =0,01531* 0,31=0,00475
Рр =0,01372*(-0,26)= -0,00357
Рр =0,01267*(-0,69)= -0,00874
Рр =0,0132*(-0,93)= -0,01228
Рр =0,01346*(-1)= -0,01346
Рр =0,01214*(-0,93)= -0,01129
Рр =0,00924*(-0,69)= -0,00638
Рр =0,00396*(-0,26)= -0,00103
Рр =-0,00264*0,31= -0,00082
Рр =-0,00422*0,8= -0,00336
Рр =-0,00475*1= -0,00475
Силы Рт и Р’т образуют на коленчатом валу пару сил с плечом R, момент которой приводит во вращение коленчатый вал и называется крутящим моментом двигателя.
Мкр = Рт *R = Рд * (Sin(a + b) / Cosb) * R;
где Рт = Рд * (Sin(a + b) / Cosb); R – радиус кривошипа в м.
Мкр =0,075*(-0,00475)*0=0
Мкр =0,075*(-0,00422)*0,61= -0,00019
Мкр =0,075*(-0,00264)*0,98= -0,00019
Мкр =0,075*0,00158*1=0,00012
Мкр =0,075*0,00422*0,75=0,00024
Мкр =0,075*0,00528*0,39=0,00015
Мкр =0,075*0,00581*0=0
Мкр =0,075*0,00581*(-0,39)= -0,00017
Мкр =0,075*0,00528*(-0,75)= -0,0003
Мкр =0,075*0,00264*(-1)= -0,0002
Мкр =0,075*0*(-0,98)=0
Мкр =0,075*(-0,00106)*(-0,61)=0,00005
Мкр =0,075*0,00528*0=0
Мкр =0,075*0,0227*(-0,61)= -0,00104
Мкр =0,075*0,01531*(-0,98)= -0,00113
Мкр =0,075*0,01372*(-1)= -0,00103
Мкр =0,075*0,01267*(-0,75)= -0,00071
Мкр =0,075*0,0132*(-0,39)= -0,00039
Мкр =0,075*0,01346*0=0
Мкр =0,075*0,01214*0,39=0,00036
Мкр =0,075*0,00924*0,75=0,00052
Мкр =0,075*0,00396*1=0,0003
Мкр =0,075*(-0,00264)*0,98= -0,00019
Мкр =0,075*(-0,00422)*0,61= -0,00019
Мкр =0,075*(-0,00475)*0=0Рт =-0,00475*0=0
Рт =-0,00422*0,61= -0,00257
Рт =-0,00264*0,98= -0,00259
Рт =0,00158*1=0,00158
Рт =0,00422*0,75=0,00316
Рт =0,00528*0,39=0,00206
Рт =0,00581*0=0
Рт =0,00581*(-0,39)= -0,00227
Рт =0,00528*(-0,75)= -0,00396
Рт =0,00264*(-1)= -0,00264
Рт =0*(-0,98)=0
Рт =-0,00106*(-0,61)=0,00065
Рт =0,00528*0=0
Рт =0,0227*(-0,61)= -0,01385
Рт =0,01531*(-0,98)= -0,015
Рт =0,01372*(-1)= -0,01372
Рт =0,01267*(-0,75)= -0,0095
Рт =0,0132*(-0,39)= -0,00515
Рт =0,01346*0=0
Рт =0,01214*0,39=0,00473
Рт =0,00924*0,75=0,00693
Рт =0,00396*1=0,00396
Рт =-0,00264*0,98= -0,00259
Рт =-0,00422*0,61= -0,00257
Рт =-0,00475*0=0
На подшипники коленчатого вала действует сила Р’ш , которая может быть разложена на силу P’ = P и Р’н = Рн . Значение расчетных величин Рд , Рш , Рн , Рр , Рт и Мдв занести в табл. 3 и построить зависимости от a.
8. Силовой расчет трансмиссии автомобиля.
Трансмиссия автомобиля (рис. 1) включает в себя фрикционную муфту сцепления 3, коробку перемены передач 4, главную передачу 5 заднего моста, дифференциал 6 и полуоси 7.
Коробка перемены передач состоит из двух пар шестерен: первая пара с числом зубьев Z1 и Z2 , вторая пара с числом зубьев Z3 и Z4 .
Шестерня Z2 – подвижная по промежуточному валу и может выходить из зацепления с Z1 . Прямая передача может включаться с помощью кулачковой муфты при разъединении шестерен Z1 и Z2 .
Передаточное отношение коробки перемены передач вычисляется по выражению:
ip = i1 *i2 .
Передаточное отношение первой зубчатой пары
i1 =Z2 / Z1 ,
а второй i2 =Z4 / Z3 , т.е. ip = (Z2 / Z1 ) * (Z4 / Z3 ).
ip =(60/20)*(100/25)=12
Передаточное отношение конических шестерен главной передачи:
iк =Z6 / Z5 . iк =80/20=4
Общее передаточное отношение
iобщ =iр * iк .
iобщ =12*4=48
Частота вращения выходного вала коробки передач
Пвых = Пg / ip ; а ведомого вала Пведом = Пвых / iк .
Пвых =2500/12=208,33 об/мин Пведом =208,33/4=52,08 об/мин
Крутящий момент на ведомом валу:
Мкр =Мведом =Мg *iобщ .
Мкр =0*48=0
Мкр =-0,00019*48=-0,00912
Мкр =-0,00019*48=-0,00912
Мкр =0,00012*48=0,00576
Мкр =0,00024*48=0,01152
Мкр =0,00015*48=0,0072
Мкр =0*48=0
Мкр =-0,00017*48=-0,00816
Мкр =-0,0003*48=-0,0144
Мкр =-0,0002*48=-0,0096
Мкр =0*48=0
Мкр =0,00005*48=0,0024
Мкр =0*48=0
Мкр =-0,00104*48=-0,04992
Мкр =-0,00113*48=-0,05424
Мкр =-0,00103*48=-0,04944
Мкр =-0,00071*48=-0,03408
Мкр =-0,00039*48=-0,01872
Мкр =0*48=0
Мкр =0,00036*48=0,01728
Мкр =0,00052*48=0,02496
Мкр =0,0003*48=0,0144
Мкр =-0,00019*48=-0,00912
Мкр =-0,00019*48=-0,00912
Мкр =0*48=0
9. Прочностной расчет узлов и деталей двигателя
9.1 Поршень
Поршень рассчитывается на сжатие от силы давления газов Рг по наименьшему сечению, расположенному выше поршневого пальца, на удельное давление тронка, на прочность днища, а поверхность опорных гнезд пальца (бобышек) проверяется на наибольшее удельное давление (рис. 7).
Напряжение сжатия определяется из выражения:
sсж = Рг /Fmin £[sсж ] Н/мм2 ,
где Fmin – наименьшее сечение поршня над пальцем (в большинстве конструкций проходит по канавке последнего кольца), мм2 .
Fmin = (π*Д2 / 4)- (π*Д1 2 / 4)= π / 4*( Д2 - Д1 2 )
Д1 =Д-(0,05…0,07)*Д=Д*(1-0,06)=82*0,94=77,08 мм
Fmin =3,14/4*(822 -77,082 )=614,4 мм2
т.к. Рг = Рг max * (π*Д2 / 4);
Pг =5*(3,14*822 /4)=26391,7 Н.
sсж =263917/614,4=42,96 Н/мм2 £[sсж ]
Допустимое напряжение для поршней из алюминиевых сплавов [sсж ] = 50,0 … 70,0 Н/мм2 , и для стальных [sсж ] = 100 Н/мм2 .
Расчет тронка поршня на удельное давление и определение длины направляющей части производится по формуле
Lp = Pн. max / Д*к,
где Pн. max = (0,07…0,11) Pг ; [к] = 2…7 кг/см2 .
Lp =0,09*26391,7/(8,2*5)=57,933
Днище поршня рассчитывается на изгиб. При плоском днище условие прочности (максимально-допустимое напряжение изгиба) имеет вид
sи = Pг. max / 4d2 £[sи ],
где d - толщина днища поршня, мм.
Допустимое напряжение на изгиб днищ для алюминиевого поршня
[sи ] = 70 н/мм2 , а для стальных - [sи ] = 100 н/мм2 .
При проектировании пользуются эмпирическими зависимостями, установленными практикой.
Толщина днища алюминиевых поршней d = (0,1 … 0,12) Д и стальных (0,06 … 0,1) Д.
Для алюминиевых: sи = 26391,7/ 4*(0,12*82)2 =68,14£[sи ]
Для стальных: sи = 26391,7 / 4*(0,1*82)2 =98,125 £[sи ]
Толщина стенки поршня за кольцами принимается равной (0,05 … 0,07) Д;
Общая длина поршня L = (1,2 … 1,8)S,
Где S – ход поршня, S = 2R, [мм]S=2*75=150 мм
Расстояние от нижней кромки поршня до оси пальца
С = (0,7 … 1,2) Д. С=0,9*82=73,8
Поверхность опорных гнезд пальца (бобышек) проверяется на наибольшее удельное давление.
Рmax = (Pг. max /dп )* lп , н/мм2
Где dп – наружный диаметр поршнего пальца, мм, dп / Д = 0,4.
dп =0,4*Д=0,4*82=32,8 мм
lп – длина гнезд пальца, мм, lп = 2 dп .
lп =2*32,8=65,6 мм
Рmax =(5/32,8)*65,6=10 н/мм2
Допускаемые удельные давления составляют [р] = 20 … 40, н/мм2
9.2 Поршневой палец
Поршневой палец проверяется по наибольшему давлению сгорания Рг. max = Р4 на изгиб и на срез.
Палец рассматривается как балка с равномерно распределенной нагрузкой и концами, лежащими на опорах.
Изгибающий момент относительно опасного сечения I –I:
Ми = Pг /2 (L/2 - а/4), Н*мм,
Где L – расстояние между опорами, мм,
L = Д – dп =82-32,8=49,2 мм
а – длина подшипников верхней опоры шатуна, мм,
а = dп =32,8мм
Следовательно:
Ми = 26391,7/2(49,2/2 – 32,8/4)=216406,2 Н*мм
Напряжение изгиба
sи = Ми / Wи , н/мм2 ; £[sи ],
где Wи – момент сопротивления изгибу
Wи = 0,1 * ((d4 п – d4 в ) / d п ), мм3 ,
Где dв – внутренний диаметр поршневого пальца, мм; dв = 0,5*dп dв =0,5*32,8=16,4 мм
Wи =0,1*((32,84 -16,44 )/32,8)=3308,208 мм3
sи =216406,2/3308,208=65,415 н/мм2 ; £[sи ],
[sи ] = 120 н/мм2 для углеродистой стали.
Срезывающие напряжения пальца sср = Pг / 2F < [sср ]
F – поперечное сечение пальца, мм2 ,
F = (π/4) * (d2 п – d2 в )=(3,14/4)*(32,82 -16,42 )=633,4 мм2
sср =216406,2/(2*633,4)=170,83 Н/мм2 < [sср ]
[sср ] = 500…600 Н/см2 .
Литература
1. Е.Росляков, И.Кравчук, В.Гладкевич, А.Дружинин. «Энергосиловое оборудование систем жизнеобеспечения». Учебник – СПб: Политехника, 2004. – 350 с.: ил.
2. «Многоцелевые гусеничные и колесные машины.» Под ред. Акад., докт. техн. наук,проф. Г.И.Гладкова – М: Транспорт, 2001. – 214 с.
3. Скойбеда А.Т. и др. «Детали машин и основы конструирования.» Учебник М:, Высшая школа, 2000. – 584 с.