Скачать .docx |
Курсовая работа: Машина для балластировки пути. Машина ЭЛБ
Федеральное агентство железнодорожного транспорта
Сибирский государственный университет путей сообщения
МАШИНА ДЛЯ БАЛЛАСТИРОВКИ ПУТИ. МАШИНА ЭЛБ
Курсовой проект по дисциплине
Устройство и основы расчета путевых машин
Руководитель: Разработал: студент :
________ ___________
(подпись) (подпись)
_______________ ___________________
(дата проверки) (дата сдачи на проверку)
Краткая рецензия
______________________________
__________________________________
( запись о допуске к защите ) (оценка, подпись преподавателей )
2010
Содержание
1. Назначение, работа и устройство машины, общий вид
2. Определение основных параметров машины и рабочего оборудования
2.1 Геометрические параметры
2.2 Кинематические параметры
2.3 Внешние сопротивления
3. Тяговый расчет машины
3.1. Выбор локомотива
4. Расчет механизма подъема
Список литературы
1 Назначение, работа и устройство машины, общий вид
Электробалластер ЭЛБ-4С–машина непрерывного действия, предназначенная для постановки на балластное основание при выполнении работ по строительству и техническому обслуживанию пути, предусмотренных действующей системой ведения путевого хозяйства.
Электробалластер выполняет дозировку балласта, предварительно выгруженного вдоль пути, срезку балласта у торцов шпал, планировку откосов и междупутных зон призмы, подъемку путевой решетки на формируемый балластный слой. Производит грубую выправку и рихтовку пути, оправку обочин земляного полотна. Общий вид электробалластера приведен на рисунке 1.
Таблица 1- Техническая характеристика ЭЛБ - 4С
Параметры | ЭЛБ - 4С |
Колея, мм | 1520 |
Нагрузки от оси колесной пары на рельсы, мс - в рабочем положении - в транспортном положении |
25 19 |
Минимальное усилие электромагнитного подъемника, мс | 41 |
Вес поднимаемых стрелочных переводов, т | 20 |
Ход механизма подъема, мм | 490 |
Высота подъема путевой решетки, мм | 410 |
Величина сдвига путевой решетки, мм | 300 |
Перекос пути в обе стороны, мм | 250 |
Понижение пути от воздействия стабилизатора, мм | 7 |
Скорость движения, км/ч - при дозировке балласта - при подъемки пути - при рихтовке пути - при транспортировке |
20 15 6 70 |
Мощности силовых установок - основной АД 100, кВт - вспомогательные АД 30, кВт |
100 30 |
Управление рабочими органами | дистанционное |
Обслуживающий персонал, чел | 4 |
Транспортирование - Отдельным локомотивом или в составе грузового поезда перед двумя хвостовыми вагонами. | |
Масса, т | 145 |
1,9 — основной и дополнительный дизель-электрические агрегаты переменного тока; 2, 6, 11 — кабины: управления механизмами направляющей секции, центральная и хозяйственно-бытовая; 3, 10 — насосные станции; 4, 8 — фермы направляющей и рабочей секций; 5, 24 — межферменные связи и сферический шарнир соединения секций; 7 — нижний пост управления; 12 — автосцепки; 13, 26, 32 — ходовые тележки: задняя, средняя сочлененная и передняя; 14 — шпальные щетки; 15, 20, 22, 29 — тележки рихтовочной КИС; 16 — рабочий орган динамической стабилизации пути; 17 — устройство для пробивки балласта в шпальных ящиках; 18 — ПРУ с электромагнитно-роликовыми захватами; 19 -балластерные рамы; 21, 28, 30 — пассивные и активные рельсовые щетки; 23 — прижимное устройство; 25 — трос-хорда рихтовочной КИС; 27 — уплотнители балласта откосно-плечевой и междупутной зон призмы; 31 — дозатор.
Рисунок 1- Общий вид электробалластерa ЭЛБ - 4С
2 Определение основных параметров машины и рабочего оборудования
2.1 Геометрические параметры дозатора
Расчет и выбор параметров дозатора производим с целью обеспечения возможности формирование балластной призмы в соответствии с заданным типом верхнего строения пути. К геометрически параметрам относят: параметры, определяющие расположение частей и элементов дозатора относительно рельсо-шпальной решетки или поверхности балластной призмы; размеры частей дозатора; параметры, определяющие взаимное расположение частей и элементов дозатора.
Параметрами расположения частей дозатора являются: высота расположения нижней кромки щита и корня крыла относительно уровня головки рельса во время работы hГ и транспортировки hТ ; высота расположения режущей кромки основной части крала относительно поверхности откоса призмы hОО ; угол поворота крыла к оси пути б; угол наклона основной части крыла в вертикальной плоскости в. Основные параметры частей дозатора: Длина Lщ и высота Hщ ; длина и высота корня крыла (L0, H0 ); длина и высота подкрылка (Lп , Hп ); параметры, определяющие расположение опорных узлов дозатора на ферме (b0 , hн , lк0 , bк и др.)
Исходные данные для расчета геометрических параметров дозатора:
Высота дозировки hд , мм 10;
Рабочий угол 350 ;
Тип в.с.п. особо тяжёлый;
Участок 2х путный, прямой;
Рельсы Р50;
Шпалы ж/б;
Рисунок 2 – Поперечное сечение балластной призмы
Высота щита (Нщ) по прототипу может быть от 900 до 1020 мм. Принимаем высоту щита равной 950 мм.
Длина щита (Lщ) определенна в соответствии с высотой режущей кромки щита над уровнем головки рельса, от контуров габарита подвижного состава, от верхнего строения пути и принята равной 2516мм.
Боковое крыло проектируют с учетом поперечного профиля пути и размеров балластной призмы и щита.
Высота корня крыла принята по прототипу: . Длина корня крыла определяется по конструкционной схеме. , т.е. длина корня крыла соответствует длине между точками 1 и 2 в горизонтальной плоскости, где - в натуральную величину.
.
Длина основной части крыла ,м [1]:
, (5)
где x,y,z – координаты точек 1 и 2, мм [1].
;
;
;
;
;
.
.
Усилиеот щита передается на ферму машины через кронштейн с опорными элементами в виде роликов.
Расстояние между роликами по ширине (по прототипу) b0 = 1625 мм.
Принимаем b0 = bф . [1]
Расстояние между роликами по высоте h 0
(6)
где dp – диаметр опорного ролика, м (dр = 0,14 м);
hg – наибольшая величина опускания режущей кромки щита ниже уровня головки рельса, м (hg = 0,204 м). [2]
h ор =∆ h +0,5 dp , (7)
где ∆ h – минимальное допустимое расстояние от головки рельса до поверхности роликов в транспортном положении машины, м (∆ h =0,3 м). [2]
h ор = 0,3+0,5·0,14 = 0,37 м.
Расстояние до роликов от фермы
h н = h ф – hop . (8)
h н = 1,225 – 0,236 = 0,989м.
Расстояние относительно петлевого шарнира щита
(9)
Высота относительно нижней кромки крыла
(10)
где - высота крыла в месте крепления шарнира, м ( = 1 м).
Полуширина габарита подвижного состава, в который вписывается машина
B0 = 1,460 м.
Расстояние между опорными кронштейнами щита и распорками
(11)
где bк = 2,650 м. [2]
Длина подкрылка принята из прототипа и равна:
.
2.2 Кинематические параметры
Рисунок 3 – Схема к определению скорости подъёма дозатора
К кинематическим параметрам дозатора относятся: скорость подъема дозатора vп ; угловые скорости наклона щн и прикрытия щпр крыла. Минимальная скорость vп определяют по условиям работы на отводе возвышения с уклоном I =[i]доп . За время перемещения машины по участку длиной Lотв со скоростью vм дозатор поднимают на величину:
(12)
где = 0,70· hp
= 0,70·0,15 = 0,11 м.
Скорость подъема дозатора
(13)
где tп – время подъема дозатора,
(14)
где vp – рабочая скорость, м/с.
Время наклона дозатора
(15)
где l н – длина участка, м (l н =10... 25 м). [1]
2.3 Внешние сопротивления
Для определения сил, действующих на дозатор, составлена расчетная схема, которая приведена ниже.
Рисунок 4 – Расчетная схема к определению сил действующих на дозатор
С учетом геометрической компоновки частей дозатора, их размеров и расположения относительно поверхности призмы рассчитываем силы сопротивления балласта резанию Fp и волочению Fв для корня крыла (Fрк , Fвк ), основной части крыла (Fро , Fво ), подкрылка (Fрп , Fвп ) и щита (Fрщ , Fвщ ), а также силы трения вдоль крыла Fтк и силы трения нижних кромок крыльев о балласт Fнк .
Сила сопротивления балласта резанию для корня крыла
(16)
где k – коэффициент сопротивления балласта резанию, кН/см2
(k = 70 кПа).[2]
h рк – глубина резания щебня корнем крыла, м:
hрк =0,7·hр . (17)
hрк = 0,7·0,15=0,11 м.
l к – длина режущей части корня крыла, м.
(18)
.
Сила сопротивления балласта волочению для корня крыла
(19)
где с – плотность балласта, кг/см3 (с = 2100 кг/м3 ); [2]
f б – коэффициент внутреннего трения балласта (для щебня f б = 0,8 ). [2]
Силы сопротивления подкрылка Fрп , Fвп :
(20)
где h рп – глубина резания подкрылком, м (h рк = h рп );
l п – длина режущей части подкрылка, м
(21)
Силы сопротивления щита Fрщ , Fвщ :
(22)
где h рщ – глубина резания щитом, м (h рк = h рщ );
l щ – длина режущей части шита, м.
(23)
Сила на вырезание балласта основной частью крыла:
(24)
где k – коэффициент сопротивления балласта резанию с учетом прижатия режущей кромки крыла к обрабатываемой поверхности (k 0 = 1,3 k =91 кПа ).[1]
hpo – глубина резанию балласта основной частью крыла, м (h ро = h рщ ).
lo – длина режущей кромки основной части крыла, м (lo = 2044мм).
Сила на перемещение призмы волочения
(25)
H о – средняя высота откосной части крыла, м (H ср = 0,71м).
Силы трения
где Qпр – сила прижатия крыльев к обратной поверхности(20…25кН)
Суммарное сопротивление действующее на дозатор:
(26)
3 Тяговый расчет машины
3.1 Выбор локомотива
При расчёте используем результаты определения сил, действующих на дозатор (пункт 2.3).
Требуемая сила тяги локомотива:
Fл >Кт Wc (27)
где Кт – коэффициент, учитывающий дополнительныесопротивления от микроуклонов, микрокривых, стыков рельсов и др.(Кт =1,15)
Масса машины ЭЛБ – 4С составляет 145 т (G=1422 кН).
Количество осей 8 штук, n=8.
Тогда нагрузка приходящаяся на одну ось составляет:
Q=G\n(28)
Q=1422\8=178 кН
Для построения графика избыточной силы тяги воспользуемся формулой [2]
Fизб =Fл -(Wпм +Wм i +Wлм +Wл i ) (29)
где Wпм – основное сопротивление машины как повозки, Н
Wм i – сопротивление от уклона, Н.
Основное сопротивление:
(30)
где G бо – вертикальная нагрузка, действующая на машину, от ее веса и сил взаимодействия рабочих органов, кН (G бо = 1422кН); [3]
щ0 – основное удельное сопротивление, зависящее от типа подшипников колесных пар, нагрузки на ось, скорости движения наличия привода передвижения, Н/кН [3]
(31)
Wi - сопротивление перемещению машины от уклона, кН
(32)
где G м – вес передвигающейся машины, кН
щ i – удельное сопротивление от уклона, Н/кН: (щу = i ). [2]
По данным тяговых характеристик принимаем тепловоз ТЭ1[3].
Масса тепловоза ТЭ1 составляет 121 т (G=1187 кН) [3]
Количество осей 6 штук, n=6. Q=198, формула (28).
Основное сопротивление:
(33)
где G бо – вертикальная нагрузка, действующая на машину, кН (G бо = 1187кН); [3]
щ0 – основное удельное сопротивление, зависящее от типа подшипников колесных пар, нагрузки на ось, скорости движения наличия привода передвижения, Н/кН [3]
(34)
Wi - сопротивление перемещению тепловоза от уклона, кН
(35)
где G м – вес передвигающейся машины, кН
щ i – удельное сопротивление от уклона, Н/кН: (щу = i ). [2]
Fизб =248,7-(1,57+11,3+1,71+9,5)=224,6 кН
Для построения графика избыточной силы тяги необходимо произвести расчет по заданным точкам:
Скорость движения, км/ч |
Сила тяги локомотива, кН | |
0 | 357 | 333 |
5 | 323 | 299 |
6,5 | 308 | 284 |
10 | 165 | 141 |
12 | 145 | 121 |
15 | 135 | 111 |
4 Расчет механизма подъема
Разработка механизма сводится к определению сил и затрат мощности при выполнении рабочих операций, подбору элементов привода механизмов, расчету отдельных узлов и деталей.
Условия расчета такие же, что и при определении кинематических параметров и сил, действующих на дозатор.
Для расчета усилия в распорке все силы резания балласта от призмы волочения, действующие на части крыла при работе, проектируем на горизонтальную плоскость.
Рисунок 6 – Схема компоновки опорных узлов дозатора
Сила на подъем дозатора двумя механизмами
(36)
где - суммарные силы трения крыла и щита о балласт, кН;
F тр – суммарное сопротивление перемещению щита дозатора по опорным роликам, кН
(37)
(38)
Определяем вес G, kH: щита, корня крыла, основной части крыла, основной части подкрылка.
Вес щита:
Вес корень крыла:
Вес основной части крыла:
Вес основной части подкрылка:
Определяем силу на подъем дозатора двумя механизмами Fп , кН
Отсюда усилие 1ого крыла : Fп = 19533/2 = 9776 кН
Мощность привода в начальный момент поворота крыла
(39)
Рисунок 7 – Расчетная схема к определению сил действующих на дозатор
где Кн – коэффициент, учитывающий дополнительное сопротивление от сил трения в шарнирах крыла (Кн = 1,2). [1]
з – КПД гидропередачи, 0,95
Диаметр гидроцилиндра
(40)
где рном – номинальное давление в гидроприводе, МПа (рном = 16 МПа);
зцгм – КПД гидроцилиндра (зцгм = 0,95).
Ход поршня гидроцилиндра
(41)
Принимаем гидроцилиндр для строительных и дорожных машин ГЦО4 – 40 x 20x400
Расход жидкости гидроцилиндра
(42)
Внутренний диметр трубопровода
(43)
Принимаем dвн = 3 мм.
Список ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ
1. Задорин Г.П. Дозирующие и профилирующие устройства путевых машин. Методические указания к курсовому и дипломному проектированию. Новосибирск, 2000. 38
2. Соломонов С.А. Путевые машины. Москва, 2000. 756
3. Правила тяговых расчетов для поездной работы. М.: Транспорт, 1985. 287
4. Мокин Н.В. Объемный гидропривод. Методические указания по выполнению курсовой работы. Новосибирск,1999. 39
5. СТО СГУПС 1.01СДМ.01-2007. Курсовой и дипломный проекты. Требования к оформлению. Новосибирск, 2007.