Скачать .docx  

Реферат: Учебное пособие: Теория и практика управления судном

Содержание

Пояснительная записка

Образец титульного листа

Контрольная работа №1

Расчет пройденного расстояния и времени при пассивном и активном торможении

Расчет безопасной якорной стоянки

Учет инерции судна при швартовных операциях и определение положения мгновенного центра вращения неподвижного судна

Расчет увеличения осадки судна от крена, изменения плотности воды, проседания на мелководье и расчет безопасной ширины фарватера

Контрольная работа №2

Определение положения судна относительно резонансных зон, длины волны и построение резонансных зон

Буксировка судов

1 Расчет однородной буксирной линии

2 Расчет неоднородной симметричной буксирной линии

3 Расчет неоднородной несимметричной буксирной линии

4 Определение высоты волн для безопасной буксировки

5 Определение весовой игры буксирной линии

Снятие

1 Снятие судов с мели стягиванием

2 Снятие судов с мели способом отгрузки

3 Снятие судна с мели при наличии крена, когда внешняя

кромка банки лежит позади миделя

4 Снятие судна с мели дифферентованием в случае, когда лишь носовая часть киля лежит на грунте, а под остальной частью

киля имеется достаточный запас глубины

5 Снятие судна с мели с помощью выгрузки после предварительного перемещения груза с носа в корму, когда лишь носовая часть киля лежит на грунте, а под остальной частью киля имеется достаточный запас глубин

6 Снятие судна с мели дифферентованием, если часть груза снята, и когда лишь носовая часть киля лежит на грунте, а под остальной частью киля имеется достаточный запас глубин

7 Снятие судна с мели при отсутствии запаса глубины под килем с учетом работы машины на задний ход

8 Определение начальной скорости буксировщика при снятии с мели способом рывка

Пояснительная записка к выполнению контрольных работ

Студенты 5-го и 6-го курса заочной формы обучения по дисциплине «Теория и практика управления судном» согласно учебному плану должны выполнить 2 контрольные работы: №1 - на 5-м курсе и №2 - на 6-м .

Номер первой задачи выбирается по последней цифре шифра, а все последующие номера задач определяются путем прибавления к номеру первой задачи числа 10. Например: номер первой задачи 8, второй – 18, третьей - 28 и т.д.

Для всех видов задач приведены примеры их решения.

При выборе примера для решения задач, связанных с пассивным и активным торможением, следует обратить внимание на конструкцию винта (ВФШ, ВРШ) и на начальную скорость торможения.

При вычислениях записи делаются по форме: формула - числовое значение величин (без промежуточных вычислений) - результат.

При графическом решении задач на диаграммах и номограммах, последние должны быть приложены к контрольной работе.

На чистом поле листов диаграмм и номограмм надлежит указать фамилию студента и номер задачи.

Листы контрольной работы должны быть пронумерованы и подшиты.

Образец титульного листа прилагается.

Контрольная работа должна быть зарегистрирована на кафедре и передана для проверки преподавателю до начала экзаменационной сессии.

МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ

КИЇВСЬКА ДЕРЖАВНА АКАДЕМІЯ ВОДНОГО ТРАНСПОРТУ

імені гетьмана Петра Конашевича-Сагайдачного

Зразок

Контрольна робота № 1

з дисципліни:

“Теорія і практика управління судном”

Студента 5 курсу

заочної форми навчання

факультету судноводіння

Разгуліна В.В.

шифр 057040

Київ-2007

КОНТРОЛЬНАЯ РАБОТА № 1

Тема: “Расчет пройденного расстояния и времени при пассивном и активном торможении судна”

Примеры решения

Пример 1

Определить время падения скорости до V = 0,2 · Vo судна с ВФШ и ДВС после команды СТОП и пройденное за это время расстояние (время свободного торможения и выбег судна).

Масса судна m = 10000т, скорость полного хода Vo = 7,5 м/с, сопротивление воды при скорости Vo Ro = 350 кН, начальная скорость Vн = 7,2 м/с.

Решение.

1. Масса судна с учетом присоединенных масс воды

m1 = 1,1 m = 1,1 10000 = 11000 т

2. Инерционная характеристика судна

Sо =

3. Продолжительность первого периода (до остановки винта)

t1 = 2,25

4. Скорость в конце первого периода V1 = 0,6Vo , когда останавливается винт

V1 = 0,6 Vo = 0,6 7,5 = 4,5 м/с

5. Расстояние, пройденное в первом периоде, принимая =0,2


S1 = 0,5 So ℓn = 0,5·1768·ℓn

6. Во время второго периода (от скорости V1 = 4,5 м/с до скорости

V = 0,2 Vо = 0,2 · 7,5 = 1,5 м/с)

где =0,5 - коэффициент сопротивления для ВФШ

7. Расстояние, пройденное во втором периоде

8. Время свободного торможения

tв = t1 + t2 = 115 + 524 = 639 ≈ 640 с

9. Выбег судна

Sв = S1 + S2 = 614 + 1295 = 1909 ≈ 1910 м.

- в радианах

Пример 2

Определить время падения скорости до V = 0,2 Vо судна с ВФШ и ДВС после команды СТОП и пройденное за это время расстояние (время свободного торможения и выбег судна), если свободное торможение осуществляется на скорости Vн ≤ 0,6 Vo

m = 10000 т, Vo = 7,5 м/с, Ro = 350 кН, Vн = 4,0 м/с

Решение

1. m1 = 1,1 m = 1,1 10000 = 11000 т

2. Sо =

3. Определим скорость в конце первого периода, когда останавливается винт

V1 = 0,6 Vo = 0,6 7,5 = 4,5 м/с

4. Т.к. Vн < V1 , то винт останавливается мгновенно.

5. V = 0,2 · Vo = 0,2 · 7,5 = 1,5 м/с

6. Время падения скорости от Vн = 4,0 м/с до V = 1,5 м/с

где εвт = 0,5 – коэффициент сопротивления для ВФШ

Vн = V1

7.Расстояние, пройденное при падении скорости от Vн = 4,0 м/с до V = 1,5 м/с

Пример 3

Определить время падения скорости до V = 0,2 · Vо для судна с ВРШ и ГТЗА после команды СТОП и пройденное за это время расстояние (время свободного торможения и выбег судна).

m = 10000 т, Vo = 7,5 м/с, Ro = 350 кН, Vн = 7,2 м/с

Решение.

1. m1 = 1,1 m = 1,1 10000 = 11000 т

2. Sо =

3. V = 0,2 Vo = 0,2 7,5 = 1,5 м/с

4. Время падения скорости до V = 1,5 м/с

где V1 = Vн = 7,2 м/с ,

εвт ≈ 0,7 – коэффициент сопротивления для ВРШ

5.

Пример 4

Определить время активного торможения и тормозной путь (нормальное реверсирование) судна с ВФШ и ДВС, если максимальный упор заднего хода Рз.х. = 320 кН.

m = 10000 т, Vo = 7,5 м/с, Ro = 350 кН, Vн = 7,2 м/с

Решение

1. Масса судна с учетом присоединенных масс

m1 = 1,1 m = 1,1 10000 = 11000 т

2. Инерционная характеристика судна

Sо =

3. Продолжительность первого периода (до остановки винта)

t1 = 2,25

4. Скорость в конце первого периода V1 = 0,6 Vo , когда останавливается винт

V1 = 0,6 Vo = 0,6 7,5 = 4,5 м/с

5. Расстояние, пройденное в первом периоде

S1 = 0,5 So ℓn ,

где Ре – тормозящая сила винта, работающего в режиме гидротурбины и составляющая примерно 0,2 Ro , т.е. = 0,2

S1 = 0,5 1768 ℓn

6. Продолжительность второго периода

t2 = , где V1 = 4,5 м/с

Ре = 0,8 Рз.х. = 0,8 320 = 256 кН

t2 =

7. Расстояние, пройденное во втором периоде

S2 = 0,5 So ℓn т.к. к концу второго периода V = 0, то

S2 = 0,5 So ℓn = 0,5 1768 ℓn

8. Время активного торможения

tι = t1 – t2 = 115 + 168 = 283 с

9. Тормозной путь

Sι = S1 + S2 = 614 + 354 = 968 ≈ 970 м.

Пример 5

Определить время активного торможения и тормозной путь (нормальное реверсирование) судна с ВФШ и ДВС после команды ЗПХ, если упор заднего хода Рз.х. = 320 кН и торможение осуществляется со скорости Vн ≤ 0,6 Vo .

Масса судна m=10000т, скорость полного хода Vo =7,5 м/с, сопротивление воды на скорости Vo Ro =350 кН, начальная скорость Vн =4,0 м/с.

Решение

1. Масса судна с учетом присоединенных масс

m1 = 1,1 m = 1,1 10000 = 11000 т

2. Инерционная характеристика судна

Sо =

3. Скорость в конце первого периода, когда останавливается винт

V1 = 0,6 Vo = 0,6 7,5 = 4,5 м/с

4. В случае, если Vн ≤ V1 = 0,6 Vo (Vн = 4,0 м/с, V1 = 4,5 м/с), винт останавливается мгновенно и t1 = 0; S1 = 0.

5. Тормозящая сила винта

Ре = 0,8 Рз.х. = 0,8 320 = 256 кН

6. Время активного торможения

t = ,

где V1 = Vн = 4,0 м/с

t = = 154 с

7. Тормозной путь

S = 0,5 So ℓn ,

где V1 = Vн = 4 м/с

S = 0,5 1768 ℓn

Пример 6

Определить время активного торможения и тормозной путь судна с ВРШ и ГТЗА, если максимальный упор заднего хода Рз.х. = 320 кН.

m = 10000 т, Vo = 7,5 м/с, Ro = 350 кН, Vн = 7,2 м/с

Решение

1. Масса судна с учетом присоединенных масс

m1 = 1,1 m = 1,1 10000 = 11000 т

2. Инерционная характеристика судна

Sо =

3. Продолжительность активного торможения

,

т.к. к концу периода торможения V = 0, то

, где для ВРШ Ре = Рз.х. = 320 кН

4. Т.к. к концу периода торможения V = 0, то тормозной путь судна

S = 0,5 So ℓn , где V1 = Vн = 7,2 м/с

S = 0,5 1768 ℓn

5.

Задачи

Определить время падения скорости до V = 0,2 Vо после команды СТОП и пройденное за это время расстояние (время свободного торможения и выбег судна)

задачи

m , м

Vo , м/с

Ro , кН

Двигатель

Vн , м/с

1

8545

8,8

490

ДВС, ВРШ

8,8

2

10210

8,7

420

ДВС, ВРШ

8,7

3

11130

7,5

330

ДВС, ВФШ

7,5

4

182000

7,7

1990

ГТЗА, ВРШ

7,7

5

2725

6,1

140

ДВС, ВФШ

6,1

6

29170

9,5

1050

ДВС, ВФШ

7,0

7

11130

7,5

330

ДВС, ВФШ

3,4

8

20165

7,2

460

ДВС, ВФШ

3,0

9

61600

8,2

1080

ГТЗА, ВРШ

3,3

10

2725

6,1

140

ДВС, ВФШ

3,0

Определить время активного торможения и тормозной путь после команды ЗПХ

задачи

m , м

Vo , м/с

Ro , кН

Rз.х. ,

кН

Двигатель

Vн , м/с

11

11130

7,5

330

340

ДВС, ВФШ

7,5

12

29170

9,5

1050

1200

ДВС, ВФШ

9,5

13

182000

7,7

1990

1900

ГТЗА, ВРШ

7,7

14

10210

8,7

420

450

ДВС, ВФШ

6,5

15

20165

7,2

460

500

ДВС, ВРШ

5,0

16

87965

7,5

1120

1030

ГТЗА, ВРШ

5,8

17

20165

7,2

460

480

ДВС, ВРШ

3,0

18

61600

8,2

1080

350

ГТЗА, ВРШ

3,3

19

2725

6,1

140

120

ДВС, ВФШ

3,0

20

8545

8,8

490

470

ДВС, ВРШ

4,0

Рекомендованная литература:

1. Сборник задач по управлению судами; Учебное пособие для морских высших учебных заведений / Н.А. Кубачев, С.С. Кургузов, М.М. Данилюк, В.П. Махин. – М. Транспорт, 1984, стр. 37 - 43.

2. Управление судном и его техническая эксплуатация; Учебник для учащихся судоводительских специальностей высших инженерных морских училищ. Под редакцией А.И. Щетининой. 3-е издание. – М. Транспорт, 1983, стр. 191 – 196.

3. Управление судном и его техническая эксплуатация. Под редакцией А.И. Щетининой 2-е издание. – М. Транспорт, 1975, стр. 305 – 311.

4. С.И. Демин. Торможение судна. – М. Транспорт, 1975, стр. 5 – 18.

5. Управление судном. Под общей редакцией В.И. Снопкова. – М. Транспорт, 1975, стр. 5 – 12, 25-37.


Тема: “Расчет безопасной якорной стоянки”

Пример

Танкер водоизмещением ∆ = 84500 тонн, длина L = 228 м, средняя осадка dср = 13,6 м, высота борта Нб = 17,4 м, масса якоря G = 11000 кг, калибр якорной цепи dц = 82 мм, глубина места постановки на якорь Нгл = 30 м, грунт – ил, наибольшая скорость течения Vт = 4 уз., угол между направлением течения и ДП θт = 20º, усиление ветра по прогнозу до u = 10-12м/с, угол между ДП и направлением ветра qu = 30º. По судовым документам площадь проекции надводной части корпуса судна на мидель

Аu = 570 м2 , то же на ДП Вu = 1568 м2 .

Определить:

- длину якорной цепи необходимую для удержания судна на якоре;

- радиус окружности, которую будет описывать корма судна;

- силу наибольшего натяжения якорной цепи у клюза.

Решение

1.Вес погонного метра якорной цепи в воздухе

qо = 0,021 dц 2 = 0,021 822 = 141,2 кг/м

2.Вес погонного метра якорной цепи в воде

qw = 0,87 qо = 0,87 141,2 = 122,84 кг/м

3. Высота якорного клюза над грунтом

Нкл = Нгл + (Нб - dср ) = 30 + (17,4 – 13,6) = 33,8 м

4. Удельная держащая сила якоря дана в условии задачи: К =1,3

5. Необходимая длина якорной цепи из расчета полного использования держащей силы якоря и отрезка цепи, лежащего на грунте

, где:

а – длина части якорной цепи, лежащей на грунте; принимаем, а = 50 м;

ƒ - коэффициент трения цепи о грунт дан в условии задачи: ƒ=0,15

6. Определим силу ветра, действующую на надводную часть судна

RA = 0, 61 Сха u² (Аu cos qu + Bu sin qu ), где

Сха – аэродинамический коэффициент задачи дан в условии Сха= 1,46

qu º

Сха

сухогр. судно

пассаж. судно

танкер, балкер

0

0,75

0,78

0,69

30

1,65

1,66

1,46

60

1,35

1,54

1,19

90

1,20

1,33

1,21

RA = 0,61 1,46 122 (570 cos 30º + 1568 sin 30º) =163,850 кН = 16,7 m

7.Определим силу действия течения на подводную часть судна

Rт = 58, 8 Вт Vт 2 sin θт , где:

Вт – проекция подводной части корпуса на ДП судна,

Вт ≈ 0,9 L dcp = 0,9 · 228 · 13,6 = 2790,7 ≈ 2791 м2

Vт – скорость течения в м/с

Vт = 4 уз. ≈ 2 м/с

Rт = 58,8 2791 22 sin 20º = 224,517 кН = 22,9 m

8.Определим силу рыскания судна при усилении ветра

Rин = 0,87 G = 0,87 11000 = 9,57 m = 93,882 кН

9.Сумма действующих на судно внешних сил

∑ R = RА + Rт + Rин = 163,850 + 224,517 + 93,882 = 482,249 кН = 49,2 m


10.Определим минимальную длину якорной цепи, необходимую для удержания судна на якоре, при условии Fг = Fх = ∑ R (н) = 10 · G · К и коэффициенте динамичности Кд = 1,4

, где:

К = 1,3 – удельная держащая сила грунта,

qw = 122,84 кг/м – вес погонного метра якорной цепи в воде

С целью обеспечения безопасности якорной стоянки надлежит вытравить

9 смычек = 225 м якорной цепи.

11. Определим горизонтальное расстояние от клюза до точки начала подъема якорной цепи с грунта

x=

= 214,21 м ≈ 214 м.

Следовательно, длина цепи, лежащая на грунте составляет

а = 225 – 214=11м

12. Радиус окружности, которую будет описывать корма танкера

Rя = а + х + L = 11 + 214 + 228 = 453 м

13. Определим силу наибольшего натяжения якорной цепи у клюза

F2 = 9,81 qw

Задачи

Определить:

- длину якорной цепи, необходимую для удержания судна на якоре;

- радиус окружности, которую будет описывать корма судна;

- силу наибольшего натяжения якорной цепи у клюза.

Исходные данные

Номера задач

21

22

23

24

25

26

27

28

29

30

Тип судна

Сухо-груз

Пассаж

Танкер

Сухогруз

Танкер

Балкер

Пассаж.

Балкер

Сухо

груз

Танкер

Водоизмещение ∆, m

21000

10565

35930

20286

30000

33090

18300

55600

26200

18900

Длина L, м

150

134

179

155

186

183

195

218

171

152

Ср. осадка dср , м

9,5

6,2

10,4

9,2

9,8

7,6

8,3

12,4

10,1

8,2

Высота борта Нб , м

11,7

16,3

13,6

13,4

12,6

12,1

18,9

17,0

13,1

10,4

Площади

проекций Аu , м2

надв. части

корпуса Вu , м2

195

410

382

341

360

390

532

405

320

240

790

2480

1320

1280

1210

1290

3530

1470

840

960

Грунт

песок

галька

ил

галька

песок

ил

песок

галька

ил

песок

Масса якоря G, кг

5100

3650

7000

5000

5850

6800

6500

8600

5800

4800

Уд. держ. сила

якоря К

2,6

3,5

2,1

3,3

2,6

2,1

2,5

3,2

2,2

2,6

Калибр цепи dц ,мм

57

53

72

57

68

72

72

78

68

57

Коэф. трения

цепи ƒ

0,35

0,38

0,12

0,38

0,35

0,12

0,35

0,38

0,12

0,35

Глубина Нгл , м

25

30

35

45

40

40

35

30

25

20

Ветер qu , град

u, м/с

30

10

60

10

45

14

60

8

30

12

30

14

45

10

60

10

30

8

45

10

Течение θт , град

Vт , уз.

60

1

30

2

45

2

30

2

20

3

40

2

45

1

50

1

45

1

30

2

Аэродинамический

коэффициент Сха

1,65

1,54

1,32

1,35

1,46

1,46

1,60

1,19

1,65

1,32

Рекомендованная литература:

1. Управление судном и его техническая эксплуатация. Учебник для учащихся судоводительских специальностей высших инженерных, морских училищ. Под редакцией А.И. Щетининой. 3-е издание.- Транспорт, 1983, стр.241-249.

2. Управление судном и его техническая эксплуатация. Учебник для учащихся судоводительских специальностей высших инженерных, морских училищ. Под редакцией А.И. Щетининой. 2-е издание.- М.Транспорт, 1975, стр.336-349.

3. Сборник задач по управлению судами. Учебное пособие для морских высших учебных заведений. Н.А. Кубачев, С.С. Кургузов, М.М. Данилюк, В, П. Махин. – М. Транспорт, 1984, стр.17-20.

4. Управление судном. Под общей редакцией В.И. Снопкова.-

М. Транспорт, 1991, стр. 206-221.


Тема: “Учет инерции судна при швартовных операциях и определение положения мгновенного центра вращения неподвижного судна”

Примеры решения

Пример 1

Определить инерционную характеристику судна tv 1 на скорости VH 1 = 7,2 м/с (14 уз.), если Vo = 7,5 м/с (14,6 уз.), а So = 2500 м.

Примечание: характеристика tv численно равна времени падения скорости от VH до 0,5 VH при свободном торможении.

Решение

tv 1 = с = 4 м 42 с

Задачи

Определить инерционную характеристику tv на скорости VH .

Номер задачи

31

32

33

34

35

36

37

38

39

40

Vo , м/с

So , м/с

Vн , м/с

6,1

780

3,0

8,8

1490

4,0

8,7

2020

3,4

7,5

2120

4,0

7,2

2520

3,0

7,7

2760

3,5

9,5

2840

4,0

8,2

4220

3,3

7,5

4930

3,4

7,7

5940

2,6

Пример 2

Судно, следуя против течения, подходит к причалу со скоростью VH ' = 3 уз. Относительно грунта. Скорость течения Vт = 2 уз.

Определить на каком расстоянии от причала дать СТОП, чтобы:

а) остановиться у причала без реверса двигателя на задний ход;

б) иметь скорость относительно причала не более V= 0,5 уз.

Инерционная характеристика tv = 7 мин.

Решение

а) VH = VH ' + Vт = 3 + 2 = 5 уз.

Скорость относительно воды у причала:

V = Vт = 2 уз. ; ∆V = VH – V = 5 – 2 = 3 уз.

S = кб

б) VH = 5 уз.

Скорость относительно воды у причала

V = Vт + 0,5 = 2 + 0,5 = 2,5 уз.; ∆V = VH – V = 5 – 2,5 = 2,5 уз.

S = кб

Задачи

Судно следует против течения к причалу со скоростью Vн относительно грунта. Определить на каком расстоянии от причала дать СТОП чтобы:

а) остановиться у причала без реверса двигателя на задний ход;

б) иметь скорость относительно причала не более Vуз.

Номер задачи

41

42

43

44

45

46

47

48

49

50

Vн , уз.

Vт , уз.

V, уз.

tv , мин.

2,5

1,5

0,5

3,0

3,0

2,0

1,0

4,2

4,0

1,0

0,5

5,5

3,4

2,0

1,0

6,0

2,5

2,5

1,0

8,0

3,0

2,0

0,5

9,0

4,0

1,0

0,5

7,4

4,8

1,5

0,5

11,0

3,4

1,0

0,5

16,5

2,6

2,0

1,0

18,8

Пример 3

Определить расстояние, на котором будет остановлено судно работой винта на задний ход ωз.х. = 60 об/мин., если скорость судна перед дачей заднего хода VH = 2 уз. Скорость полного хода Vо = 16 уз. Частота вращения винта при работе на полный задний ход ωз.хо. = 105 об/мин. Инерционная характеристика Sо = 2500 м, тормозная характеристика = 0,9.

Решение

Sт = 1,3 α (1 + α) Sо

где α =

Sт = 1,3 0,025 (1 + 0,025) 2500 = 83 м

Задачи

Определить расстояние, на котором будет остановлено судно работой винта на задний ход с частотой вращения ωз.х. , если скорость перед дачей заднего хода Vн . Известна тормозная характеристика судна Рз.х. /Rо , соответствующая частота вращения винта на полный задний ход ωз.хо., инерционная характеристика Sо , скорость полного хода Vо.

Номер задачи

51

52

53

54

55

56

57

58

59

60

Vн , уз.

ωз.х. , об/мин.

Vо , уз.

Sо , м

ωз.хо. , об/мин.

Рз.х. /Rо

1,5

45

12,0

780

105

1,0

2,8

60

17,2

1490

115

1,1

2,1

50

17,0

2020

120

1,2

1,0

50

14,6

2120

100

1,1

1,2

40

14,0

2520

110

1,3

0,9

60

15,0

2760

75

0,7

1,8

70

18,5

2840

130

1,4

2,0

50

16,0

4220

60

0,4

1,4

65

14,6

4930

100

1,1

1,1

70

15,0

5940

90

0,7

Пример 4

Определить кинетическую энергию навала судна Д = 250000 тонн на докфиндер причала при скорости подхода V = 0,1 м/с, коэффициент энергии навала Кн = 0,9, коэффициент присоединенной массы μ = 0,35, g = 9,81 м/с2 .

Решение.

W = κн тонн

Задачи

Определить кинетическую энергию навала судна

Номер задачи

61

62

63

64

65

66

67

68

69

70

Д, тыс.т

V, м/с

Кн

μ

380

0,05

0,5

0,22

370

0,1

0,5

0,23

360

0,15

0,6

0,24

350

0,2

0,7

0,25

340

0,1

0,6

0,26

330

0,05

0,7

0,27

320

0,2

0,6

0,28

310

0,1

0,7

0,29

300

0,15

0,7

0,30

290

0,05

0,8

0,31

Пример 5

Под углом 90º к ДП судна подан буксир на расстоянии d = от центра тяжести судна (G) в корму. Длина судна L = 300 м. Определить расстояние (К) мгновенного центра вращения (О) от центра тяжести судна (G) и радиус, которым оконечность кормы судна опишет дугу вокруг мгновенного центра вращения.

Решение:

d = = = 100 м ; м ;

а = - d = - 100 = 50 м ; R = К + d + а = 56,25+100+50 = 206,25 м

Задачи

Определить положение центра вращения неподвижного судна и радиус, которым оконечность кормы опишет дугу вокруг мгновенного центра вращения

Номер задачи

71

72

73

74

75

76

77

78

79

80

L, м

d,

320

L/2

320

L/3

320

L/4

320

L/5

320

L/6

320

L/8

320

L/10

320

L/12

320

L/16

320

L/32

Рекомендованная литература:

1. Сборник задач по управлению судами. Учебное пособие для морских высших учебных заведений / Н.А. Кубачев, С.С. Кургузов, М.М. Данилюк, В.П. Махин. – М. Транспорт, 1984, стр. 57-62.

2. Управление судном и его техническая эксплуатация. Учебник для учащихся судоводительских специальностей высших инженерных морских училищ. Под редакцией А.И. Щетининой. 3-е издание. – М. Транспорт, 1983, стр. 284-286.

3. С.Г. Погосов. Швартовка крупнотоннажных судов. – М. Транспорт, 1975, стр. 67-72.

Тема: “Расчет увеличения осадки судна от крена, изменения плотности воды, проседания на мелководье и расчет безопасной ширины фарватера”

Примеры решения

Пример 1

І. Танкер длиной L = 174 м, шириной В = 23,5 м со статической осадкой Тсm = 9,8 м на ровном киле следует со скоростью V = 14 уз (7,2 м/с) на мелководье, Hгл = 14,8 м.

Определить суммарное увеличение осадки от крена судна θ = 3º, при изменении плотности воды от ρ1 = 1,025 m/м3 до ρ2 = 1,008 m/м3 при поправке на пресную воду ∆Т = 213 мм и от проседания на мелководье.

Решение

1. Увеличение осадки от крена

∆Ткр tg θ = tg 3º = 0,61 м

Формула используется при θ ≤ 8

2. Увеличение осадки от изменения плотности воды

∆Тпл = ·∆Т = 213 = 0,15 м

3. Увеличение осадки от проседания на мелководье

∆Тv ´ = · при 1,5 << 4

или ∆Тv = при ≤ 1,4

где Кv – коэффициент, зависящий от см. таблицу

L/B Кv L/B Кv

4 1,32 8 1,17

5 1,27 9 1,15

6 1,23 12 1,1

7 1,19

= = 7,4 К = 1,18; ∆Тv ´ = ·= 0,84 м

4. Увеличение дифферента на корму при коэффициенте общей полноты корпуса ≤ 0,65

∆Тк = Кк ∆Тv ´, где Кк – коэффициент, зависящий от см. таблицу

L/B Кк

3,5 – 5,0 1,5 – 1,25

5 – 7 1,25 – 1,1

7 – 9 1,1

= = 7,4 Кк = 1,1

∆Тv = Кк ∆Тv ´ = 1,1·0,84 = 0,92 м

5. Суммарное увеличение осадки

а) на миделе

∆Т= ∆Ткр + ∆Тпл + ∆Тv′ = 0,61 + 0,15 + 0,84 = 1,60 м

б) кормой при острых отводах кормы

∆Тк = ∆Тпл + ∆Тvк = 0,15 + 0,92 =1,07 м

т.е. максимальное увеличение осадки ∆Т = 1,60 м

2. Максимальная динамическая осадка

Тдин = Тсm + ∆Т = 9,80 + 1,60 = 11,40 м

Задачи

Определить суммарное увеличение осадки:

1) от крена судна θ ;

2) при переходе судна из воды с плотностью ρ1 в воду с плотностью ρ2 при поправке на пресную воду ∆Т ;

3) от проседания при плавании на мелководье по формулам Института гидрологии и гидротехники АН СССР для судов с острыми отводами;

4) при увеличении дифферента на корму и максимальную осадку

Номер задачи

L, м

В, м

Тсm, м

Θ, град.

∆Т, мм

ρ1 m /м 3

ρ2 m /м 3

Нгл, м

* V, уз.

81

100

13,3

6,30

3

85

1,030

1,000

7,80

9,5

82

102,3

14,1

6,35

4

87

1,029

1,002

8,90

10,0

83

104,2

15,2

6,40

5

90

1,028

1,005

10,60

11,5

84

105,6

14,4

6,55

6

92

1,027

1,007

8,80

10,5

85

108,1

15,3

6,70

7

97

1,026

1,008

10,70

10,8

86

110,6

15,4

6,85

8

100

1,025

1,013

8,80

12,5

87

112,5

16,0

7,05

7

116

1,024

1,008

9,40

11,8

88

114,4

16,3

7,10

6

123

1,023

1,010

11,40

13,2

89

116,7

16,6

7,25

5

131

1,022

1,015

9,60

12,4

90

138,0

19,9

8,50

4

175

1,021

1,004

11,90

13,0

V, уз. перевести в V м/с

Пример 2

Определить приращение осадки судна при плавании на мелководье и в узком канале по Формулам Барраса, когда отношение глубины к осадке , а отношение площади подводной части миделя судна к площади поперечного сечения канала . Длина судна L=160 м, ширина В=26,7 м, осадка Тср =10,80 м , объемное водоизмещение судна

Vоб =34635 м3 , глубина Н=12, 40 м, скорость судна V=8 уз.

Решение

1. Коэффициент общей полноты судна

2. Увеличение осадки на мелководье

3. Увеличение осадки в канале

Задачи

Номер задачи

L, м

В, м

Т , м

Vоб , м3

V, уз

Нгл , м

91

167,4

27,4

10,65

33217

9,5

12,5

92

174,6

28,5

9,80

34136

10,0

11,3

93

188,9

29,3

10,85

43238

11,5

12,8

94

202,4

31,6

11,25

53245

12,5

13,1

95

210,0

35,2

12,80

71909

10,8

14,4

96

212,4

34,8

12,95

74662

9,7

15,0

97

217,3

34,5

13,05

78267

13,4

15,1

98

221,6

33,7

13,10

80220

12,2

15,3

99

227,8

34,2

13,15

82983

12,0

15,8

100

231,5

35,7

13,25

85414

11,0

15,0

Пример 3

По методу NPL определить изменение осадки танкера: L= 300 м

на скорости 14 уз. при Тcm = 13,5 м;

дифферент ψ = 0, на глубине Нгл=20 м; (см. Приложение 1)

Для использования номограммы NPL необходимо выполнение следующих условий:

- коэффициент полноты объема корпуса судна должен быть 0,80≤ δ≤90

- отношение длины судна к его ширине ;

- отношение глубины моря к осадке 1,1≤≤1,5 ;

- число Фруда по глубине Frh = 0,10,6;

Решение

1. По номограмме NPL (см. лист. Приложение 1) из точки А, соответствующей значению V = 14 уз., провести вертикаль до пересечения с линией глубины моря Н = 20 м (точка В);

2. Из точки В провести горизонталь на правую часть номограммы до пересечения с линиями заданного дифферента ψ = 0 (точка С – нос, точка С' – корма);

3. Из точек С и С' опустить вертикальные линии до пересечения с линией длины судна L = 300 м (точки D и D');

4. Из точек D и D' провести горизонтали до пересечения осадок и снять результат: приращение осадки носом ∆Тн=+1,98м, приращение осадки кормой ∆Тк=+1,48м

Задачи

Номер задачи

L , м

Тсm, м

Нгл, м

Дифферент

ψ

V, уз.

101

190

9,85

13,0

0

12

102

200

11,15

15,0

1/100 на корму

12

103

210

12,85

16,0

1/100 на корму

13

104

230

13,10

17,0

0

14

105

240

13,55

18,0

1/500 на нос

14

106

250

14,00

17,0

1/500 на нос

15

107

280

15,65

19,0

0

12

108

300

18,40

22,0

1/100 на корму

11

109

330

21,70

26,0

1/100 на корму

10

110

350

23,90

28,0

0

12

Пример 4

а) Определить ширину свободного пространства прохождения судна в узкости на прямолинейном участке

L = 174м – длина судна;

В = 23,5м – ширина судна;

* V = 18 уз – скорость судна;

= 200м – наибольшая ошибка;

tu = 10мин = 600с – промежуток времени между обсервациями;

t3 = 3,5 мин=150с – время на определение и прокладку линий положения;

Со = 5 о – учитываемый угол сноса;

Со = - ошибка в угле сноса;

ω = 0.1 град/c – средняя угловая скорость поворота;

Z = 30м – необходимый навигационный запас.

* V, уз. перевести в V м/с

Решение

в = 2 δm + 2V (tu + tз ) =

= 2 · 200 + 2 · 7,2 (600 + 150) + 23,5 + 2 · 30 ≈ 887м.

в) Определить будет ли достаточной ширина фарватера 400 м при проводке судна по створу (непрерывное наблюдение за смещением судна, tu =0, tз = 0) при тех же условиях.

Решение

в = 2 δm + = 2 · 200 + + 23,5 + 2 · 30= =510 м.

Ширина фарватера не достаточна.

Задачи

а) Определить ширину полосы свободного пространства для прохождения судном узости:

Номер задачи

L, м

В, м

V, м /с

δm , м

tu , с

tз , с

С, град.

∆С, град.

Z, м

ω град./с

111

126,0

17,0

6,0

200

600

150

5,0

2,0

30

0,1

112

180,0

27,2

8,0

300

600

150

4,0

2,0

40

0,1

113

214,0

31,0

7,0

200

600

150

5,0

3,0

50

0,1

114

245,0

38,0

6,0

300

600

150

4,0

2,0

50

0,2

115

277,0

45,0

8,0

200

600

150

5,0

3,0

50

0,2

в) Определить будет ли достаточной ширина фарватера 150 м при проводке судна по створу.

Номер задачи

в , м

L, м

В, м

V, м /с

δm , м

С, град.

∆С, град.

Z, м

ω град./с

116

150

165,0

25,3

3,0

25,0

12,0

5,0

10,0

0,1

117

200

236,0

39,0

3,0

25,0

3,0

1,0

10,0

0,1

118

200

190,6

31,4

4,0

25,0

8,0

3,0

10,0

0,1

119

150

172,0

22,8

3,0

25,0

3,0

1,0

10,0

0,1

120

150

109,0

16,6

4,0

25,0

5,0

2,0

10,0

0,1

Рекомендованная литература:

1. Сборник задач по управлению судами. Учебное пособие для морских высших учебных заведений / Н.А. Кубачев, С.С. Кургузов, М.М. Данилюк, В.П. Махин. – М. Транспорт, 1984, стр. 48 - 57.

2. Управление судном и его техническая эксплуатация. Учебник для учащихся судоводительских специальностей высших инженерных морских училищ. Под редакцией А.И. Щетининой. 3-е издание. – М. Транспорт, 1983, стр. 383 – 392.

3. Управление судном и его техническая эксплуатация. Под редакцией А.И. Щетининой 2-е издание. – М. Транспорт, 1975, стр. 393 – 401.

Контрольная работа № 2

Тема : «Определение положения судна относительно резонансных зон, длины волны и построение резонансных зон»

Примеры решения

Пример 1

Определение положения судна относительно резонансных зон.

Судно следует в условиях регулярного волнения, когда определение длины волны не представляет затруднений. Сравниваем ее с длиной судна. Определить положение судна относительно резонансных зон.

Дано: Длина судна L = 101,9 м; ширина судна В = 16,7 м; осадка судна

Т = 7,0 м; скорость судна Vs = 10 уз.; поперечная метацентрическая высота h = 0,9 м; курсовой угол направления движения волны q = 45º; длина волны λ = 90 м.

Решение

1. Рассчитать кажущийся период волн:

2. Находим период бортовой качки судна

; принимаем К = 0,8

3. Определяем период килевой качки

4. Рассчитываем отношения:

Выводы:

а) по бортовой качке судно находится в дорезонансной зоне, т.е.

< 0,7;

б) по килевой качке судно находится в резонансной зоне

(0,7 < < 1,3) и испытывает килевую качку

Задачи

Исходные данные

Номер задачи

1

2

3

4

5

6

7

8

9

10

В, м

19,7

20,0

17,7

14,4

16,7

16,7

14,0

17,7

19,2

20,0

Т, м

9,2

8,6

7,8

6,5

7,1

6,8

5,8

7,6

6,6

8,2

h, м

0,97

0,92

0,95

0,85

0,90

0,88

0,94

0,90

1,20

0,95

Vs , уз.

14,0

12,0

8,0

9,0

13,0

6,0

4,0

10,0

12,0

12,0

130

110

35

80

140

25

15

160

45

120

λ, м

100

40

60

30

80

70

40

130

120

90

Пример 2

Определение длины волны с помощью универсальной диаграммы качки (Приложение 2).

Судно следует в условиях нерегулярного волнения. Для определения средней величины кажущегося периода волн измерили суммарное время прохождения серии волн и вычислили τ как среднее арифметическое.

Определить среднее значение длины волн.

Дано: Скорость судна Vs = 10 уз. ; курсовой угол направления движения волны q = 30º; кажущийся период волн τ ′= 7 с.

Решение

1. Находим в нижней части диаграммы точку, соответствующую значениям Vs = 10 уз. и q = 30º.

2. Проводим из этой точки вертикальную линию в верхнюю часть диаграммы до пересечения с кривой τ′ = 7 с.

3. Ордината полученной точки соответствует длине волны λ = 130 м.

Задачи

Исходные данные

Номер задачи

11

12

13

14

15

16

17

18

19

20

Vs , уз.

12

10

13

12

12

11

8,5

12

16

14

q, град.

35

120

15

95

170

40

105

50

35

120

τ, с

6

12

5

9

17

6,5

8,5

6

8

14

Пример 3

Построение резонансных зон на универсальной диаграмме Ремеза (Приложение 3) по измеренному кажущемуся периоду волн.

Построить резонансные зоны для бортовой и килевой качки.

Дано: Длина судна L = 139,4 м; скорость судна Vs = 12 уз., q = 120º; период собственных поперечных колебаний судна Тθ = 18 с; период собственных продольных колебаний судна Тψ = 8 с, кажущийся период волн τ′= 12 с.

Решение

1. Находим длину волны (см. Пример 2 этой темы): λ = 140 м.

2. Из точки пересечения горизонтали с ординатой, равной λ = 140 м и кривой τ′ = Тθ = 18 с, проводим в нижнюю часть диаграммы линию чистого резонанса по бортовой качке.

3. Рассчитаем и (можно воспользоваться шкалой в верхней части диаграммы)

4. Из точек пересечения кривых τ′ = 14 с и τ′ = 26 с с горизонталью λ = 140 м проводим вертикальные линии в нижнюю часть диаграммы. Эти вертикали ограничивают резонансную зону по бортовой качке.

5. Линию чистого резонанса по килевой качке проводим из точки пересечения кривой τ′=Тψ =8 с горизонталью λ=140м. Линии, ограничивающие резонансную зону по килевой качке, проводим из точек пересечения горизонтали λ=140 м с кривыми τ′ =Тψ / 1,3=8/1,3=6 с и τ′ =Тψ /0,7=8/0,7=11 с

Ответ: вертикали, ограничивающие резонансную зону по бортовой качке, отсекают на внешней полуокружности курсовых углов значения 112º и 138º, а по килевой качке значения 45º и 100º.

Задачи

Исходные данные

Номер задачи

21

22

23

24

25

26

27

28

29

30

Vs , уз.

14

14

10

12

9

12

11

8

10

13

Тθ , с

10

12

14

16

14

10

11

12

10

14

Тψ , с

6

6

5

6

5

5

8

5

5

4

q, град.

30

85

45

155

30

10

30

60

0

60

τ, с

4

4,5

9

16

8

4

5

7

5

7

Пример 4

Построение резонансной зоны бортовой качки по высоте волны. (Приложение 4)

Судно следует в условиях, когда волнение имеет явно выраженный нерегулярный характер. Определить резонансную зону бортовой качки по высоте волны 3 %-ной обеспеченности, τ рассчитывать с точностью до 1 с.

Дано: Тθ = 20 с; h3% = 4м.

Решение

1. Из точек шкал А и В, соответствующих hв = 4 м, проводим горизонтали до пересечения с кривой τ′ = 20 с в части диаграммы, расположенной выше кривой τ′ = ∞.

2. Из точек пересечения опускаем вертикали, которые на нижней части диаграммы ограничат зону значений V и q, отвечающих чистому резонансу бортовой качки.

3. Рассчитываем Тθ / 1,3 = 15,4 с и Тθ / 0,7 = 28,6 с. Так же, как и кривая τ′=20с, кривые τ′= и τ′= пересекаются горизонталями, упомянутыми в п.1. При этом образуется фигура с 4-мя точками пересечения. Из крайней левой и крайней правой точек пересечения проводим вертикальные линии, которые на нижней части диаграммы ограничат резонансную зону бортовой качки.

Крайней левой точкой пересечения будет точка пересечения кривой

τ′ = 29 с горизонталями h3% = 4м шкалы В, а крайней правой – точка пересечения кривой τ′ = 15 с и горизонталями h3% = 4м шкалы А. Внешнюю полуокружность курсовых углов диаграммы вертикали пересекут в точках со значением 115º и 132º.

Задачи

Исходные данные

Номер задачи

31

32

33

34

35

36

37

38

39

40

Тθ , с

16

10

14

15

14

12

10

15

16

14

hв , м

4

5

6

3

2

3

2

5

5

4

Тема: “Расчет условий отсутствия слеминга и штормование судна с застопоренными машинами»

Примеры решения

Пример 1

Расчет условий отсутствия слеминга. Условия отсутствия слеминга можно определить по выражению:

,

где: L – длина судна, м;

Тн – осадка носом, м;

А – коэффициент, зависящий от Fr (число Фруда) и ; Fr = (м/с);

В – ширина судна, м;

λmax – длина волны максимальная, м;

hв max – высота волны максимальная, м;

При условии отсутствия слеминга коэффициент А должен быть

Дано. Судно следует навстречу волне. Рассчитать скорость, при которой слеминг будет отсутствовать. L = 139,4 м; В = 17,7 м; Тн = 6,5 м; λmax = 120 м; hв max = 5 м.

Решение:

= = 0,89 , принимаем А = 0,9;

По А = 0,9 и = 8 по графику (см. Приложение 5) находим максимально допустимое значение Fr. В нашем случае Fr = 0,14.

Максимально допускаемая скорость судна

V = Fr

Задачи

Исходные данные

Номер задачи

41

42

43

44

45

46

47

48

49

50

L, м

139

140

130

96

113

115

93

130

140

96

В, м

18

20

18

14

17

17

14

18

20

14

Тн , м

5,2

4,8

4,2

4,3

7,0

5,8

5,2

5,8

3,4

4,0

λmax , м

120

170

120

100

110

110

100

150

160

100

hв max , м

4

6

3

3

6

4

5

4

4

3

Пример 2

Штормование судна с застопоренными машинами.

Судно может лечь в дрейф в том случае, когда оно, не имея хода, находится в условиях, достаточно удаленных от резонансного режима бортовой качки.

Это возможно при соблюдении условий

λ > или λ <

Дано : В = 14 м; h = 0,96 м.

Определить при какой длине волны судно может безопасно лечь в дрейф.

Решение

λ > = = 408 м или λ < = = 122 м

Ответ: судно может лечь в дрейф, если длина волны будет менее 120 м (результат 408 м практического интереса не представляет.)

Задачи

Исходные данные

Номер задачи

51

52

53

54

55

56

57

58

59

60

В, м

12,0

19,7

20,0

14,4

16,7

16,7

14,0

14,0

17,7

12,0

h, м

1,0

1,0

0,7

1,2

0,9

0,4

0,3

0,9

0,8

0,5

Тема: “Выбор оптимальных условий плавания на попутном волнении»

Примеры решения

Пример 1

Построение на универсальной диаграмме качки (Приложение 6) зоны, опасной при плавании на попутном волнении.

Принимаем кажущийся период волны, начиная с которого нахождение на гребне становится опасным

τ′ = Тθ

Дано : L = 56 м; λ = 60 м; Тθ = 10 с.

Построить опасную (за счет уменьшения остойчивости на гребне волны) зону для судна, следующего на попутном волнении.

Решение

1. Рассчитываем τ′ = 1,54 · Тθ = 1,54 · 10 = 15 с.

2. Из точек пересечения горизонтали, соответствующей λ = 60 м с кривыми τ′ = 15 с (по обе стороны кривой τ′ = ∞) опустим вертикали, которые в нижней части диаграммы ограничат опасную зону. В данном случае в пределах графика горизонталь пересекает только кривую τ′ = 15 с, расположенную выше кривой τ′= ∞. Вертикаль, опущенная, из этой точки пересечения отбивает на полуокружности КУ точки 116º. Зона левее этой вертикали – опасная.

Для полной оценки положения судна, кроме этой зоны, следует построить резонансные зоны по бортовой и килевой качке и только после этого принимать решение о выборе курса и скорости судна для штормования.

Задачи

Исходные данные

Номер задачи

61

62

63

64

65

66

67

68

69

70

L, м

144

134

140

130

95

113

115

150

45

75

λ, м

150

130

140

130

100

110

110

150

40

80

Тθ , м

12

12

20

18

15

7

19

17

8

10

Пример 2

Оценка параметров неблагоприятных попутных волн по вспомогательной диаграмме А.И. Богданова. ( Приложение 7)

Необходимость использования диаграмм Богданова определяется по вспомогательной диаграмме, на которой нанесены области неблагоприятных и опасных параметров, соответствующих неблагоприятных и опасных сочетаний скоростей и курсовых углов.

Дано: L = 116 м; λ = 110 м; hв 3% = 7 м.

Определить необходимость использования диаграмм А.И. Богданова.

Решение

1. На внутренней горизонтальной шкале вспомогательной диаграммы отложим величину длины судна L = 116 м и от этой точки проведем вертикальную линию до кривой, от точки пересечения с которой проведем горизонталь до внутренней вертикальной шкалы, с которой снимем значение hв 3% расчеты или определим эту величину по формуле

h 3% расч. = 0,22 ∙ L0,715 = 0,22 116 0,715 = 6,8 м

2. Рассчитаем отношения

3. По значениям λ/L=0,95 и hв3% / h3% =1,03 , используя внешнюю оцифровку шкал, проводим горизонтальную и вертикальную линии.

4. Точка пересечения проведенных линий находится в опасной зоне вблизи параметра, обозначенного цифрой 1, где высоты волн очень близки к расчетным.

5. Для определения безопасных курсов и скоростей воспользуемся основными диаграммами Богданова, выбирая ту, которая соответствует данной загрузке судна и наблюдаемой высоте волны 3 % обеспеченности.

Задачи

Исходные данные

Номер задачи

71

72

73

74

75

76

77

78

79

80

L, м

110

120

90

140

150

160

126

127

95

137

λ, м

90

130

100

130

160

110

140

120

110

150

hв3%

6

7

7

8

6

8

7

6

7

8

Пример 3

Выбор оптимальных условий для движения судна.

а) Судно следует в условиях регулярного волнения Vs = 10 уз.; q = 45º;

Тθ = 14 с; Тψ = 6 с; λ = 100 м. (Приложение 8)

Построить резонансные зоны и выбрать маневр изменением курса для выхода из них.

Решение

1. == 11 с; == 20 с; = =4,5 с; = =8,5 с.

2. Строим резонансные зоны.

3. Приводим волну на курсовой угол q = 96÷125º.

Задачи

Исходные данные

Номер задачи

81

82

83

84

85

86

87

88

89

90

Vs , уз.

14

12

8

10

6

4

10

12

9

14

q, град.

130

110

75

160

25

15

160

113

114

155

Тθ , с

16

17

14

12

14

12

15

17

12

15

Тψ , с

7

7

7

6

6

5,5

6,5

7,5

6

6,5

λ, м

100

40

60

30

70

40

130

80

100

80

Изменить

Vs

q

q

Vs

q

Vs

q

q

Vs

Vs

Пример 4

б) Судно следует на попутном волнении. L = 122 м; Vs = 13 уз.; q = 170º;

θ = 13 с; Тψ = 7 с; λ = 100 м. (Приложение 9)

Построить опасную зону и выбрать маневр для безопасного штормования с учетом резонансных зон бортовой и килевой качки.

Решение

1.По методике, изложенной в примере 1 этой темы, строим опасную зону для

τ′ = 1,54 · Тθ ; τ′ = 1,54 · 13 = 20 с.

2. Строим резонансную зону бортовой качки для

τ′ = = = 10 с и τ′ = = 19 с.

3. Строим резонансную зону килевой качки для

τ′ = = 5,5 с и τ′ = = 10 с.

4. Можно, оставаясь на прежнем курсе, сбавить ход до 5 уз. Судно будет удерживаться на границе резонансных зон бортовой и килевой качки.


Задачи

Исходные данные

Номер задачи

91

92

93

94

95

96

97

98

99

100

L, м

102

80

110

102

80

123

123

110

42

100

Vs , уз.

11

12

14

13

12

16

17

16

11

16

Тθ , с

25

9

14

12

11,5

14

19

12

10

12

Тψ , с

6,5

5,5

6,5

5,5

4,5

5

6,5

5

4

6,5

q, град.

170

165

170

175

165

170

170

160

170

175

λ, м

90

70

100

90

80

110

115

100

40

100

Рекомендованная литература

для решения задач для плавання в штормовых условиях

1. Управление судном и его техническая эксплуатация. Учебник для учащихся судоводительских специальностей высших инженерных морских училищ. Под редакцией А.И. Щетининой. 3-е издание. – М. Транспорт, 1983, стр. 396 – 403.

2. Управление судном и его техническая эксплуатация. Учебник для учащихся судоводительских специальностей высших инженерных морских училищ. Под редакцией А.И. Щетининой. 2-е издание. – М. Транспорт, 1975, стр. 407 – 414.

3. Сборник задач по управлению судами. Учебное пособие для морских высших учебных заведений. Н.А. Кубачев, С.С. Кургузов, М.М. Данилюк, В.П. Махин. – М. Транспорт, 1984, стр. 68 - 76.

4. Рекомендации по организации штурманской службы на морских судах Украины (РШСУ-98). Одесса, 1998, стр. 95 – 100.

Тема: “Буксировка судов”

І. Расчет однородной буксирной линии

Пример решения

Дано : длина буксирного троса ℓб = 300 м, вес одного погонного метра троса в воздухе q = 92 Н, горизонтальная составляющая натяжения троса

То = 80 кН.

Определить:

1)расстояние между судами АВ = 2х;

2)стрелку провеса буксира ƒ;

3)длину буксирного троса, необходимого для прохода пролива с допустимой стрелкой провеса буксира ƒдоп = 8 м.

Решение

1. Вес одного погонного метра троса в воде q1 = q·0,87 = 92 0,87 = 80 Н.

2. Параметр буксирной линии а = .

3. Определим х – половину длины между судами

,

где ℓ - длина участка буксирного троса от вершины буксирной линии до буксирующего или буксируемого судна.

= 0,14944

х = 0,14944 = 0,14944 1000 = 149,44 м

4. Расстояние между судами АВ = 2 х = 2 149,44 = 298,88 м м

5. Определим - 1 = - 1 = 1,01119 – 1 = 0,01119

6. Определим стрелку провеса буксира ƒ=0,01119 = 0,01119 1000=11,2 м

7. Длина буксирного троса с допустимой стрелкой провеса ƒдоп = 8 м

Из формулы

- 1

= = = 126,74 м ≈ 127 м

Задачи

Исходные данные

Номер задачи

101

102

103

104

105

106

107

108

109

110

б , м

300

400

400

400

400

600

600

550

350

320

q, Н

84

92

92

104

104

104

104

92

92

84

То, Н

40

70

310

200

120

120

280

200

140

60

ƒдоп., м

12

10

4

6

10

20

10

10

5

6

I І. Расчет неоднородной симметричной буксирной линии

Пример решения

Дано: симметричная буксирная линия состоит из 2-х участков троса АС и DВ длиной ℓт = 180 м каждый и участка цепи СD длиной 50 м (2ℓц ). Вес одного погонного метра троса в воздухе qmp = 92 Н, цепи qц = 687 Н. Горизонтальная составляющая натяжения буксира То=100 кН.

Определить:

1)расстояние между судами АВ;

2)стрелку провеса ƒЕ.

Решение:

1. Вес одного погонного метра троса и цепи в воде

q'mp = 0,87 92 = 80 Н q'ц = 0,87 687 = 598 Н

2. Параметры буксирной линии тросового и цепного участков буксира

mp = ц =

3. Достроим буксирную линию ВD до вершины М

,

где ℓц – длина половины цепного участка буксира

4. Для участка цепи ℓц = 25 м определим

= 0,14915

х1D = 0,14915 = 0,14915 167 = 24,91 м

- 1 = - 1 = 0,01114

ƒ'E = 0,01114 = 0,01114 167 = 1,86 м

5. Для участка ВМ определим ℓ = ℓт + ℓƒ = 180 + 187 = 367 м

= 0,28953

х = 0,28953 = 0,28953 1250 = 361,93 м

- 1 = - 1 = 0,04221

ƒм = 0,04221 = 0,04221·1250 = 52,76 м

6. Для участка МД = ℓƒ = 187 м определим

= 0,14905

х2D = 0,14905 = 0,14905 1250 = 186,31 м

- 1 = - 1 = 0,01113

ƒ'м = 0,01113 · = 0,01113 1250 = 13,91 м

7. Расстояние между судами

АВ = 2 (х – (х2D - х1D )) = 2 (361,93 – (186,31 – 24,91)) = 401,06м

8. Стрелка прогиба

ƒE = ƒм – (ƒ'м - ƒ'E ) = 52,76 – (13,91 – 1,86) = 40,71 мм

Задачи

Исходные данные

Номер задачи

111

112

113

114

115

116

117

118

119

120

m , м

150

150

200

200

200

300

300

250

250

200

ц , м

25

100

25

50

100

50

100

50

100

150

qm , Н/м

92

76

92

76

104

92

104

104

92

76

qц , Н/м

687

687

853

853

853

687

687

853

853

687

То, кН

50

200

120

400

100

100

250

450

450

600

I ІІ. Расчет неоднородной несимметричной буксирной линии

Пример решения

Дано : несимметричная буксирная линия, состоящая из участка троса АD ℓm = 400 м и участка цепи DВ ℓц = 50 м. Вес одного погонного метра троса в воздухе qm = 92 Н, цепи qц = 687 Н. Горизонтальная составляющая натяжения буксира То = 49 кН.

Определить:

1)положение вершины буксирной линии DЕ = ℓх ;

2)проверить решение, вычислив провес буксирной линии в ее вершине по однородной ƒ1 и неоднородной ƒ2 ее части;

3)определить расстояние между судами АВ.

Решение

1. Вес одного погонного метра троса и цепи в воде

q'm = 0,87 · 92 = 80 Н q'ц = 0,87 687 = 598 Н

2. Параметры буксирной линии тросового и цепного участков

m = ц =

3. Из прилагаемой таблицы для поправочного коэффициента α

ц / ℓц

α

ц / ℓц

α

ц / ℓц

α

0,00

1,000

1,00

0,368

2,00

0,135

0,05

0,951

1,05

0,350

2,10

0,122

0,10

0,905

1,10

0,333

2,20

0,111

0,15

0,861

1,15

0,317

2,30

0,100

0,20

0,819

1,20

0,301

2,40

0,091

0,25

0,779

1,25

0,286

2,50

0,082

0,30

0,741

1,30

0,272

2,60

0,074

0,35

0,705

1,35

0,259

2,70

0,067

0,40

0,670

1,40

0,247

2,80

0,061

0,45

0,638

1,45

0,235

2,90

0,055

0,50

0,606

1,50

0,223

3,00

0,050

ц / ℓц

α

ц / ℓц

α

ц / ℓц

α

0,55

0,577

1,55

0,212

3,10

0,045

0,60

0,549

1,60

0,202

3,20

0,041

0,65

0,522

1,65

0,192

3,30

0,037

0,70

0,497

1,70

0,183

3,40

0,033

0,75

0,472

1,75

0,174

3,50

0,030

0,80

0,449

1,80

0,165

3,60

0,027

0,85

0,427

1,85

0,157

3,70

0,025

0,90

0,407

1,90

0,150

3,80

0,022

0,95

0, 387

1,95

0,142

3,90

0,020

4,00

0,018

по значению найдем α = 0,194.

4. Длина участка троса DЕ от точки соединения троса с цепью до вершины буксирной линии

DЕ = ℓх = = = 160,5м

5. Для однородного тросового участка буксирной линии АЕ

ℓ = ℓm - ℓх = 400 – 160,5 = 239,5 м

- 1 = - 1 = 0,07385

ƒ1 = 0,07385 612 = 45,2 м

6. Для неоднородного участка цепи ВDЕ длина фиктивного участка цепи

MD = ℓф = ℓх

7. Для участка DЕ = ℓх = 160,5 м

- 1 = - 1 = 0,03382

ƒDE = 0,03382 612 = 20,7 м

8. Для участка ВМ = ℓц + ℓф = 50 + 21,47 = 71,47 м

- 1 = - 1 = 0,32652

ƒВМ = 0,32652 82 = 26,77 м

9. Для фиктивного участка цепи DМ = ℓф = 21,47 м

- 1 = - 1 = 0,03371

ƒ = 0,03371 · 82 = 2,76 м

10. Провес буксира по неоднородной его части

ƒ2 = ƒDE + ƒВМ - ƒ = 20,7 + 26,77– 2,76 = 44,71 м

При ц / ℓц < 4,0 α принимаем равным нулю

Положение вершины найдено правильно, так как ƒ1 = 45,2 м и ƒ2 = 44,71 м практически совпадают.

11. Для участка АЕ = ℓm - ℓх = 400 – 160,5 = 239,5 м

х = 0,38198 612 = 233,77 м

12. Для участка DЕ = ℓх = 160,5 м

х1 D = 0,25934 612 = 158,72 м

13. Для участка ВМ = ℓц + ℓф = 50 + 21,47 = 71,47 м

х = 0,7876 82 = 64,58 м

14. Для фиктивного участка цепи DМ = ℓф = 21,47 м

х2 D = 0,25893 82 = 21,23 м

15. Расстояние между оконечностями судов

АВ = х + х1 D + х – х2 D = 233,77+158,72 + 64,58 – 21,23 = 435,84 м436м

Задачи

Исходные данные

Номер задачи

121

122

123

124

125

126

127

128

129

130

m , м

400

400

400

200

400

400

200

250

300

300

qm , Н/м

92

92

92

92

76

104

92

76

104

104

ц , м

50

50

50

50

50

75

60

50

100

100

qц , Н/м

687

687

687

687

853

687

687

853

687

687

То, кН

137

245

20

441

93

98

147

245

137

589

І V . Определение высоты волны для безопасной буксировки

Пример решения

Дано : длина буксирного стального троса L = 600 м, диаметр троса

d = 52 мм, тяга на гаке Fr = 98 кН, разрывная прочность буксирного троса Рразр. = 880 кН, расстояние между судами на спокойной воде (То = Fr), АВ = 595,2 м при рывке (То = 0,5 Рразр. ) А'В' = 599,8 м.

Определить высоту волны, при которой возможна безопасная буксировка.

Решение

1. Упругое удлинение троса ∆у = ,

где ε = 36 кН/мм2 – упругость стального троса.

∆у =

2. Весовое удлинение троса

∆в = А'В' – АВ = 599,8 – 595,2 = 4,6 м

3. Высота волны, при которой возможна безопасная буксировка

h = ∆ = ∆у + ∆в = 2,1 + 4,6 = 6,7 м


Задачи

Исходные данные

Номер задачи

131

132

133

134

135

136

137

138

139

140

Fr, кН

98

80

200

30

60

140

200

100

70

290

Рразр. , кН

840

420

750

800

640

750

910

1200

840

1200

L, м

550

300

400

400

400

400

600

600

550

850

АВ, м

544,6

299,4

399,5

392,8

398,6

399,6

599,0

594,0

544,7

841,8

А'В', м

549,5

299,9

399,8

399,9

399,8

399,9

599,9

599,8

549,8

849,5

d, мм

45,0

32,5

43,5

41,0

39,0

43,5

47,5

52,0

45,0

52,0

V. Определение весовой игры буксирной линии

Пример решения

Дано: неоднородная буксирная линия состоит из стального троса длиной ℓm = 300 м и цепи ℓц = 75 м. Вес одного погонного метра троса в воздухе qm = 76 Н, цепи qц = 687 Н.

Определить весовую игру буксира при изменении горизонтальной составляющей натяжения от То = 118кН до Тодоп =388кН.

Решение:

1.Вес одного погонного метра троса и цепи в воде

q'm = 0,87 · qm = 0,87 76 = 66 Н q'ц = 0,87 qц = 0,87 687 = 598 Н

2.Параметры буксирной линии тросового и цепного участков буксира при

То = 118 кН

mp = ц =

3. Из прилагаемой таблицы для поправочного коэффициента α

Поправочный коэффициент α

α

α

α

0,00

1,000

1,00

0,368

2,00

0,135

0,05

0,951

1,05

0,350

2,10

0,122

0,10

0,905

1,10

0,333

2,20

0,111

0,15

0,861

1,15

0,317

2,30

0,100

0,20

0,819

1,20

0,301

2,40

0,091

0,25

0,779

1,25

0,286

2,50

0,082

0,30

0,741

1,30

0,272

2,60

0,074

0,35

0,705

1,35

0,259

2,70

0,067

0,40

0,670

1,40

0,247

2,80

0,061

0,45

0,638

1,45

0,235

2,90

0,055

0,50

0,606

1,50

0,223

3,00

0,050

0,55

0,577

1,55

0,212

3,10

0,045

0,60

0,549

1,60

0,202

3,20

0,041

0,65

0,522

1,65

0,192

3,30

0,037

0,70

0,497

1,70

0,183

3,40

0,033

0,75

0,472

1,75

0,174

3,50

0,030

0,80

0,449

1,80

0,165

3,60

0,027

0,85

0,427

1,85

0,157

3,70

0,025

0,90

0,407

1,90

0,150

3,80

0,022

0,95

0,387

1,95

0,142

3,90

0,020

4,00

0,018

по значению = найдем α = 0,073

4. Длина участка троса DЕ от точки соединения с цепью до вершины буксирной линии

DЕ = ℓх = = ≈ 56,46 м

5. Для фиктивного участка цепи DМ = ℓф = ℓх

6. Для участка АЕ

АЕ = ℓm - ℓх = 300 – 56,46 = 243,54 м

= 0,13579

0,13579 х1 А = 0,13579 m = 0,13579 · 1788 = 242,79 м

7. Для участка DЕ = ℓх = 56,46 м

= 0,03157

0,03157 х1 D = 0,03157 · m = 0,03157 · 1788 = 56,45 м

8. Для участка ВМ = ℓц + ℓф = 75 + 6,23 = 81,23 м

0,40146 х = 0,40146 ц = 0,40146 197 = 79,09 м

9. Для участка DМ = ℓф = 6,23 м

0,03162 х2 D = 0,03162 · ц = 0,03162 · 197 = 6,23 м

10. Расстояние между оконечностями судов при То = 118 кН

АВ = х + х1 D + х – х2 D = 242,79 + 56,45 + 79,09 – 6,23 = 372,1 м

11. Параметры буксирной линии тросового и цепного участков буксира при

То доп. = 388 кН

m ' = ц ' =


Так как > 4, α = 0 (см. таблицу «Поправочный коэффициент α»)

12. Длина участка троса DE' от точки соединения с цепью до вершины буксирной линии при То доп. = 388 кН

DE' = ℓх ' =

13. Для фиктивного участка цепи DМ при То доп. = 388 кН

ф ' = ℓх '

14. Для участка АЕ при То доп. = 388 кН

ℓ'АЕ = ℓт - ℓх ' = 300 – 52 = 248 м

= 0,04218

х'1 А = 0,0418 m ' = 0,0418 5878 = 247,93 м

15. Для участка DЕ' = ℓх ' = 52 м при То доп. = 388 кН

= 0,00885

х'1 D = 0,00885 m ' = 0,00885 5878 = 52,02 м

16. Для участка ВМ' = ℓц + ℓф ' = 75 + 5,7 = 80,7 м

х' = 0,12403 ц = 0,12403 649 = 80,5 м

17. Для участка DМ' = ℓ'ф = 5,7 м

х'2 D = 0,00878 ц ' = 0,00878 649 = 5,7 м

18. Расстояние между оконечностями судов при То доп. = 388 кН

А'В' = х' + х'1 D + х' – х'2 D = 247,93 + 52,02 + 80,5 – 5,7 = 374,75 м

19. Весовая игра буксирной линии ∆в = А'В' – АВ = 374,75 – 372,1 = 2,65 м

20. Наибольший провес буксирной линии найдем из однородного участка

АЕ = 243,54 м

- 1 = - 1 = 0,00923

ƒ = 0,00923 m = 0,00923 1788 = 16,5 м

Наибольший провес буксирной линии

ƒ = ƒЕ = 16,5 м

Задачи

Исходные данные

Номер задачи

141

142

143

144

145

146

147

148

149

150

m , м

300

300

400

400

400

400

600

600

350

350

qm , H/м

76

76

76

76

76

76

92

92

71

71

ц , м

50

100

25

50

75

100

25

75

25

50

qц , Н/м

687

687

853

853

853

853

687

687

853

853

То, кН

118

118

88

88

88

88

137

137

49

49

То доп. , кН

388

388

300

300

300

300

490

490

275

275


Рекомендованная литература:

1.Сборник задач по управлению судами. Учебное пособие для морских высших учебных заведений. Н.А. Кубачев, С.С. Кургузов, М.М. Данилюк, В.П. Махин. – М. Транспорт, 1984, стр. 93 - 108.

2. Управление судном и его техническая эксплуатация. Учебник для учащихся судоводительских специальностей высших инженерных морских училищ. Под редакцией А.И. Щетининой. 3-е издание. – М. Транспорт, 1983, стр. 462 – 490.

3.Управление судном и его техническая эксплуатация. Учебник для учащихся судоводительских специальностей высших инженерных морских училищ. Под редакцией А.И. Щетининой. 2-е издание. – М. Транспорт, 1975, стр. 459 – 481.

4. Управление судном. Под общей редакцией В.И. Снопкова, – М. Транспорт, 1991, стр. 90 - 115.


Тема: “Снятие судов с мели”

Примеры решения

I . Снятие судов с мели стягиванием

Судно сидит на мели всем корпусом. Грунт – глина с песком. Пробоин нет. Силу присоса грунта не учитываем. Расположение судов-спасателей согласно схеме. Судно № 1 – однотипное с аварийным, суда №№ 2,3 – спасатели с упором винта на переднем ходу РПХ 2,3 = 287 кН.

Исходные данные:

Д = 9220 m, = 115 м, Тн = 6,5 м, Т¤ = 6,8 м, Тк = 7,1 м; Тн1 = 5,2 м,

Т¤1 = 6,5 м, Тк1 = 7,8 м; число тонн на 1 м изменения средней осадки

q = 1600 m/м, коэффициент трения стального корпуса судна о грунт

ƒ=0,32, РПХ1 =480кН, абсцисса ЦТ ватерлинии хƒ = - 0,6м, продольная метацентрическая высота Н = 120 м.

Определить количество груза, которое необходимо выгрузить с судна, чтобы оно могло сняться с мели методом стягивания.

Решение.

1.Определим величину потерянного водоизмещения

∆Д = q (Тср – Тср1 )

где Тср = м

Тср – средняя осадка до посадки на мель, м

Тср, Тср1 следует подсчитывать с точностью до 1 см

Тср1 = м

Тср – средняя осадка после посадки на мель, м

∆Д = 1600 (6,8 – 6,5) = 480 m

2.Определим усилие, необходимое для снятия судна с мели

F = ƒ·∆Д = 0,32 480 = 153,6 m = 1506,8 кН

3.Найдем величину усилия, развиваемого совместно судами-спасателями при стягивании судна с мели

F1 = РПХ1 + 2РПХ 2,3 cos 30º = 480 + 2 287 0,866 = 977,1 кН

5. Количество груза, подлежащего снятию с судна

Р = m

6. Дифферентующий момент на 1 м

m = m/м

7. Определим абсциссу ц.т. снимаемого груза

хр = хƒ +

где ∆Тн = Тн - Тн1 = 6,5 – 5,2 = 1,3 м

∆Тк = Тк – Тк1 =7,1 – 7,8 = -0,7 м

хр = -0,6 + м

Задачи

Исходные данные

Номер задачи

151

152

153

154

155

156

157

158

159

160

Д, m

127200

110000

45840

33350

18560

17900

17400

12740

9860

9530

, м

235,85

235

195

165

140,1

140

134,5

130,3

113

115

Тн , м

15,9

13,8

10,5

9,74

9,50

8,90

8,85

7,80

7,12

6,90

Т , м

16,0

14,0

10,7

9,74

9,68

8,93

9,15

7,85

7,16

7,00

Тк , м

16,1

14,2

10,9

9,74

9,86

8,96

9,45

7,90

7,20

7,10

Тн1 , м

13,0

11,2

8,8

7,62

6,10

7,20

8,00

6,78

5,92

5,93

Т 1 , м

15,15

13,55

10,1

8,95

8,85

8,58

8,95

7,65

6,90

6,80

Тк1 , м

17,3

15,9

11,4

10,28

11,60

9,96

9,90

8,52

7,88

7,67

q, m /м

8400

8300

4670

3680

2430

2330

2200

1910

1600

1600

Н , м

230

210

255

207

144

146

140

136

120

120

хƒ , м

-0,5

-0,5

±0

-0,2

-3,1

-1,0

+0,6

-0,2

-0,8

-0,2

ƒ

0,22

0,42

0,30

0,38

0,32

0,22

0,42

0,30

0,38

0,32

РПХ1 , кН

1679,1

1650,2

1239

771

750

565,4

713,1

532,4

438,2

398,5

РПХ2,3 , кН

740

730

560

340

310

325

385

355

315

205,6

II . Снятие судов с мели способом отгрузки

Судно сидит на мели носовой частью. Пробоин нет. Силу присоса грунта не учитываем.

Исходные данные:

Д = 9220 m, = 115 м; Тн = 6,5 м; Тк = 7,1 м; Тн1 = 5,2 м; Тк1 = 7,8 м; число тонн на 1 м изменения средней осадки q = 1600 m/м, продольная метацентрическая высота Н = 120 м; поперечная метацентрическая высота h = 0,9 м; координаты ц.m. выгружаемого груза из носового трюма х1 = +40 м; z1 = +3 м; из кормового трюма х2 = -40 м; z2 = +8 м; абсцисса ц.m. ватерлинии

хƒ = -0,6 м.

Определить количество груза, которое необходимо выгрузить из носового и кормового трюмов, чтобы судно оказалось на плаву.

Решение.

1. Определим дифферентующий момент на 1 м:

m = m/м

2. Определим среднюю осадку до и после посадки на мель

Тср = м

Тср1 = м

3. Определим общее количество груза, подлежащего снятию с судна:

Р = ∆Д = q (Тср – Тср1 ) = 1600 (6,8 – 6,5) = 480 m

4. Определим абсциссу точки приложения равнодействующей сил реакции грунта:

хр = хƒ +

где ∆Тн = Тн - Тн1 = 6,5 – 5,2 = 1,3 м

∆Тк = Тк – Тк1 =7,1 – 7,8 = -0,7 м

хр = -0,6 + м

5. Определим количество груза, которое необходимо выгрузить из носового трюма:

Рн = Рm

6.Определим количество груза, которое необходимо выгрузить из кормового трюма: Рк = Р – Рн = 480 – 477 = 3 m*

7.Определим осадку носом после снятия груза:

Тн ' = Тн – Р6,5 – 480 м

Примечание: в случае отрицательной величины Рк это количество груза нужно погрузить в трюм

8.Определим осадку кормой после снятия груза:

Тк ' = Тк + Р7,1 + 480 м

9.Определим поправки на поперечную и продольную метацентрические высоты

∆h = -

где: ∆Тср = м;

z = м


∆h = -м;

∆Н = -= -м.

Задачи

Исходные данные

Номер задачи

161

162

163

164

165

166

167

168

169

170

Д, m

110000

45840

33350

18560

17900

17400

12740

9860

9530

127200

, м

235

195

165

140,1

140

134,5

130,3

113

115

235,85

Тн , м

13,8

10,5

9,74

9,50

8,90

8,85

7,80

7,12

6,90

15,9

Тк , м

14,2

10,9

9,74

9,86

8,96

9,45

7,90

7,20

7,10

16,1

Тн1 , м

11,2

8,8

7,62

6,10

7,20

8,00

6,78

5,92

5,93

13,0

Тк1 , м

15,9

11,4

10,28

11,60

9,96

9,90

8,52

7,88

7,67

17,3

q, m/м

8300

4670

3680

2430

2330

2200

1910

1600

1600

8400

Н , м

210

255

207

144

146

140

136

120

120

230

h, м

2,0

2,6

1,03

1,03

0,96

0,95

0,97

0,99

0,91

2,5

хƒ , м

-0,5

±0

-0,2

-3,1

-1,0

+0,6

-0,2

-0,8

-0,2

-0,5

х1 , м

+82

+61

+54

+50

+50

+50

+45

+40

+40

+82

z1 , м

+12

+7,4

+8

+10

+5

+5

+5

+5

+4

+12

х2 , м

-60

-35

-29

-57

-50

-45

-50

-40

-40

-60

z2 , м

+12

+7

+8

+8

+5

+6

+6

+5

+4

+12

III . Снятие судна с мели при наличии крена в случае, когда внешняя кромка банки лежит позади миделя

Судно сидит на мели носовой частью и с креном на правый борт. Пробоин нет.

Исходные данные:

Д = 9220 m, = 115 м; Тн = 6,5 м; Тк = 7,1 м; θ = 0º; Тн1 = 5,2 м; Тк1 = 7,8 м;

θ1 = 5º пр/б; число тонн на 1 м изменения средней осадки q = 1600 m/м; продольная метацентрическая высота Н = 120 м; поперечная метацентрическая высота h = 0,9 м; координаты ц.m. выгружаемого груза из носового трюма х1 =+40 м; из кормового трюма х2 = -40 м; абсцисса ц.m. ватерлинии хƒ = -0,6 м.

Определить количество груза, которое необходимо снять из носового и кормового трюмов судна на мели, а также величину кренящего момента, который необходимо создать, чтобы судно оказалось на плаву.

Решение.

1. Определим величину дифферентующего момента на 1 м:

m = m/м

2. Определим среднюю осадку до и после посадки на мель:

Тср = м

Тср1 = м

3. Определим общее количество груза, подлежащего снятию с судна:

Р = ∆Д = q (Тср – Тср1 ) = 1600 (6,8 – 6,5) = 480 m

4. Определили абсциссу точки приложения равнодействующей сил реакции грунта:

хр = хƒ +

где ∆Тн = Тн - Тн1 = 6,5 – 5,2 = 1,3 м

∆Тк = Тк – Тк1 =7,1 – 7,8 = -0,7 м

хр = -0,6 + м

5. Определим количество груза, которое необходимо выгрузить из носового трюма:

Рн = Рm

6. Определим количество груза, которое необходимо выгрузить из кормового трюма:

Рк = Р – Рн = 480 – 477 = 3 m

Примечание: в случае отрицательной величины Рк это количество груза нужно погрузить в трюм.

7. Определим ординату точки точки приложения равнодействующей силы реакции грунта:

ур = м

Примечание: знак «-» при крене на правый борт, а знак «+» при крене на левый борт.

8. Определим значение кренящего момента, который необходимо создать, чтобы судно оказалось на плаву:

Мкр = -∆Д · ур = -480 · (-1,51) = +724,8 мм

Задачи

Исходные данные

Номер задачи

171

172

173

174

175

176

177

178

179

180

Д, m

45840

33350

18560

17900

17400

12740

9860

9530

127200

110000

, м

195

165

140,1

140

134,5

130,3

113

115

235,85

235

Тн , м

10,5

9,74

9,50

8,90

8,85

7,80

7,12

6,90

15,9

13,8

Тк , м

10,9

9,74

9,86

8,96

9,45

7,90

7,20

7,10

16,1

14,2

Тн1 , м

8,8

7,62

6,10

7,20

8,00

6,78

5,92

5,93

13,0

11,2

Тк1 , м

11,4

10,28

11,60

9,96

9,90

8,52

7,88

7,67

17,3

15,9

θ1 , град.

9º л/б

8º пр/б

10º пр/б

10º л/б

6º пр/б

10º л/б

5º л/б

8º пр/б

8º пр/б

5º л/б

q, m/м

4670

3680

2430

2330

2200

1910

1600

1600

8400

8300

Н , м

255

207

144

146

140

136

120

120

230

210

h, м

2,6

1,03

1,03

0,96

0,95

0,97

0,99

0,91

2,5

2,0

хƒ , м

±0

-0,2

-3,1

-1,0

+0,6

-0,2

-0,8

-0,2

-0,5

-0,5

х1 , м

+61

+54

+50

+50

+50

+45

+40

+40

+82

+82

х2 , м

-35

-29

-57

-50

-45

-50

-40

-40

-60

-60


IV . Снятие судна с мели дифферентованием в случае, когда лишь носовая часть киля лежит на грунте, а под остальной частью киля имеется достаточный запас глубин

Судно сидит на мели носовой частью. Пробоин нет. Имеется достаточный запас глубин под свободной частью киля. Силу присоса грунта не учитываем.

Исходные данные:

D =9220 m, =115 м, Тн =6,5 м, Т =6,8 м, Тк =7,1 м; Тн1 =5,2 м, Т 1 =6,5 м,

Тк1 = 7,8 м; число тонн на 1 м изменения средней осадки q = 1600 m/м; продольная метацентрическая высота Н = 120 м; абсцисса ц.m. перемещаемого груза х1 = +40 м; х2 = -40 м; абсцисса внешней кромки банки хА = +25 м.

Определить количество груза Р1 , которое необходимо переместить по судну, чтобы оно оказалось на плаву.

Решение.

1. Определим дифферентующий момент на 1 м:

m = m/м

2. Определим количество груза, которое необходимо переместить по судну, чтобы оно оказалось на плаву:

Р1 =

где ∆Тн = Тн - Тн1 = 6,5 – 5,2 = 1,3 м

∆Тк = Тк – Тк1 =7,1 – 7,8 = -0,7 м

Р1 = = 406,5 m

3. Определим осадку носом после перемещения груза

Тн '' = Тн - м

4. Определим осадку кормой после перемещения груза

Тк '' = Тк + м

Задачи

Исходные данные

Номер задачи

181

182

183

184

185

186

187

188

189

190

D, m

18560

17900

17400

12740

9860

9530

127200

110000

45840

33350

, м

140,1

140

134,5

130,3

113

115

235,85

235

195

165

Тн , м

9,50

8,90

8,85

7,80

7,12

6,90

15,90

13,80

10,50

9,74

Т , м

9,68

8,93

9,15

7,85

7,16

7,00

16,00

14,00

10,70

9,74

Тк , м

9,86

8,96

9,45

7,90

7,20

7,10

16,10

14,20

10,90

9,74

Тн1 , м

6,10

7,20

8,00

6,78

5,92

5,93

13,00

11,20

8,80

7,62

Т 1 , м

8,85

8,58

8,95

7,65

6,90

6,80

15,15

13,55

10,10

8,95

Тк1 , м

11,60

9,96

9,90

8,52

7,88

7,67

17,30

15,90

11,40

10,28

q, m/м

2430

2330

2200

1910

1600

1600

8400

8300

4670

3680

Н , м

144

146

140

136

120

120

230

210

255

207

х1 , м

+50

+50

+50

+45

+40

+40

+82

+82

+61

+54

х2 , м

-57

-50

-45

-50

-40

-40

-60

-60

-35

-29

хА , м

+35

+50

+45

+45

+30

+30

+50

+50

+30

+30

V . Снятие судна с мели с помощью выгрузки после предварительного перемещения части груза с носа в корму в случае, когда лишь носовая часть киля лежит на грунте, а под остальной частью киля имеется достаточный запас глубин

Судно сидит на мели носовой частью и с креном на правый борт. Пробоин нет. Имеется достаточный запас глубин под свободной частью киля. Силу присоса грунта не учитываем.

Исходные данные : D =9220 m, =115 м, Тн =6,5 м, Т =6,8 м, Тк =7,1 м;

Тн1 = 5,2 м, Т 1 = 6,5 м, Тк1 = 7,8 м; число тонн на 1 м изменения средней осадки q = 1600 m/м; продольная метацентрическая высота Н = 120 м; количество перемещенного груза Р1 = 200 m; абсциссы перемещенного груза

х1 = +40 м; х2 = -40 м; абсцисса выгружаемого груза х = +40; абсцисса внешней кромки банки хА = +25 м, абсцисса ц.m. ватерлинии хƒ = -0,6 м.

Определить количество груза, которое необходимо снять с судна, чтобы оно оказалось на плаву.

Решение.

1.Определим дифферентующий момент на 1 м: m = m/м

2.Определим величину потерянного водоизмещения:

∆D = q (Тср – Тср1 ) = 1600 (6,8 – 6,5) = 480 m

3.Определим количество груза, которое необходимо снять с судна, чтобы оно оказалось на плаву, если 200 m перемещено с носа в корму:

Р =

= m

где ∆Тн = Тн - Тн1 = 6,5 – 5,2 = 1,3 м ; ∆Тк = Тк – Тк1 =7,1 – 7,8 = -0,7м

Задачи

Исходные данные

Номер задачи

191

192

193

194

195

196

197

198

199

200

D, m

17900

17400

12740

9860

9530

127200

110000

45840

33350

18560

, м

140

134,5

130,3

113

115

235,85

235

195

165

140,1

Тн , м

8,90

8,85

7,80

7,12

6,90

15,90

13,80

10,50

9,74

9,50

Т , м

8,93

9,15

7,85

7,16

7,00

16,00

14,00

10,70

9,74

9,68

Тк , м

8,96

9,45

7,90

7,20

7,10

16,10

14,20

10,90

9,74

9,86

Тн1 , м

7,20

8,00

6,78

5,92

5,93

13,00

11,20

8,80

7,62

6,10

Т 1 , м

8,58

8,95

7,65

6,90

6,80

15,15

13,55

10,10

8,95

8,85

Тк1 , м

9,96

9,90

8,52

7,88

7,67

17,30

15,90

11,40

10,28

11,60

q, m/м

2330

2200

1910

1600

1600

8400

8300

4670

3680

2430

Н , м

146

140

136

120

120

230

210

255

207

144

Р1 , m

400

200

200

250

200

3000

2500

1000

1000

800

х1 , х, м

+50

+50

+45

+40

+40

+82

+82

+61

+54

+50

х2 , м

-50

-45

-50

-40

-40

-60

-60

-35

-29

-57

хА , м

+50

+45

+45

+30

+30

+50

+50

+30

+30

+35

хƒ , м

-1,0

+0,6

-0,2

-0,8

-0,2

-0,5

-0,5

±0

-0,2

-3,1

IV . Снятие судна с мели дифферентованием, если часть груза снята, и когда лишь носовая часть киля лежит на грунте, а под остальной частью киля имеется достаточный запас глубины

Судно сидит на мели носовой частью. Пробоин нет. Силу присоса не учитываем. Под свободной частью киля имеется достаточный запас глубины.

Исходные данные:

D = 9220 m, =115 м, Тн =6,5 м, Т =6,8 м, Тк =7,1 м; Тн1 =5,2 м,Т 1 =6,5 м, Тк1 = 7,8 м; число тонн на 1 м изменения средней осадки q = 1600 m/м; продольная метацентрическая высота Н = 120 м; количество снятого груза

Р = 200 m; абсцисса выгруженного груза х = +40 м; абсцисса перемещенного груза х1 = +40, х2 = -40 м; абсцисса внешней кромки банки хА = +25 м, абсцисса ц.m. ватерлинии хƒ = -0,6 м.

Определить количество груза, которое необходимо переместить с носа в корму, чтобы судно оказалось на плаву, если часть груза Р = 200 m груза.

Решение

1. Определим дифферентующий момент на 1 м:

m = m/м

2. Определим величину потерянного водоизмещения:

∆D = q (Тср – Тср1 ) = 1600 (6,8 – 6,5) = 480 m

3. Определим количество груза, которое необходимо переместить с носа в корму, чтобы судно оказалось на плаву:

Р1 =

где ∆Тн = Тн - Тн1 = 6,5 – 5,2 = 1,3 м; ∆Тк = Тк – Тк1 =7,1 – 7,8 = -0,7 м

Р1 = m

Задачи

Исходные данные

Номер задачи

201

202

203

204

205

206

207

208

209

210

D, m

17400

12740

9860

9530

127200

110000

45840

33350

18560

17900

, м

134,5

130,3

113

115

235,85

235

195

165

140,1

140

Тн , м

8,85

7,80

7,12

6,90

15,90

13,80

10,50

9,74

9,50

8,90

Т , м

9,15

7,85

7,16

7,00

16,00

14,00

10,70

9,74

9,68

8,93

Тк , м

9,45

7,90

7,20

7,10

16,10

14,20

10,90

9,74

9,86

8,96

Тн1 , м

8,00

6,78

5,92

5,93

13,00

11,20

8,80

7,62

6,10

7,20

Т 1 , м

8,95

7,65

6,90

6,80

15,15

13,55

10,10

8,95

8,85

8,58

Тк1 , м

9,90

8,52

7,88

7,67

17,30

15,90

11,40

10,28

11,60

9,96

q, m/м

2200

1910

1600

1600

8400

8300

4670

3680

2430

2330

Н , м

140

136

120

120

230

210

255

207

144

146

Р , m

200

200

250

250

3000

2500

1000

1000

800

400

х , м

+50

+45

+40

+40

+82

+82

+61

+54

+50

+50

х1 , м

+50

+45

+40

+40

+82

+82

+61

+54

+50

+50

х2 , м

-45

-50

-40

-40

-60

-60

-35

-29

-57

-50

хА , м

+45

+45

+30

+30

+50

+50

+30

+30

+35

+50

хƒ , м

+0,6

-0,2

-0,8

-0,2

-0,5

-0,5

±0

-0,2

-3,1

-1,0

V . Снятие судна с мели при отсутствии запаса глубины под килем с учетом работы машины на задний ход

Судно сидит на мели носовой частью, грунт – глина с песком. Пробоин нет. Силу присоса грунта не учитываем.

Исходные данные:

D =9220 m, =115 м, Тн =6,5 м, Т = 6,8 м, Тк =7,1 м; Тн1 =5,2 м, Т 1 =6,5 м,

Тк1 = 7,8 м; число тонн на 1 м изменения средней осадки q = 1600 m/м; коэффициент трения стального корпуса судна о грунт ƒ = 0,32; упор винта заднего хода Рз.х. =384,6 кН; ц.m. выгружаемого груза из носового трюма х1 = +40 м, из кормового трюма х2 = -40 м, абсцисса ц.m. ватерлинии хƒ = -0,6 м; продольная метацентрическая высота Н = 120 м.

Определить количество груза, которое необходимо выгрузить из носового и кормового трюмов, чтобы судно могло сняться с мели самостоятельно, работая машиной на задний ход.

Решение.

1. Определим дифферентующий момент на 1 м:

m = m/м

2. Определим общее количество груза, подлежащего снятию:

Р = ∆D = q (Тср – Тср1 ) = 1600 (6,8 – 6,5) = 480 m

3. Определим абсциссу точки приложения равнодействующей сил реакции грунта:

хр = хƒ +

где ∆Тн = Тн - Тн1 = 6,5 – 5,2 = 1,3 м

∆Тк = Тк – Тк1 =7,1 – 7,8 = -0,7 м

хр = -0,6 + м

4. Определим усилие, необходимое для снятия судна с мели:

F = g ƒ · ∆D = 9,81 · 0,32 · 480 = 1506,8 кН

5. Определим усилие, необходимое для снятия судна с мели с учетом работы винта на задний ход:

F1 = F – Рз.х. = 1506,8 – 384,6 = 1122,2 кН

6. Определим массу груза, подлежащего снятию с судна, чтобы можно было сняться с мели работой машины на задний ход

Р = m

7. Определим количество груза, которое необходимо выгрузить из носового трюма:

Рн = Рm

8. Определим количесво груза, которое необходимо выгрузить из кормового трюма: Рк = Р – Рн = 357,5 – 355,3 = 2,2 m

Задачи

Исходные данные

Номер задачи

211

212

213

214

215

216

217

218

219

220

D, m

12740

9860

9530

127200

110000

45840

33350

18560

17900

17400

, м

130,3

113

115

235,85

235

195

165

140,1

140

134,5

Тн , м

7,80

7,12

6,90

15,90

13,80

10,50

9,74

9,50

8,90

8,85

Т , м

7,85

7,16

7,00

16,00

14,00

10,70

9,74

9,68

8,93

9,15

Тк , м

7,90

7,20

7,10

16,10

14,20

10,90

9,74

9,86

8,96

9,45

Тн1 , м

6,78

5,92

5,93

13,00

11,20

8,80

7,62

6,10

7,20

8,00

Т, 1, м

7,65

6,90

6,80

15,15

13,55

10,10

8,95

8,85

8,58

8,95

Тк1 , м

8,52

7,88

7,67

17,30

15,90

11,40

10,28

11,60

9,96

9,90

q, m/м

1910

1600

1600

8400

8300

4670

3680

2430

2330

2200

Н, м

136

120

120

230

210

255

207

144

146

140

ƒ

0,30

0,38

0,32

0,22

0,42

0,30

0,38

0,32

0,22

0,42

Рз.х. , кН

425,9

350,6

318,8

1343,3

1343,3

991,2

618,8

600,0

452,3

570,5

хƒ , м

-0,2

-0,8

-0,2

-0,5

-0,5

±0

-0,2

-3,1

-1,0

+0,6

х1 , м

+45

+40

+40

+82

+82

+61

+54

+50

+50

+50

х2 , м

-50

-40

-40

-60

-60

-35

-29

-57

-50

-45

VI . Определение начальной скорости буксировщика при снятии с мели способом рывка

Исходные данные:

D = 600 m; скорость полного хода Vо = 6,2 м/с; длина буксирного троса

т = 350 м; разрывное усилие троса Рразр. = 1373,4 кН; площадь сечения троса

Sт = 12,7 10-4 м2 ; модуль упругости стального троса Е = 8 107 кН/м2 .

Определить начальную скорость буксировщика при снятии судна с мели способом рывка.

Решение.

1. Определим предельно допустимую нагрузку буксирного троса

Р = кН

2. Определим начальную скорость буксировщика

V =

Задачи

Исходные данные

Номер задачи

221

222

223

224

225

226

227

228

229

230

D, m

18560

17900

17400

12740

9860

9530

6739

5628

4050

1620

Vo , м/с

9,2

8,1

8,1

7,4

7,45

7,6

6,7

7,0

9,6

6,94

т , м

440

420

420

400

380

380

350

350

800

700

Рразр. ,кН

1025

886

886

764,7

764,7

612,1

457,1

457,1

2982

1765,8

Sт х 10-4 м2

7,48

6,47

6,47

6,84

5,64

4,58

4,58

4,58

19,0

12,9

Рекомендованная литература:

1.Сборник задач по управлению судами. Учебное пособие для морских высших учебных заведений. Н.А. Кубачев, С.С. Кургузов, М.М. Данилюк, В.П. Махин. – М. Транспорт, 1984, стр. 109 - 121.

2. Управление судном и его техническая эксплуатация. Учебник для учащихся судоводительских специальностей высших инженерных морских училищ. Под редакцией А.И. Щетининой. 3-е издание. – М. Транспорт, 1983, стр. 491 – 509.

3.Управление судном и его техническая эксплуатация. Учебник для учащихся судоводительских специальностей высших инженерных морских училищ. Под редакцией А.И. Щетининой. 2-е издание. – М. Транспорт, 1975, стр. 491 – 516.

8. Управление судном. Под общей редакцией В.И. Снопкова, – М. Транспорт, 1991, стр. 115- 132.


Приложение 1

Номограмма NPL





Диаграмма А.И. Богданова для оценки параметров неблагоприятных попутных волн