Похожие рефераты Скачать .docx  

Реферат: Интересные и опасные свойства ртути

ИНТЕРЕСНЫЕ И ОПАСНЫЕ СВОЙСТВА РТУТИ


Ртуть - единственный металл, находящийся при комнатной температуре в жидком состоянии. Она обладает многими интересными особенностями, которые раньше использовали для эффектных лекционных опытов. Например, она хорошо растворяется в расплавленном белом фосфоре (он плавится при 44°С), а при охлаждении этого необычного раствора ртуть выделяется в неизменном состоянии. При встряхивании ртути с водой, эфиром, скипидаром, уксусной кислотой, растворами различных солей и даже с соками растений, а также при растирании ртути с сахаром, жиром и другими веществами получается серая эмульсия, состоящая из мельчайших капелек ртути. Еще одна красивая демонстрация была связана с тем, что при охлаждении до - 39°С ртуть затвердевает, а ее твердые кусочки при соприкосновении слипаются так же легко, как и жидкие ее капли. Если же охладить ртуть очень сильно, например жидким азотом, до температуры - 196°С, вставив в нее предварительно палочку, то после замерзания ртути получался своеобразный молоток, которым лектор легко забивал гвоздь в доску. Конечно, всегда оставался риск, что от такого "молотка" отколятся маленькие кусочки, которые потом доставят мною неприятностей. Другой опыт был связан с "лишением" ртути ее способности с легкостью разбиваться на мельчайшие блестящие шарики. Для этого ртуть подвергали действию очень малых количеств озона. При этом ртуть теряла подвижность и налипала тонкой пленкой на содержащий ее сосуд.

Понятно, почему сейчас подобные опыты не проводятся. То, что ртуть ядовита, знают все. Недаром не только ртуть, но и ее соединения, например, сулема, не используются в школьных кабинетах химии. В то же время ртуть находит очень широкое применение во многих производствах (один ученый насчитал их около 3 тысяч!). Металлическую ртуть используют в электрических контактах-переключателях; для заполнения вакуумных насосов, выпрямителей, барометров, термометров, ультрафиолетовых ламп; в производстве хлора и едкого натра, при пломбировании зубов и т.д., - список можно продолжать очень долго. Ртуть есть в каждом доме - в медицинском термометре или в лампе дневного света, поэтому сведения о ядовитости ртути нужны не только специалистам.

Из всех соединений ртути наиболее опасны легко растворимые и легко диссоциирующие ее соли, например HgCl2 - сулема; ее смертельная доза при попадании в желудок составляет от 0,2 до 0,5 г. Но так ли опасна металлическая ртуть? Ведь в некоторых книгах пишут даже, что раньше ее использовали для лечения... заворота кишок (заливали ртуть больному через рот, чтобы "расправить" завернувшиеся петли кишечника) ? Действительно, металлическая ртуть - малоактивный металл, с желудочным соком не реагирует и выводится из желудка и кишечника почти полностью. В чем же ее опасность? Оказывается, ртуть легко испаряется, а ее пары, попадая в легкие, полностью задерживаются там и вызывают впоследствии отравление организма хотя и не такое быстрое, как соли ртути. При этом происходят специфические биохимические реакции, окисляющие ртуть и превращающие ее в растворимые ядовитые соединения. Ионы ртути прежде всего реагируют с SH-группами белковых молекул, среди которых важнейшие для организма белки-катализаторы - ферменты. Могут ионы Hg2* также реагировать с белковыми группами СООН, ~Nll2 с образованием прочных комплексов - металлопротеидов. Более того, циркулирующие в крови "свободные" атомы ртути, попавшие туда из легких, также образуют соединения с белковыми молекулами. Нарушение нормальной работы белков-ферментов приводит к глубоким нарушениям в организме и прежде всего в центральной нервной системе, а также в почках.

Другой возможный источник отравления - органические производные ртути, в которых ее атомы связаны с метальными радикалами СН3. Эти чрезвычайно ядовитые и легко летучие соединения образуются в результате так называемого биологического метилирования. Оно происходит под действием микроорганизмов, например плесени, и характерно не только для ртути, но и для мышьяка, селена, теллура. Если при неосторожной работе соединения этих элементов случайно попадут внутрь, они начинают выделяться, в том числе при дыхании, в виде зловонных газообразных димсгилпроизводных, так что соседство с таким химиком станет невыносимым! Но это, оказывается, не самая большая неприятность, которую может причинить биологическое метилирование ртути. Ртуть и ее биологические соединения широко используются на многих производствах, например при электролитическом получении хлора и гидроксида натрия. Эти вещества со сточными водами попадают на дно водоемов. Обитающие там микроорганизмы превращают их в диметилртуть (CH3),Hg, которая относится к числу наиболее ядовитых веществ. Диметилртуть далее легко переходит в водорастворимый катион. Оба вещества поглощаются водными организмами и попадают в пищевую цепочку - сначала они накапливаются в растениях и мельчайших организмах, затем - в рыбах.

Метилированная ртуть очень медленно выводится из организма: месяцами у людей и годами - у рыб. Поэтому концентрация ртути вдоль биологической цепочки непрерывно увеличивается и в рыбах-хищниках, которые питаются другими рыбами, ртути может оказаться в тысячи раз больше, чем в воде, из которой она выловлена. Именно этим объясняется так называемая "болезнь Мина-мата" - по названию приморского города в Японии, в котором за несколько лет от отравления ртутью умерло 50 человек и многие родившиеся дети имели врожденные уродства. Опасность оказалась настолько велика, что в некоторых водоемах пришлось приостановить лов рыбы - настолько она оказалась "нашпигованной" ртутью. Страдают от поедания отравленной рыбы не только люди, но и рыбы, тюлени.

Для ртутного отравления, в том числе и парами, характерны головная боль, покраснение и набухание десен и появление на них характерной темной каймы сульфида ртути, набухание лимфатических и слюнных желез, расстройства пищеварения. При легком отравлении через 2-3 недели нарушенные функции организма восстанавливаются по мере выведения ртути из организма (эту работу выполняют в основном почки, железы толстых кишок и слюнные железы).

Если поступление ртути в организм происходит очень малыми дозами, но в течение длительного времени, то наступает хроническое отравление. Для него характерны прежде всего повышенная утомляемость, слабость, сонливость, апатия, головные боли и головокружения. Как видно, эти симптомы очень легко спутать с проявлениями других заболеваний или даже с недостатком витаминов. Поэтому распознать такое отравление непросто. Из других проявлений ртутного отравления следует отметить психические расстройства. Раньше их называли "болезнью шляпников", так как для размягчения шерсти, из которой изготовляли фетровые шляпы использовали нитрат ртути Hg(NO3) 2. Это расстройство описано в книге Льюиса Кэрролла "Алиса в стране чудес" на примере одного из персонажей - Сумасшедшего Шляпника.

Опасность хронического отравления ртутью возможна RO всех помещениях, в которых металлическая ртуть находится в соприкосновении с воздухом, даже если концентрация ее паров в воздухе очень мала - порядка 0,01 мг/м3.

Но разве ртуть при комнатной температуре испаряется? Ведь температура кипения ее очень высока - 357°С. Действительно, при комнатной температуре давление паров ртути не превышает 0,001 мм ртутного столба (это примерно в миллион, раз меньше атмосферного давления). Но и такое малое давление означает, что в каждом кубическом сантиметре воздуха содержится 30 триллионов атомов ртути! И вот что еще плохо: поскольку силы притяжения между атомами ртути малы (именно поэтому этот металл жидкий), испаряется ртуть довольно быстро, хотя на первый взгляд кажется, что пролитые капли ртути долгое время совсем не уменьшаются в размерах. А отсутствие цвета и запаха у паров ртути приводит к тому, что многие недооценивают опасность. Чтобы сделать этот факт очевидным в буквальном смысле этого слова, в 1942 году в США провели такой опыт. В небольшую пластмассовую чашечку налили немного ртути так, что образовалась лужица диаметром около 2 см. Эту лужицу присыпали мелким флюоресцирующим порошком (слово "флюоресцирующий" происходит от латинского корня fluor - поток и суффикса escentia, означающего слабое действие) - примерно таким, каким покрывают изнутри кинескопы телевизоров или лампы дневного света. Если такой порошок осветить невидимыми ультрафиолетовыми лучами, он начинает ярко светиться. Когда такой порошок просто насыпали в чашечку и облучили ультрафиолетом, было видно равномерное свечение дна чашки. Но когда под порошком находилась ртуть, на ярком фоне были видны темные движущиеся "облачка". Особенно отчетливо это было видно в том случае, когда в комнате было небольшое движение воздуха.

Объясняется опыт просто: ртуть в чашечке непрерывно испаряется и ее пары свободно проходят сквозь тонкий слой флюоресцирующего порошка. Пары ртути обладают способностью сильно поглощать ультрафиолетовое излучение. Поэтому в тех местах, где над чашечкой поднимались невидимые "ртутные струйки", ультрафиолетовые лучи задерживались в воздухе и не доходили до порошка. В этих местах и были видны темные пятна.

В последующем этот опыт усовершенствовали так, что его могли наблюдать сразу много зрителей в большой аудитории. Ртуть на этот раз находилась в обычной склянке без пробирки, откуда ее нары свободно выходили наружу. За склянкой поставили экран, покрытый флуоресцирующим порошком, а перед ней - ультрафиолетовую лампу. При включении лампы экран начал ярко светится, и на светлом фоне ясно были видны движущиеся тени. Это означало, что в этих местах ультрафиолетовые лучи задержались парами ртути и не смогли достичь экрана.

Как показали специальные измерения, после установления равновесия между жидкой ртутью и ее парами при комнатной температуре концентрация паров ртути в воздухе в сотни раз превышает допустимую для дыхания. Но если открытую поверхность ртути покрыть водой, скорость ее испарения снижается примерке, в миллион рал. Происходит это потому, что ртуть очень плохо растворяется в воде: в отсутствие воздуха в одном литре воды может раствориться 0,06 мг ртути. Соответственно, очень сильно должна уменьшиться и концентрация паров ртути в воздухе при условии его вентиляции (при полном отсутствии вентиляции концентрация паров ртути в воздухе будет такой же, как и при отсутствии защитного водного слоя). Это было проведено в компании "Бетхелем аппаратус" в Пенсильвании (США), в цехах которой за годы их существования было перегнано и расфасовано тысячи тонн жидкой ртути. В одном из опытов около 100 кг ртути налили в два одинаковых лотка размерами 78 х 21 х 7 см, один из которых залили слоем воды толщиной около 2 см и оставили на ночь. На утро замерили концентрацию паров ртути на высоте 10 см от каждого лотка. Там, где ртуть залили водой, ее было в воздухе 0,05 мг/м3 - чуть больше, чем в комнате (0,03 мг/м3). А над свободной поверхностью ртути прибор зашкалил...

Все это стало известно сравнительно недавно, а в прошлом с ртутью обращались довольно беспечно. О ртути знали древние индийцы, китайцы, египтяне. Греческий врач Диоскорид, живший в I веке до н.э., дал ей название hydrargyros, т.е. "водяное серебро". Близкое по значению название - Quecksilber (т.е. "подвижное серебро") сохранилось в немецком языке (интересно, что quecksilberig по-немецки означает "непоседливый"). Старинное английское название ртути - quicksilver ("быстрое серебро").

Ртуть и ее соединения в древности и в Средние века использовались в медицине, а также для приготовления красок. Но были и довольно необычные применения. Так, в середине X века мавританский король Абдаррахман III построил дворец близ Кордовы в Испании, во внутреннем дворике которого был фонтан с непрерывно льющейся струей ртути (напомним, что богатые месторождения ртути в Испании были известны еще в древности, и сейчас по добыче ртути эта страна занимает ведущее место). Еще оригинальнее был другой король, имя которого история не сохранила: он спал на матрасе, который плавал в бассейне из ртути! Ртутью травились не только короли, но и многие ученые, в числе которых был Исаак Ньютон (одно время он очень интересовался алхимией). Да и в наше время небрежное обращение со ртутью нередко приводит к печальным последствиям. Из всего сказанного следует, что пролитую в помещении ртуть следует собирать самым тщательным образом. Особенно много паров образуется, если ртуть рассыпалась на множество мельчайших капелек, которые забились в различные щели, например между плитками паркета. Поэтому все эти капельки необходимо собрать. Лучше всего это сделать с помощью оловянной фольги, к которой ртуть легко прилипает, или же медной проволочкой, промытой в азотной кислоте. А те места, где ртуть еще могла бы задержаться, заливают 20% -ным раствором хлорного железа. Хорошая профилактическая мера против отравления парами ртути - тщательно и регулярно, в течение многих недель или даже месяцев, проветривать помещение, где была разлита ртуть.

В смысле отравления ртутными нарами большую опасность представляют лампы дневного света. Кто не видел на свалке белые трубки перегоревших ламп? Однако каждая такая трубка содержит до 0.2 г жидкой ртути, которая, если трубку разбить, начинает испаряться и загрязнять воздух. Когда лампа горит, ртуть испаряется и разряд происходит в ее парах. После охлаждения лампы ртуть оседает на ее поверхности мелкими капельками, которые видны невооруженным глазом. Поэтому разбивать такие лампы совершенно недопустимо.

Амальгамы

Еще одно замечательное свойство ртути: способность растворять другие металлы, образуя твердые или жидкие растворы – амальгамы. Некоторые из них, например амальгамы серебра и кадмия, химически инертны и тверды при температуре человеческого тела, но легко размягчаются при нагревании. Из них делают зубные пломбы.

Амальгаму таллия, затвердевающую только при –60°C, применяют в специальных конструкциях низкотемпературных термометров.

Старинные зеркала были покрыты не тонким слоем серебра, как это делается сейчас, а амальгамой, в состав которой входило 70% олова и 30% ртути, В прошлом амальгамация была важнейшим технологическим процессом при извлечении золота из руд. В XX столетии она не выдержала конкуренции и уступила более совершенному процессу – цианированию. Однако старый процесс находит применение и сейчас, главным образом при извлечении золота, тонко вкрапленного в руду.

Некоторые металлы, в частности железо, кобальт, никель, практически не поддаются амальгамации. Это позволяет транспортировать жидкий металл в емкостях из простой стали. (Особо чистую ртуть перевозят в таре из стекла, керамики или пластмассы) Кроме железа и его аналогов, не амальгамируются тантал, кремний, рений, вольфрам, ванадий, бериллий, титан, марганец и молибден, то есть почти все металлы, применяемые для легирования стали. Это значит, что и легированной стали ртуть нестрашна.

Зато натрий, например, амальгамируется очень легко. Амальгама натрия легко разлагается водой. Эти два обстоятельства сыграли и продолжают играть очень важную роль в хлорной промышленности.

При выработке хлора и едкого натра методом электролиза поваренной соли используют катоды из металлической ртути. Для получения тонны едкого натра нужно от 125 до 400 г элемента №80. Сегодня хлорная промышленность – один из самых массовых потребителей металлической ртути.

Ртутный пар

Ртуть закипает при 357°C, т.е. тогда, когда большинство металлов еще далеки от точки плавления. Об этом знали еще в древности, и на этом свойстве издавна основывались методы извлечения металлической ртути из руд. Самым первым способом был обжиг киновари с конденсацией паров ртути на холодных предметах и, в частности, на свежесрубленных зеленых деревьях. Позднее стали использовать реторты из керамики и чугуна. Начиная с 1842 г., ртуть из руд извлекается в отражательных печах, а с 1857 г. – в каскадных. В XX в. к ним присоединились механические многоподовые, а также вращающиеся трубчатые печи.

В киновари 86,2% ртути, но в рудах, считающихся богатыми, на ее долю в среднем приходится 8%. В бедных рудах ртути не больше 0,12%. Такие руды приходится обязательно обогащать тем или иным путем, "отсеивая" бесполезные компоненты.

И сейчас из руд и концентратов ртуть извлекают главным образом пирометаллургическими методами. Обжиг происходит в шахтных, отражательных или трубчатых печах при 700...750°C. Такая высокая температура нужна для того, чтобы киноварь окислялась, а не возгонялась, и чтобы процесс окисления HgS + O2 → Hg + SO2 шел до конца. В результате обжига получается парообразная ртуть, которую превращают в жидкий металл в специальных аппаратах – конденсаторах.

Хотя газы, образующиеся при обжиге, проходят несколько стадий очистки, конденсируется не столько металлическая ртуть, сколько так называемая ступпа – тонкодисперсная смесь, состоящая из мельчайших капелек ртути и мелкой пыли сложного химического состава. В ступпе есть соединения как самой ртути, так и других элементов. Ее подвергают отбивке, стремясь разрушить пылевые пленки, мешающие слиянию микроскопически малых капелек жидкого металла. Ту же цель преследует и повторная дистилляция. Но извлечь из ступпы всю ртуть так и не удается, и это одна из нерешенных и сегодня проблем металлургии ртути. А ведь это один из самых старых разделов металлургии.

Способность ртути испаряться при сравнительно низкой температуре была использована для нанесения золотых покрытий на неблагородные металлы. Именно таким способом позолочен купол Исаакиевского собора в Ленинграде. Сейчас этот способ вышел из употребления из-за ядовитости ртутных паров. Электрохимические способы золочения более совершенны и безопасны.

Но видеть в ртутных парах только яд – неверно. Они могут принести и приносят много пользы.

В 1936 г. появилось сообщение о том, что одна из зарубежных нефтяных фирм приобрела ртутный рудник. Оказалось, что ртуть нужна этой фирме для организации парортутной установки, предназначенной для очистки нефти. В наше время ртутные пары все шире используются в нефтеперерабатывающей промышленности: они помогают очень точно регулировать температуру процессов, что крайне важно для нефтепереработки.

Еще раньше, в начале XX в., внимание теплотехников привлекало сообщение о работах доктора Эммета из США. Эммет первым попытался использовать в паровых котлах не воду, а ртуть. Его опытная установка мощностью 2000 л. с. работала и потребляла на 45% меньше топлива, чем обычный паровой котел с генератором. Конечно, не обошлось без дискуссий: ртуть не вода, из реки ее не зачерпнешь! Возражений против использования ртути в паровых котлах было больше чем достаточно. Исследования, однако, продолжались.

Весьма успешной была работа советских научно-исследовательских институтов по проблеме использования ртутного котла и турбины. Были доказаны экономичность ртутно-паровых турбин и возможность создания так называемого ртутно-водяного бинарного цикла, в котором тепло конденсирующегося ртутного пара используется в специальном конденсаторе-испарителе для получения водяного пара. А до этого ртутный пар успевает покрутить вал генератора. Полученный водяной пар приводит в движение второй электротурбогенератор... В подобной системе, работающей только на водяном паре, удается в лучшем случае достигнуть КПД 30%. Теоретический же КПД ртутно-парового цикла (45%) намного выше, чем у газовой турбины (18... 20%) и дизеля (35...39%). В 50-х годах в мире существовало уже несколько таких энергетических установок мощностью до 20 тыс. киловатт. Дальше дело, к сожалению, не пошло, главным образом из-за нехватки ртути.

Вакуумные установки в наше время очень важны для науки и промышленности. И здесь ртуть встречается не только как заполнитель трубок вакуумметра. Еще в 1916 г. Ирвинг Ленгмюр создал вакуум-насос, в котором испарялась и конденсировалась ртуть. При этом в системе, связанной с насосом, создавалось остаточное давление в сотни миллионов раз меньше атмосферного.

Современные ртутные диффузионные насосы дают еще большее разрежение: стомиллионные доли миллиметра ртутного столба.

Изучение ультрафиолетовых лучей продвигалось медленно до тех пор, пока не был создан искусственный источник этих лучей. Им оказались пары ртути в вакууме. Когда через ртутные пары проходит электрический ток, они испускают видимое голубое свечение и много ультрафиолетовых лучей. Чем выше температура паров ртути, тем интенсивнее излучение ультрафиолетовых лучей в ртутно-кварцевой лампе.

Видимое свечение паров ртути использовано в конструкциях мощных ламп освещения. Лампы дневного света – это разрядные трубки, в которых находятся инертные газы и пары ртути. А что такое "холодный свет", пояснять, вероятно, излишне. Из каждого рубля, который мы платим "за свет", на долю действительно светового излучения приходятся лишь четыре копейки. Остальные 96 – за ненужное тепло, излучаемое обычными электролампами. Лампы дневного света намного экономичнее.

Ртуть и ее специфическое отравляющее действие

При вдыхании воздуха, содержащего пары ртути в концентрации не выше 0,25 мг/м3, последняя задерживается и накапливается в лёгких. В случае более высоких концентраций ртуть всасывается неповрежденной кожей. В зависимости от количества ртути и длительности ее поступления в организм человека возможны острые и хронические отравления, а также микромеркуриализм. В наибольшей степени к ртутным отравлениям чувствительны женщины и дети.

Острые отравления парами ртути

Острое отравление ртутью проявляется через несколько часов после начала отравления. Симптомы острого отравления: общая слабость, отсутствие аппетита, головная боль, боль при глотании, металлический вкус во рту, слюнотечение, набухание и кровоточивость десен, тошнота и рвота. Как правило, появляются сильнейшие боли в животе, слизистый понос (иногда с кровью). Нередко наблюдается воспаление легких, катар верхних дыхательных путей, боли в груди, кашель и одышка, часто сильный озноб. Температура тела поднимается до 38-40°С. В моче пострадавшего находят значительное количество ртути. В тяжелейших случаях через несколько дней наступает смерть пострадавшего. В конце ХIХ века был описан эксперимент со вдыханием нескольких грамм ртути, испаряемых с железного листа: из-за быстрого испарения острое отравление не наступило.

Хронические отравления. Меркуриализм

Меркуриализмом называется общее отравление организма при хроническом воздействии паров ртути и её соединений, незначительно превышающих санитарную норму, в течение нескольких месяцев или лет. Проявляется в зависимости от организма и состояния нервной системы. Симптомы: повышенная утомляемость, сонливость, общая слабость, головные боли, головокружения, апатия, а также эмоциональная неустойчивость - неуверенность в себе, застенчивость, общая подавленность, раздражительность. Так же наблюдаются: ослабления памяти и самоконтроля, снижение внимания и умственных способностей. Постепенно развивается усиливающееся дрожание кончиков пальцев при волнении - "ртутный тремор", вначале пальцев рук, затем ног и всего тела (губы, веки), позывы к испражнению, частые позывы к мочеиспусканию, снижение обоняния (очевидно, из-за повреждения ферментов, имеющих сульфгидрильную группу), кожной чувствительности, вкуса. Усиливается потливость, увеличивается щитовидная железа, возникают нарушения ритма сердечной деятельности, снижение кровяного давления.

Микромеркуриализм

Микромеркуриализм - хроническое отравление возникает при воздействии ничтожных количеств ртути в течение 5-10 лет.

Микродозы тимеросала и аутизм

В настоящее время существуют подозрения относительно безопасности некоторых ртутьсодержащих консервантов. Подозревают, в частности, что возможна связь между тимеросалом из вакцин и развитием аутизма у детей, однако, на сегодняшний день отсутствуют статистически достоверные доказательства такой связи.

Похожие рефераты:

Исследование возможности наполнения темы "Элементы II группы периодической системы Д.И. Менделеева" прикладным и экологическим содержанием посредством проведения интегрированных уроков

Методика решения задач по теоретическим основам химической технологии

Безопасность жизнедеятельности и охрана труда

Органическая химия

История открытия элементов

Химия, элементы таблицы Менделеева

Технологический процесс изготовления кварцевой галогенной малогабаритной лампы типа КГМ 220-500

Давно ли люди гибнут за металл и как именно закалялась сталь

Сорбционные свойства мха по отношению к микроорганизмам и тяжелым металлам

География черной металлургии

Экономическая эффективность производства ферритовых стронциевых порошков на ОАО Олкон

Товароведная характеристика цветных металлов и изделий из них

Медико-криминалистические аспекты назначения и проведения экспертиз в случаях отравления техническими жидкостями.

Энергосбережение на современном этапе

Изготовление технологического процесса изготовления лампы накаливания общего назначения типа В 220 -25

Развитие, становление и основные аспекты фармации

Разработка методики определения ультрамикрограммовых количеств тяжелых металлов методом инверсионной вольтамперометрии

Технико-экономическая характеристика отдельных способов производства стали