Похожие рефераты Скачать .docx  

Реферат: Измерение случайных процессов

Реферат на тему : Измерение случайных процессов.

Содержание

1. Общие сведения об измерениях. . . . . . . . . . . . . . . . . . . стр 3.

2. Измерения математического ожидания и дисперсии случайного процесса. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . стр 9.

3. Измерение функций распределения вероятности. . . . стр 11.

4. Измерения корреляционной функции. . . . . . . . . . . . . . стр 13.

5. Анализ спектра мощности. . . . . . . . . . . . . . . . . . . . . . . стр 14.

6. Приложения . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . стр 16.

7. Список литературы. . . . . . . . . . . . . . . . . . . . . . . . . . . . . стр 17.

ИЗМЕРЕНИЯ ВЕРОЯТНОСТНЫХ ХАРАКТЕРИСТИК СЛУЧАЙНЫХ ПРОЦЕССОВ

1. ОБЩИЕ СВЕДЕНИЯ

Измерения вероятностных характеристик случайных процес­сов (статистические измерения) составляют один из наиболее быстро развивающихся разделов измерительной техники. В на­стоящее время область распространения статистических методов исследования и обработки сигналов измерительной информации практически безгранична. Связь, навигация, управление, диагно­стика (техническая, медицинская), исследование среды и многие другие области немыслимы без знания и использования свойств сигналов и помех, описываемых их вероятностными характери­стиками.

Потребность в изучении свойств случайных процессов приве­ла к развитию соответствующих методов и средств (преимуще­ственно электрических). Появление анализаторов функций рас­пределения вероятностей, коррелометров, измерителей математи­ческого ожидания, дисперсиометров и других видов измерителей вероятностных характеристик открыло новые возможности в об­ласти создания современной информационной и управляющей техники.

Рассмотрим необходимые исходные определения и общие сведения о статистических измерениях.

В теории статистических измерений используют следующие понятия и их аналоги, заимствованные из теории случайных функций (аналоги из математической статистики): реализация случайного процесса (выборочная функция), мгновенное значе­ние (выборочное значение), совокупность мгновенных значений (выборка), вероятностная характеристика (предел выборочного среднего).

Введем следующие обозначения: Х ( t ) — случайный процесс;

i -порядковый номер реализации случайного процесса Х (t );

x i (t j ) —мгновенное значение процесса Х (t), соответствующее значению (i -й реализации в j -й момент времени. Случайным назы­вают процесс Х (t), мгновенные значения которого x i ( t j ) суть случайные величины.

На рис.1 представлена в качестве примера совокупность реализации случайного процесса, воспроизводящих зависимости некоторого параметра Х от времени t.

В теории случайных процессов их полное описание произво­дится с помощью систем вероятностных характеристик: многомерных функций распределения вероятности, моментных функ­ций, характеристических функций и т. п. В теории статистиче­ских измерений исследуемый случайный процесс представляется своими реализациями, причем полное представление осуществля­ется с помощью так называемого ансамбля, т. е. бесконечной совокупностью реализаций. Ансамбль — математическая аб­стракция, модель рассматриваемого процесса, но конкретные реализации, используемые в измерительном эксперименте, пред­ставляют собой физические объекты или явления и входят в ан­самбль как его неотъемлемая часть.

Если случайный процесс представлен ансамблем реализации x i ( t ), i =1, 2, ..., со, то вероятностная характеристика в может быть определена усреднением по совокупности, т.е.

N

q [X (t )]=lim 1/N S g[x i (t )], (1)

N® ¥ i =1

где g [X i (t )]— некоторое преобразование, лежащее в основе оп­ределения вероятностной характеристики q. Так, например, при определении дисперсии g [X i ( t ) ]= x i ( t ). При этом полагаем, что процесс характеризуется нулевым математическим ожиданием.

Вместо усреднения по совокупности может быть использовано усреднение по времени с использованием k- й реализации x k ( t ) и тогда

T

q [X(t )]= lim 1/T ò g[x i (t )]dt. (2)

T ® ¥ 0

Например, при определении математического ожидания

T

M [X (t )]= lim 1/T ò x k (t ) dt. (3)

T® ¥ 0

В общем случае результаты усреднения по совокупности (1) и по времени (2) неодинаковы. Предел выборочного среднего по совокупности (1) представляет собой вероятност­ную характеристику, выражающую зависимость вероятностных свойств процесса от текущего времени. Предел выборочного среднего по времени (2) представляет собой вероятностную характеристику, выражающую зависимость вероятностных свойств процесса от номера реализации.

Наличие и отсутствие зависимости вероятностных характери­стик от времени или от номера реализации определяет такие фундаментальные свойства процесса, как стационарность и эрго­дичность. Стационарным, называется процесс, вероятностные ха­рактеристики которого не зависят от времени; соответственно эргодическим называется процесс, вероятностные характеристи­ки которого не зависят от номера реализации.

Следовательно, стационарный неэргодический случайный процесс — это такой процесс, у которого эквивалентны времен­ные сечения (вероятностные характеристики не зависят от теку­щего времени), но не эквивалентны реализации (вероятностные характеристики зависят от номера реализации). Нестационар­ный эргодический процесс — это процесс, у которого эквивалент­ны реализации (вероятностные характеристики не зависят от номера реализации), но не эквивалентны временные сечения (вероятностные характеристики зависят от текущего времени). Классифицируя случайные процессы на основе этих призна­ков (стационарность и эргодичность), получаем следующие четы­ре класса процессов: стационарные эргодические, стационарные неэргодические, нестационарные эргодические, нестационарные неэргодические.

Учет и использование описанных свойств случайных процес­сов играет большую роль при планировании эксперимента по определению их вероятностных характеристик.

Поскольку измерение представляет собой процедуру нахож­дения величины опытным путем с помощью специальных техни­ческих средств, реализующих алгоритм, включающий в себя операцию сравнения с известной величиной, в статических изме­рениях должна применяться мера, воспроизводящая известную величину.

Типовые алгоритмы измерений вероятностных характеристик случайных процессов, различающиеся способом применения ме­ры в процессе измерений, представляются в следующем виде:

q* [X (t )]= KSd g [X (t )]; (4)

q* [X (t )]= Sd Kg [X (t )]; (5)

q* [X (t )]= Sd gK [X (t )]; (6)

где Sd оператор усреднения; К— оператор сравнения;

q* [X (t)]—результат измерения характеристики q [X (t )].

Данные алгоритмы различаются порядком выполнения опе­раций. Операция сравнения с образцовой мерой (К ) может быть заключительной [см. (4)], выполняться после реализации оператора g, но до усреднения [см. (5)] и, наконец, быть началь­ной [см. (6)]. Соответствующие обобщенные структурные схе­мы средств измерений значений вероятностных характеристик представлены на рис. 2 .

На этих рисунках для обозначения блоков, реализующих операторы, входящие в выражения (4) — (6), используют­ся те же обозначения. Так, g устройство, выполняющее пре­образование, лежащее в основе определения вероятностной ха­рактеристики q; Sd устройство усреднения (сумматор или ин­тегратор); К— компаратор (сравнивающее устройство), а М— мера, с помощью которой формируется известная величина (q., g., x . )

Представленное на рис. 2 , а средство измерений реализует следующую процедуру: на вход поступает совокупность реализа­ций {x i ( t ) } (при использовании усреднения по времени — одна реализация x i , ( t ) -, на выходе узла g имеем совокупность преоб­разованных реализации {g[x i (t )]}; после усреднения получаем величину Sd {g[x i (t )]}, которая поступает на компаратор, осуще­ствляющий сравнение с известной величиной qо, в результате чего получаем значение измеряемой вероятностной характеристики q*[X ( t )].

Отличие процедуры, реализуемой средством измерений, пред­ставленным на рис. 2, б, заключается в том, что после формиро­вания совокупности {g [x i (t )]} она поступает не на усреднитель, а на компаратор, который выполняет сравнение с известной вели­чиной go ; на выходе компаратора формируется числовой массив {g* [x i ( t i ) ]} и усреднение выполняется в числовой форме. На выхо­де усреднителя Sd имеем результат измерения q* [X (t )].

Средство измерений (рис. 2, в ) основано на формировании массива числовых эквивалентов мгновенных значений реализа­ции случайного процесса Х ( t ), после чего преобразование g и ус­реднение выполняются в числовой форме. Это устройство эквива­лентно последовательному соединению аналого-цифрового пре­образователя (АЦП) и вычислительного устройства (процессо­ра). На выходе АЦП формируется массив мгновенных значений, а процессор по определенной программе обеспечивает реализа­цию операторов g и Sd ,

Погрешность результата измерения вероятностной характе­ристики случайного процесса

Dq* [X (t )]= q*[X (t )]- q [ X (t )]. (7)

Для статистических измерений характерно обязательное на­личие составляющей методической погрешности, обусловленной конечностью объема выборочных данных о мгновенных значени­ях реализации случайного процесса, ибо при проведении физиче­ского эксперимента принципиально не может быть использован бесконечный ансамбль реализации или бесконечный временной интервал. Соотношение (7) определяет результирующую по­грешность, включающую в себя как методическую, так и инстру­ментальную составляющие. В дальнейшем будут приводиться соотношения только для определения специфической для стати­стических измерений методической погрешности, обусловленной конечностью числа реализации и временного интервала.


2. ИЗМЕРЕНИЯ МАТЕМАТИЧЕСКОГО ОЖИДАНИЯ ИДИСПЕРСИИ СЛУЧАЙНОГО ПРОЦЕССА

Математическое ожидание и дисперсия случайного процес­са — основные числовые вероятностные характеристики, измере­ние которых играет большую роль в практике научных исследова­ний, управления технологическими процессами и испытаний.

При измерении математического ожидания результатом из­мерения является среднее по времени или по совокупности мгно­венных значений реализации исследуемого случайного процесса. Усреднение по времени применяется на практике существенно чаще, чем усреднение по совокупности, поскольку работать с од­ной реализацией удобнее и проще, чем с совокупностью. На рис. 3 приведена структурная схема устройства, реали­зующего алгоритм

t

M* [X (t)]= 1/T ò xk (t) dt.

t-T

На рисунке Д— преобразователь измеряемой величины в электрический сигнал (датчик); НП — нормирующий преобра­зователь, превращающий входной сигнал в стандартный по виду и диапазону значений; И — интегратор; УС — устройство сопря­жения, обеспечивающее согласование выхода интегратора со входами цифрового вольтметра и регистрирующего прибора;

ЦИП — цифровой прибор (например, цифровой вольтметр);

РП— регистрирующий прибор (самопишущий прибор).

Для оценки среднего квадратичeского значения погрешности, обусловленной конечностью объема выборочных данных,

можно пользоваться следующими соотношениями:

1/2

s =[2D [X(t )] t k /T]

при усреднении по времени T и

1/2

s =[D [X(t )]/N]

при усреднении по совокупности N. Здесь D [X (t)]—дисперсия процесса X ( t ), а t k — интервал корреляции. Дисперсия случайного процесса характеризует математиче­ское ожидание квадрата отклонений мгновенных значений реали­зации случайного процесса от математического ожидания. Таким образом,

T 2

D[X(t )]= lim 1/T ò [x k (t )-[X(t )]] dt

T®¥ 0

или

N 2

D[X(t)]= lim 1/N S [xi(t)-[X(t)]] dt

N®¥ i=1

Возможны различные варианты построения устройств для измерения дисперсии случайного процесса — дисперсиометров. На рис. 4 приведена структурная схема средства измерений дисперсии случайного процесса, т. е. работающего согласно вы­ражению

t t 2

D* [X(t )]=1/T ò [x k (t )- 1/T1 ò x k (t )dt ] dt

t-T t-T1

На рисунке НП — нормирующий преобразователь; И1 и И2 — интеграторы; ВУ— вычитающее устройство; КУ— квадратирующее устройство; УС — устройство сопряжения; ЦИП — цифро­вой прибор; РП — регистрирующий прибор.

Средняя квадратическая погрешность из-за конечности объема выборочных данных о мгновенных значениях Х (t) может быть определена с помощью соотношений

2 1/2

s =[2D [X (t )] t k /T]

, где D [X 2 (t )]— дисперсия Х (t); T—время усред­нения.

При усреднении по совокупности N реализаций

2 1/2

s =[D [X (t )] /N]

3. ИЗМЕРЕНИЕ ФУНКЦИЙ РАСПРЕДЕЛЕНИЯ ВЕРОЯТНОСТЕЙ

Одномерная интегральная функция распределения вероятно­сти F (X) равна вероятности того, что мгновенное значение про­извольной реализации в произвольный момент времени меньше установленного уровня, т. е. X i ( t i ) £ X . Функция F (X) определя­ется как предел выборочного среднего:

F (X)= lim Sd [j [x (t ) ,X]],

d ®¥

1 при x (t ) £ X

Где j[x (t ) ,X]=

0 при x (t ) > X

Поскольку интегральные F (X) и дифференциальные w (X) функции распределения вероятности связаны между собой со­отношениями

X

w (X) =(dF (X))/dX ; F (X)= ò w (X) dX

справедливо выражение

w (X) = lim ((F(X+ DX)-F (X))/ DX)= lim ((Sd [Dj[x (t ) ,X]])/ DX)

DX®0 DX®0

1 при X < x (t ) £ X+ DX

где Dj [x (t ) ,X]=

0 при x (t ) £ X, x (t ) > X+ DX

В качестве примера рассмотрим средство измерений для определения интегральной функции распределения вероятности уровня электрического сигнала. Схема средства измерений, реа­лизующего алгоритм

t

F * ( X )= 1/T ò j [x k (t ) ,X]dt ,

t-T

показана на рис. 5 , где ПУ — пороговое устройство, формиру­ющее сигнал X k ( t }—X; ФУ— формирующее устройство; И— интегратор, на выходе которого получается сигнал F* (X) при установленных значениях Х и Т; УС — устройство сопряжения;

ЦИП — цифровой прибор; РП — регистрирующий прибор.

Средняя квадратическая погрешность из-за конечности объема выборки определяется для F {X) с помощью соотношения

2 1/2

s =[2(F - F ) t k /T]

при усреднении по времени и с помощью соотношения

2 1/2

s =[2(F - F )/N]

при усреднении по совокупно­сти. Для (X) соответствующие соотношения имеют вид:

2 1/2

s =[2(w - w DX) t k /T]

w °

2 1/2

и s =[(w - w DX)/N]

w °

В приведенных соотношениях F и w — истинные значения измеряемых функ­ций при данном X.

4. ИЗМЕРЕНИЯ КОРРЕЛЯЦИОННОЙ ФУНКЦИИ

Для случайного процесса с нулевым математическим ожида­нием корреляционная функция равна:

Rx (s, t) = lim Sd [x i (t ) x i -s (t - t)],

d ®¥

где t и s — соответственно сдвиг во времени и в пространстве реализации перемножаемых мгновенных значений.

В практических задачах большую роль играют стационарные случайные процессы, т. е. процессы с постоянными вероятностны­ми характеристиками, не зависящими от текущего времени. Сре­ди случайных процессов можно выделить эргодические процессы, для которых

t

Rx (t) = lim 1/T ò x (t ) x (t -t)dt ,

T ®¥ 0

Большое значение корреляционного анализа в различных областях науки и техники привело к созданию множества измери­тельных приборов для измерений корреляционных функций — коррелометров.

Типовая структура коррелометра, в котором используется усреднение по времени, представлена на рис. 6 . При этом реализуется следующий алгоритм:

t

R*x (t) = 1/T ò x k (t ) x k (t -t)dt ,

t - T

Как видно, после нормирующего преобразователя НП сигнал поступает в устройство временной задержки УЗ и на перемножа­ющее устройство ПУ, осуществляющее перемножение мгновен­ных значений, сдвинутых по времени на интервал т. Далее с по­мощью интегратора И выполняется усреднение, после которого результирующий сигнал через УС подается на цифровой прибор ЦИП или регистрирующий прибор РП.

Средние квадратические погрешности, обусловленные ко­нечностью объема выборочных данных о мгновенных значениях реализации процесса Х ( t ), оцениваются с помощью соотноше­ний:

1/2

s ={2D[x k (t) x k (t-t)] t k /T}

при усреднении по времени Т и

1/2

s ={D[x k (t) x k (t-t)]/N}

при усреднении по совокупности.

5. АНАЛИЗ СПЕКТРА МОЩНОСТИ

Спектр мощности характеризует ее частотное распределение, и он может быть определен в соответствии со следующими форму­лами:

2

Sx (w ) = lim 1/T | x iT (w ) |

T ®¥

Где

t -jwt’

XiT (w) = ò xi (t’) e dt’

t-T

На рис. 7 изображена схема анализатора спектра мощно­сти случайного процесса Х (t).

С выхода нормирующего преобразователя НП i -я реализация случайного процесса x i ( t ) поступает на блок Ф, выполняющий преобразование Фурье, после чего узлом Кв производится возве­дение в квадрат и нормирование с учетом интервала усреднения Т. С помощью устройства сопряжения УС сформированный сиг­нал поступает на ЦИП и регистратор РП.

В настоящее время отечественной промышленностью серийно выпускаются анализаторы случайных процессов. К ним относят­ся многофункциональный статистический преобразователь Ф790, корреллометр Ф7016, комплекс измерителей характеристик случайных сигналов Х6-4/а, многофункциональные измерители ве­роятностных характеристик Ф36 и Ф37, анализаторы спектра Ф4326, Ф4327, Ф7058 и др. С помощью этих приборов и устройств можно измерять математические ожидания и дисперсии, а также значения функций распределения вероятности, корреляционных и спектральных функций с последующим восстановлением вида самих функций. Перечисленные анализаторы рассчитаны в ос­новном на унифицированный входной сигнал и позволяют изме­рить от 256 до 4096 ординат анализируемой функции. Погреш­ность измерения не превышает ±5 %.

Кроме того, для определения вероятностных характеристик случайных сигналов могут использоваться электроизмеритель­ные приборы, предназначенные для измерения среднего и дей­ствующего значений сигнала. Для определения среднего значе­ния применяют магнитоэлектрические приборы и цифровые ин­тегрирующие приборы. Для определения среднего квадратического отклонения используют приборы, показания которых определяются действующим значением сигнала (термоэлектри­ческие, электростатические и др.).

Корреляционные устройства получили применение в различ­ных областях науки и техники для измерения различных величин. В качестве примера можно указать корреляционное устройство для измерения скорости прокатки. Эти устройства измеряют кор­реляционную функцию, зависящую от т, которая, в свою очередь, зависит от скорости прокатки.

Список литературы :

1.Метрология и электроизмерительные приборы. Душин М .Е.\М.: Энергоатомиздат,1986.

2.Метрология, стандартизация и измерения в технике связи. Под ред. Б.П. Хромого

М.: Радио и связь, 1986.

3.Основы метрологии и стандартизации. Голубева В. П. \М .: Вектор, 1996.

Похожие рефераты:

Постановка задачи синтеза оптимальных алгоритмов приема сигналов на фоне помех

Исследования в современном управлении

Основы метрологии

Математические основы теории систем

Понятие случайного процесса в математике

Серьёзные лекции по высшей экономической математике

Построение систем распознавания образов

Свойства пространства с некоторыми компактифицированными измерениями

Книга S.Gran A Course in Ocean Engineering. Глава Усталость

Теория вероятности и мат статистика

Шпаргалки по геометрии, алгебре, педагогике, методике математики (ИГПИ)

Обработка результатов измерений

Matlab

Статистический анализ числовых величин (непараметрическая статистика)

Дискретизация и квантование изображений

Теория вероятности и математическая статистика

Современная научно-техническая документация на статистические методы анализа результатов измерений

Понятие и классификация средств измерений