Похожие рефераты | Скачать .docx |
Реферат: Готфрид Лейбниц - немецкий историк, математик, физик, юрист
Готфрид Лейбниц
( Gottfried Willhelm von Leibnic )
(1646 - 1716).
Немецкий философ, математик, физик, юрист.
Ярославль 2000.
Готфрид Лейбниц (1646 - 1716).
Немецкий философ, математик, физик, юрист, историк, языковед. С 1676 г. на службе у ганноверских герцогов. Основатель и президент с 1700г. Бранденбургского научного общества (позднее Берлинский АН) По личной просьбе Петра1 Лейбниц разработал программу образования и государственного управления в России. Реальный мир по Лейбницу состоит из бесчисленных психических деятельных субстанций (« Монадология 1714»). «Существующий мир создан Богом как наилучший из всех возможных миров». В духе рационализма развивается учение Лейбница о прирожденной способности ума к познанию высшей категории бытия и всеобщих необходимых истин логики и математики. («Новые опыты о человеческом разуме»). Лейбниц предвосхитил принципы современной математической логики. Он является одним из создателей дифференцируемых и интегральных исчислений.
Научные труды его бессмертны...
Начиная с XVII в. Одним из важнейших понятий является понятие функции. Оно сыграло, и поныне играет большую роль в познании реального мира. Идея функциональной зависимости восходит к древности, но однако явное и вполне сознательное применение понятия функции и систематическое изучение функциональной зависимости берут свое начало от XVII в. в связи с проникновением в математику идей переменных. В работах Лейбница понятие функции носило по существу интуитивный характер и было связано либо с геометрическими, либо с математическими представлениями. Слово «функция» Лейбниц употреблял с 1673 г. в смысле роли (величина, выполняющая ту или иную функцию). Как термин в нашем смысле выражение «функция от х» начало употребляться Лейбницем с 1698г. Математик вводит также значение слов « переменная» и «константа».
В конце XVII в. в Европе образовались две крупные математические школы. Главой одной из них был Лейбниц. Как он сам, так его ученики и сотрудники вели здесь углубленные работы по изучению алгорифмов. Вторую школу возглавлял Ньютон, она состояла из английских и шотландских ученых. Обе школы создали новые алгорифмы, приведшие по своей сути к одним и тем же результатам - создание дифференциального и интегрального исчисления.
Математиков того времени долго волновал вопрос о нахождении общего метода для построения касательной в любой точке кривой. Эта задача связывалась с изучением движения тел и с отысканием экстремумов наибольших и наименьших значений разных функций. Основываясь на результатах Ферма и некоторых других выводах, Лейбниц значительно полнее своих предшественников решил задачу, о которой идет речь, создав соответствующий алгорифм.
И в 1684 году выходит в свет первая печатная работа Лейбница по дифференциальному исчислению. Это был мемуар, собравший в себя множество трудов математика. Здесь исследуется проблема максимумов и минимумов функции, важный вклад в изучение которой внес именно Лейбниц. В своем «Новом методе» он применяет понятие дифференциала для исследования возрастания и убывания функции и по существу высказывает изучаемую нами ныне теорему.
Идея создания геометрического исчисления, близкого по смыслу к векторному исчислению, была впервые выдвинута в 1679г. Лейбницем в письме Гюйгенсу. Термин «геометрия положения» заимствован также из этого письма.
К 1684г. Появляется новый мемуар Лейбница «О глубокой геометрии и анализе неделимых, а также бесконечных». Это была работа, целиком, посвященная интегральному исчислению. Основным понятием для математика было здесь сумма актуально бесконечных малых треугольников ydx , на которые разбивается криволинейная фигура, т.е. определенный интеграл. В своем мемуаре автор устанавливает связь между дифференциальным и интегральным исчислением. Без доказательств сообщает правила дифференцирования константы, суммы, разности, произведения, частного, степени и корня. Лейбниц дает указания, как применять дифференциалы для исследования перегибов кривых.
В 1696г. Бернулли было предложено понятие «Интеграла», которое одобрил, хотя и неохотно, Лейбниц который до этого пользовался «суммой ydx ».
В дальнейшем, совершенствуя свои познания, давая им математическое осмысление, Лейбниц продолжает глубокие изучения в области дифференцирования. Тесно сотрудничая с другими математиками, Он всю свою жизнь посвящает науке. Его вклад в алгебре бесценен! Лейбниц был одним из основателей учения, которое потом продолжали многие великие умы человечества...
Список использованной литературы:
1. Энциклопедический словарь.
2. История математики в (Г. И. Глейзер).
3. БЭС (Большая Советская Энциклопедия).
4. Математика в лицах (П. В. Широков).
Доклад подготовил: Григорьев Павел.
Похожие рефераты:
Развитие понятия "Пространство" и неевклидова геометрия
Основные понятия дифференциального исчисления и история их развития (Бакалавр)
Изучение истории становления и развития методики преподавания математики в России
Формирование познавательной потребности у учащихся средствами информационных технологий
Содержание и значение математической символики
Формирование понятия комплексного числа в курсе математики средней школы
Физические модели при изучении интеграла в курсе алгебры и начал анализа в 10-11 классах
Дифференциальная геометрия поверхностей Каталана
Методическое наследие Ф.В. Филипповича
Три кризиса в развитии математики
Концепции современного естествознания
Роль теории дифференциальных уравнений в современной математике и ее приложениях