Похожие рефераты | Скачать .docx | Скачать .pdf |
Реферат: Интеграл по комплексной переменной
Определение 1: Кривая Г называется гладкой ,если она имеет непрерывно изменяющуюся касательную.
Определение 2: Кривая называется кусочно-гладкой ,если она состоит из конечного числа гладких дуг.
Основные свойства : Пусть на комплексной плоскости Z задана кусочно-гладкая кривая С длиной l, используя параметрическое задание кривой С зададим h(t) и x (t), где h и x являются кусочно-гладкими кривыми от действительной переменной t. Пусть a<= t<=b, причем a и b могут быть бесконечными числами .
Пусть x и h удовлетворяют условию : [x‘(t)]2 + [h‘(t)]2 ¹ 0. Очевидно, что задание координат h =h(t) и x=x (t), равносильно заданию комплексной функции z (t)= x (t) + ih(t).
Пусть в каждой точке z (t) кривой С определена некоторая функция f (z ). Разобьем кривую С на n – частичных дуг точками деления z0 , z1 , z2 , …, z n-1 соответствующие возрастающим значениям параметра t, т.е. t0, t1, …, t i+1 > t i.
Dz i =z i – z i-1. Составим интегрируемую функцию S = åf (z*)Dz i . (1)
где z*– производная точки этой дуги.
Если при стремлении max |Dz i |® 0 существует предел частных сумм не зависящий ни от способа разбиения кривой С на частичные дуги, ни от выбора точек z i , то этот предел называется интегралом от функции f (z ) по кривой С.
(2)
f (zi* ) = u (Pi*) + iv (Pi*) (3)
где Dz i = Dx (t) + iDh(t) (x (t) и h(t) - действительные числа)
Подставив (3) в (1) получим :
(4)
Очевидно, что (4) состоит из суммы двух частных сумм, криволинейных интегралов действительной переменной. Переходя в (4) к пределу при Dx и Dh ® 0 и предполагая, что данные пределы существуют, получаем :
(5)
Заметим, что для существования криволинейного интегралов, входящих в (5), а тем самым и для существования интеграла (2) достаточно кусочной непрерывности функций u и v. Это означает, что (2) существует и в случае неаналитичности функции f (z ).
Сформулируем некоторые свойства интеграла от функции комплексной переменной. Из равенства (5) следуют свойства :
О ограниченности интеграла.
7.) Пусть Cp – окружность радиуса r, с центром в точке Z0. Обход вокруг контура Cp осуществляется против часовой стрелки. Cp : z = Z0 + r×eij, 0 £ j £ 2p, dz = ir×eij dj .
Кусочно-гладкую замкнутую кривую будем называть замкнутым контуром, а интеграл по замкнутому контуру – контурным интегралом.
ТЕОРЕМА КОШИ.
В качестве положительного обхода контура выберем направление при котором внутренняя область, ограниченная данным замкнутым контуром остается слева от направления движения :
Для действительной переменной имеют место формулы Грина. Известно, что если функции P(x, y) и Q(x, y) являются непрерывными в некоторой заданной области G, ограниченны кусочно-гладкой кривой С, а их частные производные 1-го порядка непрерывны в G, то имеет место формула Грина:
( 8 )
ТЕОРЕМА : Пусть в односвязной области G задана аналитическая функция f(Z), тогда интеграл от этой функции по замкнутому контуру Г целиком лежащему в G , равен нулю.
Доказательство : из формулы (5) следует:
Т.к. f(z ) аналитическая всюду, то U(x, y), V(x, y) - непрерывны в области, ограниченной этим контуром и при этом выполняются условия Коши-Римана. Используя свойство криволинейных интегралов:
Аналогично :
По условию Коши-Римана в последних равенствах скобки равны нулю, а значит и оба криволинейных интеграла равны нулю. Отсюда :
ТЕОРЕМА 2 (Вторая формулировка теоремы Коши) : Если функция f(z) является аналитической в односвязной области G, ограниченной кусочно-гладким контуром C, и непрерывна в замкнутой области G, то интеграл от такой функции по границе С области G равен нулю.
TEOPEMA 3 (Расширение теоремы Коши на многосвязную область) :
Пусть f (z) является аналитической функцией в многосвязной области G, ограниченной извне контуром С0, а изнутри контурами С1, С2, .. ,Сn (см. рис.). Пусть f (z) непрерывна в замкнутой области G, тогда :
, где С – полная граница области G, состоящая из контуров С1, С2, .. , Сn. Причем обход кривой С осуществляется в положительном направлении.
Неопределенный интеграл.
интеграл по какой-либо кривой, целиком лежащей в области G, содержащей Z0 и Z, в силу теории Коши этот интеграл не зависит от выбора кривой интегрирования и является однозначной функцией Ф(Z). Аналитическая функция Ф(Z) называется первообразной от функции f(Z) в области G, если в этой области имеет место равенство : Ф¢ (Z) = f( Z).
Определение: Совокупность всех первообразных называется неопределенным интегралом от комплексной функции f(Z). Так же как и в случае с функцией действительного переменного имеет место равенство :
( 9)
Это аналог формулы Ньютона-Лейбница.
Интеграл Коши. Вывод формулы Коши.
Ранее была сформулирована теорема Коши, которая позволяет установить связь между значениями аналитической функции во внутренних точках области ее аналитичности и граничными значениями этой функции.
По свойствам интегралов :
(2 )
Так как левый интеграл в (2) не зависит от выбора контура интегрирования, то и правый интеграл также не будет зависеть от выбора контура. Выберем в качестве g окружность gr с радиусом r . Тогда:
(3)
Уравнение окружности gr : z = Z0 + reij (4)
Подставив (4) в (3) получим :
( 5 )
( 6 )
(7)
Устремим gr® 0, т.е. r® 0.
Тогда т.к. функция f(z) аналитична в точке Z=Z0 и всюду в области G, а следовательно и непрерывна в G, то для всех e>0 существует r>0, что для всех z из r–окрестности точки Z0 выполняется | f(z) – f(Z0) | < e.
(8)
Подставив ( 7) в ( 6) с учетом ( 8) получаем :
Подставляя в ( 5) и выражая f(Z0) имеем :
(9)
Это интеграл Коши.
Интеграл, стоящий в (9) в правой части выражает значение аналитической функции f(z) в некоторой точке Z0 через ее значение на произвольном контуре g , лежащем в области аналитичности функции f(z) и содержащем точку Z0 внутри.
Очевидно, что если бы функция f(z) была аналитична и в точках контура С, то в качестве границы g в формуле (9) можно было использовать контур С.
Приведенные рассуждения остаются справедливыми и в случае многосвязной области G.
Следствие : Интеграл Коши, целиком принадлежащий аналитической области G имеет смысл для любого положения Z0 на комплексной плоскости при условии, что эта точка есть внутренней точкой области Г. При этом если Z0 принадлежит области с границей Г, то значение интеграла равно (9), а если т. Z0 принадлежит внешней области, то интеграл равен нулю :
При Z0 Î Г указанный интеграл не существует.
Интегралы, зависящие от параметра.
Рассматривая интеграл Коши, видим, что подинтегральная функция зависит от 2-х комплексных переменных : переменной интегрирования z и Z0. Таким образом интеграл Коши может быть рассмотрен как интеграл, зависящий от параметра, в качестве которого выбираем точку Z0.
Пусть задана функция двух комплексных переменных j (Z, z ), причем Z= x + iy в точке, принадлежащей некоторой комплексной плоскости G. z= x+ ih Î С. (С - граница G).
Взаимное расположение области и кривой произвольно. Пусть функция j (Z, z ) удовлетворяет условиям : 1) Функция для всех значений z Î С является аналитической в области G. 2) Функция j (Z, z ) и ее производная ¶j/¶Z являются непрерывными функциями по совокупности переменных Z и z при произвольном изменении области G и переменных на кривой С. Очевидно, что при сделанных предположениях :
Интеграл существует и является функцией комплексной переменной. Справедлива формула :
(2)
Эта формула устанавливает возможность вычисления производной от исходного интеграла путем дифференцирования подинтегральной функции по параметру.
ТЕОРЕМА. Пусть f(Z) является аналитической функцией в области G и непрерывной в области G (G включая граничные точки ), тогда во внутренних точках области G существует производная любого порядка от функции f(Z) причем для ее вычисления имеет место формула :
(3)
С помощью формулы (3) можно получить производную любого порядка от аналитической функции f (Z) в любой точке Z области ее аналитичности. Для доказательства этой теоремы используется формула (2) и соответственные рассуждения, которые привели к ее выводу.
ТЕОРЕМА МОРЕРА. Пусть f(Z) непрерывна в односвязной области G и интеграл от этой функции по любому замкнутому контуру, целиком принадлежащему G равен 0. Тогда функция f (Z) является аналитической функцией в области G. Эта теорема обобщается и на случай многосвязной области G.
Разложение функции комплексного переменного в ряды.
Если функция f(x, y) определена и непрерывна вместе с частными производными (до n-го порядка ), то существует разложение этой функции в ряд Тейлора :
Итак, если задана функция f (z) комплексного переменного, причем f (z) непрерывная вместе с производными до n-го порядка, то:
(2) – разложение в ряд Тейлора.
Формула (2) записана для всех Z принадлежащих некоторому кругу | Z-Z0 |<R, где R – радиус сходимости ряда (2).
Функция f (z), которая может быть представлена в виде ряда (2) является аналитической функцией. Неаналитическая функция в ряд Тейлора не раскладывается.
(3)
(4)
(5)
Причем | Z | < R, R ® ¥ .
Формулы ЭЙЛЕРА.
Применим разложение (3) положив, что Z = ix и Z= - ix;
(6)
Аналогично взяв Z = - ix получим :
(7)
Из (6) и (7) можно выразить т.н. формулы Эйлера :
(8)
В общем случае :
(9)
Известно, что :
(10)
Тогда из (9) и (10) вытекает связь между тригонометрическими и гиперболическими косинусами и синусами:
Ряд ЛОРАНА.
Пусть функция f(z) является аналитической функцией в некотором круге радиусом R, тогда ее можно разложить в ряд Тейлора (2). Получим тот же ряд другим путем.
ТЕОРЕМА 1.
Однозначная функция f(Z) аналитическая в круге радиусом |Z-Z0| < R раскладывается в сходящийся к ней степенной ряд по степеням Z-Z0.
Опишем в круге радиусом R окружность r, принадлежащую кругу с радиусом R.
Возьмем в круге радиуса r точку Z, а на границе области точку z , тогда f(z) будет аналитична внутри круга с радиусом r и на его границе. Выполняется условие для существования интеграла Коши :
(13)
(11)
Поскольку
, то выражение можно представить как сумму бесконечно убывающей геометрической прогрессии со знаменателем , т.е. :
(12)
Представим равномерно сходящимся рядом в круге радиуса r, умножая (12) на 1/(2pi) и интегрируя по L при фиксированном Z, получим : слева интеграл (13) который равен f (Z), а справа будет сумма интегралов :
Обозначая , получим : (14)
Это разложение функции f (Z) в круге R в ряд Тейлора. Сравнивая (14) с рядом (2) находим, что (15)
ТЕОРЕМА 2.
Если однозначная функция f(Z) аналитична вне круга с радиусом r с центром в точке Z0 для всех Z выполняется неравенство r < |Z-Z0 |, то она представляется рядом :
(16)
где h - ориентированная против часовой стрелки окружность радиуса r (сколь угодно большое число). Если обозначить (17) , получим :
(18)
ТЕОРЕМА 3.
Если однозначная функция f(Z) аналитическая в кольце Z< |Z-Z0 |<R, где 0£ Z<R<¥ , то она раскладывается в сходящийся степенной ряд :
(19)
f1 и f2 можно представить в виде двух рядов :
(20)
(21)
Ряд (19) – ряд Лорана, при этом ряд (20) сходится в круге радиуса R, ряд (21) сходится вне круга радиуса R функции f2(Z). Общая область сходимости ряда – кольцо между r и R.
f1(Z) – правильная часть.
f2(Z) – главная часть ряда Лорана.
Ряд Тейлора – частный случай ряда Лорана при отсутствии главной его части.
Классификация изолированных особых точек. Вычеты.
Определение 1. Особой точкой функции f(Z) определенной в области (замкнутой) G, ограниченной Жордановой кривой, называется точка Z=Z0 Î G в которой аналитичность функции f1(Z) нарушается. Рабочая точка Z=Z0 функции f(Z), ограниченной в круге |Z-Z0|<R называется изолированной, если функция f(Z) в каждой точке этого круга аналитична, кроме самой точки Z=Z0. В зависимости от поведения функции f(Z) в окрестности изолированных особых точек последние классифицируются на :
1) Устранимые особые точки. Ими называются особые точки, для которых существует , где А – конечное число.
2) Если для особой точки существует предел , то такая особая точка называется полюсом.
3) Если не существует, то точка Z=Z0 называется существенной особой точкой.
Если С-n=0, то особая точка есть устранимая особая точка.
Пусть f(Z0)=C0 и C-n для всех n=1,2,3,..,m отличного от 0, а для всех n ® m+1 C-n=0, тогда Z=Z0 будет являться полюсом порядка m.
При m>1 такой полюс будет называться простым.
, если m ® ¥ , то в этом случае в точке Z=Z0 имеем существенную особенность.
Определение 2. Вычетом функции f(Z) в круге |Z-Z0|<R, ограничивающем изолированную особую точку Z=Z0 называется интеграл : , где L – ориентированный против часовой стрелки контур целиком расположенный в круге радиуса R, содержащем Z0. Вычет существует только для изолированных особых точек. Очевидно, что вычет функции f(z) при Z=Z0 равен первому коэффициенту ряда главной части Лорана :
Если полюс имеет кратность m ³ 1, то для определения вычетов используется формула :
(3)
при m=1 :
Основная теорема о вычетах.
Пусть f(z) аналитическая в области G кроме конечного числа полюсов Z = a1, a2, …, ak. g –произвольный, кусочно-гладкий замкнутый контур содержащий внутри себя эти точки и целиком лежащий внутри области G. В этом случае интеграл равен сумме вычетов относительно a1, a2, …, ak и т.д. умноженный на 2pi :
(5)
Пример :
Найти вычет
Особые точки : Z1=1, Z2= - 3.
Определим порядок полюсов – все полюсы первого порядка.
Используем формулу (3) :
Интегральные преобразования.
Операционное исчисление и некоторые его приложения.
Пусть задана функция действительного переменного t, которая удовлетворяет условиям :
1)
2) Функция f(t) кусочно-непрерывная (имеет конечное число точек разрыва первого рода).
3) Для любого значения параметра t>0 существует M>0 и S0³0 такие, что выполняется условие : |f(t)|<Me S0t
Рассмотрим функцию f(t)×e-pt , где р – комплексное число р = ( а + i b).
(1)
Применим к этому соотношению формулу Эйлера :
Проинтегрировав это равенство получим :
(2)
Оценим левую часть равенства (2) :
А согласно свойству (3) |f(t)| < Me S0t
В случае если a>S0 имеем :
Аналогично можно доказать, что существует и сходится второй интеграл в равенстве (2).
Таким образом при a>S0 интеграл, стоящий в левой части равенства (2) также существует и сходится. Этот интеграл определяет собой функцию от комплексного параметра р :
(3)
Функция F(p) называется изображением функции f(t) по Лапласу, а функция f(t) по отношению к F(p) называется оригиналом.
f(t) Ü F(p), где F(p) – изображение функции f(t) по Лапласу.
- это оператор Лапласа.
Смысл введения интегральных преобразований.
Этот смысл состоит в следующем : с помощью перехода в область изображения удается упростить решение многих задач, в частности свести задачу решения многих задач дифференциального, интегрального и интегро-дифференциального уравнения к решению алгебраических уравнений.
Теорема единственности: если две функции j( t) и Y(t) имеют одно и то же изображение F(p), то эти функции тождественно равны.
Смысл теоремы : если при решении задачи мы определим изображение искомой функции, а затем по изображению нашли оригинал, то на основании теоремы единственности можно утверждать, что найденная функция является решением в области оригинала и причем единственным.
Изображение функций s0(t), sin (t), cos (t).
Определение: называется единичной функцией.
Единичная функция удовлетворяет требованиям, которые должны быть наложены на функцию для существования изображения по Лапласу. Найдем это изображение :
Изображение единичной функции
Рассуждая аналогичным образом получим изображение для функции sin(t) :
интегрируя по частям получим :
т.е.
Аналогично можно доказать, что cos (t) переходит в функцию в области преобразований. Откуда :
Изображение функции с измененным масштабом независимого переменного.
где а – константа.
Таким образом :
и
Свойства линейности изображения.
Теорема : изображение суммы нескольких функций умноженное на постоянные равны сумме изображений этих функций умноженных на те же постоянные.
Если , то , где
Теорема смещения : если функция F(p) это изображение f(t), то F(a+p) является изображением функции e-at f(t) (4)
Доказательство :
Применим оператор Лапласа к левой части равенства (4)
Что и требовалось доказать.
Таблица основных изображений:
F(p) | f(t) | F(p) | f(p) |
1 | |||
Изображение производных.
Теорема. Если , то справедливо выражение :
(1)
Доказательство :
(2)
(3)
Подставляя (3) в (2) и учитывая третье условие существования функции Лапласа имеем :
Что и требовалось доказать.
Пример: Решить дифференциальное уравнение :
Если x(0)=0 и x’(0)=0
Предположим, что x(t) – решение в области оригиналов и , где - решение в области изображений.
Изображающее уравнение :
Теорема о интегрировании оригинала. Пусть находится в области оригиналов, , тогда также оригинал, а его изображение .
Таким образом операции интегрирования в области оригиналов соответствует операция деления в области изображений.
Теорема о интегрировании изображений : Пусть – функция оригинал, которая имеет изображение и также оригинал, а - является сходящимся интегралом, тогда .
Толкование теоремы : операция деления на аргумент в области оригиналов соответствует операции интегрирования в пределах от р до ¥ в области изображений.
Понятие о свертке функций. Теорема о свертке.
Пусть заданы две функции a(t) и b(t), удовлетворяющие условиям существования изображения по Лапласу, тогда сверткой таких функций называется следующая функция :
(1)
Свертка обозначается следующим образом :
(1’)
Равенства (1) и (1’) идентичны.
Свертка функции подчиняется переместительному закону.
Доказательство:
Теорема о умножении изображений. Пусть и , тогда произведение изображений представляется сверткой оригиналов .
Доказательство :
Пусть изображение свертки
(1)
Интеграл (1) представляет собой повторный интеграл относительно переменных t и t . Изменим порядок интегрирования. Переменные t и t входят в выражение симметрично. Замена переменной производится эквивалентно.
Если в последнем интеграле сделать замену переменной, то после преобразований последний интеграл преобразуется в функцию F2(p).
Операция умножения двух функций в пространстве изображений соответствует операции свертки их оригиналов в области оригиналов. Обобщением теоремы о свертке есть теорема Эфроса.
Теорема Эфроса. Пусть функция находится в области оригиналов, , а Ф(р) и q(р) – аналитические функции в области изображений, такие, что , тогда .
В практических вычислениях важную роль играет следствие из теоремы о свертке, наз. интеграл Дюамеля. Пусть все условия теоремы выполняются, тогда
(2)
Соотношение (2) применяется при решении дифференциальных уравнений.
Обратное преобразование Лапласа.
- Это прямое преобразование Лапласа.
Обратное преобразование есть возможность получить функцию-оригинал через известную функцию-изображение :
, где s – некоторая константа.
Пользоваться формулой для обратного преобразования можно при определенном виде функции F(p), либо для численного нахождения функции-оригинала по известному изображению.
Теоремы разложения.
Известная методика разложения дробно-рациональных функций на сумму элементарных дробей (1)-(4) может быть представлена в виде двух теорем разложения.
Первая теорема разложения. Пусть F(p) – изображение некоторой функции, тогда эта функция представляется в виде , k – постоянная, может быть сколь угодно большим числом, , то возможен почленный переход в пространство оригиналов с помощью формулы : .
Вторая теорема разложения. Если изображение представляется д робно-рациональной функцией . Степень числа s меньше степени знаменателя n, знаменатель имеет корни a1, a2, …, a n соответствующий кратности k1, k2, …, kn , при этом k1+ k2 +…+ kn = n. В этом случае оригинал функции определяется по формуле :
(3)
Например :
Связь между преобразованиями Фурье и Лапласа.
Преобразование Лапласа имеет вид :
(1)
На f(t) наложены условия :
1) f(t) определена и непрерывна на всем интервале: (-¥ ; ¥ )
2) f(t) º 0 , t Î (- ¥ ;0)
3) При M, S0 >0 , для всех t > 0 выполняется условие |f(t)|<Me S0t
Если отказаться от условий 2 и 3, и считать, что f(t) принимает произвольное значение при t < 0, то вместо (1) можно рассмотреть следующий интеграл :
(2)
Формула (2) – двустороннее преобразование Лапласа.
Пусть в (1) и (2) p =a + in, где a и n – действительные числа.
Предположим, что Re(p) = a = 0, т.е.
(4)
(5)
(4) и (5) соответственно односторонние и двусторонние преобразования Фурье.
Для существования преобразования Фурье, функция должна удовлетворять условиям :
1) Должна быть определена на промежутке (-¥ ; ¥ ) , непрерывна всюду, за исключением конечного числа точек разрыва первого рода.
2) Любой конечный промежуток оси t можно разделить на конечное число промежутков, в каждом из которых функция либо кусочно-гладкая, либо кусочно-монотонная.
3) Функция абсолютно интегрируема : , это условие выполняется, если |f(t)|<Me S0t
Из существования преобразования Лапласа не следует преобразование Фурье. Преобразования Фурье существуют для более узкого класса функций. Преобразования Фурье не существуют для постоянной и ограниченной функции : f(t) = C
Аналогично преобразования Фурье не существуют и для гармоничных функций :
т.к.
Если f(t) = 0 при t>0 и преобразование для этой функции существует, то оно может быть получено из таблицы оригиналов и изображений для преобразования Лапласа путем замены параметра t на iu, но при этом необходимо убедиться, что F(p) не обращается в число справа от мнимой оси.
Если f(t) ¹ 0, t<0
(6)
Обозначим
Очевидно, что (6’)
Функция (6) называется спектральной плотностью
В связи с изложенным можно указать два пути отыскания спектральной плотности :
1) Вычисление интеграла (5)
2) Использование преобразования Лапласа или Фурье.
Непосредственное вычисление спектральной плотности для абсолютно интегрируемой функции.
Функция F(iu) может быть представлена, как комплексная функция действительной переменной
(7)
|F(iu)| - амплитудное значение спектральной плотности, y (u) – фазовый угол.
В алгебраической форме : F(iu) = a(u) +ib(u)
(8)
(9)
Для непосредственного вычисления спектральной плотности вычисляется интеграл (6), а затем по формулам (8) и (9) определяется амплитудное значение |F(iu)| и фазовый угол y (u).
Пример.
Найти спектральную плотность импульса :
откуда , далее
Отыскание спектральной плотности для неабсолютно интегрируемых функций.
Прямое преобразование Фурье для таких функций не существует, существует преобразование Лагранжа.
Прямое преобразование Фурье необходимо :
1) Для облегчения процесса решения дифференциальных и интегральных уравнений.
2) Для исследования амплитудной и частотной характеристик спектральной плотности, определенной всюду на числовой оси.
Введем следующее определение спектральной плотности для неабсолютно интегрируемых функций:
Если для заданной функции y=f(t) существует непрерывное изображение по Лапласу F(p), то спектральной плотностью функции называется изображение функции по Лапласу при p = iu.
Спектральной плотностью F1(iu) неабсолютно интегрируемой функции называется предел от спектральной плотности F2(iua) абсолютно интегрируемой функции.
Похожие рефераты:
Интеграл по комплексной переменной. Операционное исчисление и некоторые его приложения
Дискретизация и квантование изображений
Шпаргалки по геометрии, алгебре, педагогике, методике математики (ИГПИ)
Математические основы теории систем
Исследование движения центра масс межпланетных космических аппаратов
Основные понятия математического анализа
Методы решения некорректно поставленных задач
Формирование познавательной потребности у учащихся средствами информационных технологий
Шпоры по математическому анализу
Анализ погрешностей волоконно-оптического гироскопа
Анализ и моделирование методов когерентной оптики в медицине и биологии